

Traffic Impact Study

Traffic Impact Study for Ehlers Estate Winery

Prepared for the County of Napa

File Number: P19-00146

Submitted by

W-Trans

May 18, 2021

This page intentionally left blank

Table of Contents

Execu	tive Summary	1
Introd	uction	2
Transp	portation Setting	4
Capac	ity Analysis	7
Vehicl	e Miles Traveled (VMT)2	4
Altern	ative Modes2	5
Access	s and Circulation2	6
Parkin	g2	7
Transp	portation Demand Management	8
Conclu	isions and Recommendations3	1
Study	Participants and References	3
Figure	s	
1.	Study Area and Existing Lane Configurations	3
2.	Existing Traffic Volumes1	
3.	Near-Term Traffic Volumes1	
4.		
5.		
6.)
Tables		
1.	Collision Rates at the Study Intersections	5
2.	Collision Rates for the Study Roadway Segments	5
3.		
4.	Automobile Level of Service Criteria	
5.	Existing Peak Hour Intersection Levels of Service	
6.	Existing Peak Hour Roadway Segment Levels of Service	
7.	Near-Term Peak Hour Intersection Levels of Service	2
8.	Near-Term Peak Hour Roadway Segment Levels of Service	
9.	Cumulative Peak Hour Intersection Levels of Service	
	Cumulative Peak Hour Roadway Segment Levels of Service	
	. Trip Generation Summary – Harvest Conditions	
	Existing and Existing plus Project Peak Hour Intersection Levels of Service	
12	· Existing and Existing plus Project reak mour intersection Levels of Service	1

13. Near-Term and Near-Term plus Project Peak Hour Intersection Levels of Service	21
14. Cumulative and Cumulative plus Project Peak Hour Intersection Levels of Service	
15. Existing and Existing plus Project Peak Hour Roadway Segment Levels of Service	22
16. Near-Term and Near-Term plus Project Peak Hour Roadway Segment Levels of Service	
17. Cumulative and Cumulative plus Project Peak Hour Roadway Segment Levels of Service	

Appendices

- A. Collision Rate Calculations
- B. Traffic Counts
- C. Intersection Level of Service Calculations
- D. Roadway Segment Level of Service Calculations
- E. Trip Generation Spreadsheets
- F. Left-Turn Lane Warrant Graph

Executive Summary

The proposed project is a Use Permit Modification that would allow the Ehlers Estate Winery to receive up to 100 visitors per day and to increase its production capacity from 25,000 gallons per year to 35,000 gallons per year. The winery would also be allowed to increase the number of permitted full-time employees from two to 14 and to add four part-time employees for harvest and non-harvest operations.

Based on the County's winery trip generation assumptions, the project would generate an average of 18 new trips per weekday and 17 trips on the weekend compared to existing levels. This includes six trips during the weekday p.m. peak hour and seven trips during the weekend midday peak hour.

The study area consisted of the Ehlers Lane along the project frontage, the project access point, the intersection of SR 29/Ehlers Lane, and the segments of SR 29 north and south of the Ehlers Lane intersection. The study intersection is currently operating at LOS A overall, but and at LOS D on the stop-controlled approach during both peak hours under Existing and projected Near-Term volumes. With the addition of project trips, the overall intersection LOS and that of the stop-controlled approach would remain unchanged during the weekend midday peak hour, but during the weekday p.m. peak hour the increased delay would result in a change from LOS D to LOS E. However, as the increase in delay would be only 0.5 seconds, this is seen as an acceptable effect.

Under Cumulative volumes, the study intersection would continue to operate at LOS A during the weekday p.m. and weekend midday peak hours, while the stop-controlled approach would operate at LOS F during both peak hours. However, as delay would be expected to increase by more than five seconds during the weekday p.m. peak hour, this is seen as an adverse effect. With the addition of striping to create a right-turn pocket on the Ehlers Lane approach, the project-related delay could be reduced to less than five seconds, which would be considered an acceptable effect.

Access to the site would continue to be at the existing project driveway on Ehlers Lane. Sight distance is adequate, and a left-turn lane would not be warranted based on the application of Napa County criteria.

The project is expected to generate fewer than 110 trips per day. Based on guidance from the Governor's Office of Planning and Research, the project is therefore expected to have a less-than-significant impact in terms of vehicle miles traveled (VMT). Despite this finding, it is recommended that the project implement a Transportation Demand Management (TDM) program to further reduce its impact on the regional circulation system and greenhouse gas emissions.

The on-site parking supply is expected to be adequate to meet the needs of employees and visitors.

Access for pedestrians, while limited, is considered adequate given the anticipated lack of demand at this rural location. Similarly, while the closest transit stop is not within what is normally considered a comfortable walking distance, it is adequate for the rural conditions. Upon provision of bicycle parking, facilities for this mode would be adequate.

Introduction

This report presents an analysis of the potential traffic impacts and operational effects that would be associated with a proposed change to the Conditional Use Permit (CUP) for the Ehlers Estate Winery located at 3222 Ehlers Lane in the County of Napa. The traffic study was completed in accordance with the criteria established by the County and is consistent with standard traffic engineering techniques.

Prelude

The purpose of a traffic impact study is to provide County staff and policy makers with data they can use to make an informed decision regarding the potential traffic impacts and adverse effects of a proposed project, and any associated improvements that would be required to mitigate these impacts to a level of insignificance as defined by the County's General Plan or other policies and address adverse effects. Vehicular traffic is typically evaluated by determining the number of new trips that the proposed use would be expected to generate, distributing these trips to the surrounding street system based on existing travel patterns or anticipated travel patterns specific to the proposed project, then analyzing if the new traffic would be expected to have an adverse effect on operation of critical intersections or roadway segments. Impacts relative to access for pedestrians, bicyclists, and to transit are also addressed.

Project Profile

The project is a proposed 2019 compliance program Use Permit Modification that would allow an increase in visitation and production capacity. Under the proposed change, up to 100 visitors per day would be permitted and production could be increased from 25,000 gallons per year to 35,000 gallons per year. An increase in the number of full-time employees from two to 14 and the addition of four part-time employees are also proposed during harvest and non-harvest operations. The County of Napa file number for this project is P19-00146. The project site is located at 3222 Ehlers Lane in the County of Napa, as shown in Figure 1.

52

Traffic Impact Study for Ehlers Estate Winery
Figure 1 – Study Area and Existing Lane Configurations

LEGEND Study Intersection Study Roadway 1

Study Roadway 2

Transportation Setting

Operational Analysis

Study Area and Periods

The study area consists of the section of Ehlers Lane fronting the project site and the project access point, as well as the intersection of SR 29/Ehlers Lane and the segments of SR 29 to the north and south of Ehlers Lane. Operating conditions during the Friday and Saturday p.m. peak periods were evaluated as these time periods reflect the highest traffic volumes areawide and for the proposed project.

Study Intersections

SR 29/Ehlers Lane is an unsignalized tee-intersection, stop-controlled on the westbound Ehlers Lane approach. The Ehlers Lane approach has a flared right-turn area with storage space to accommodate approximately one vehicle.

The locations of the study intersections and the existing lane configurations and controls are shown in Figure 1.

Study Roadways

SR 29 generally runs north-south and has two 12-foot travel lanes with a posted speed limit of 50 miles per hour (mph) in the study area. The roadway is mostly straight adjacent to the site. SR 29 varies in width between approximately 36 and 46 feet depending on the width of the shoulders and the presence of a left-turn lane. Based on count data collected during harvest in August 2017, the average daily traffic (ADT) south of Ehlers Lane is approximately 15,000 on Fridays and 14,000 on Saturdays.

Ehlers Lane is a rural two-lane roadway that runs east-west between SR 29 and the Ehlers Estate Winery, and north-south along the winery frontage. The roadway is approximately 24 feet wide, does not include a marked centerline, and has a posted speed limit of 25 mph. North of the winery entrance, Ehlers Lane is narrower, approximately 18 feet wide. The ADT along the roadway segment between SR 29 and the project site is approximately 400 on weekdays and 270 on weekend days.

Collision History

The collision history for the study area was reviewed to determine any trends or patterns that may indicate a safety issue. Collision rates were calculated based on records available from the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The five-year period selected for this analysis was October 1, 2014 through September 30, 2019 as it reflects pre-pandemic travel patterns.

As presented in Table 1, the calculated collision rate for the study intersection was compared to the average collision rate for similar facilities statewide, as indicated in 2016 Collision Data on California State Highways, California Department of Transportation (Caltrans). These average rates statewide are for intersections in the same environment (urban, suburban, or rural), with the same number of approaches

(three or four), and the same controls (all-way stop, two-way stop, or roundabout). One collision was reported during the five-year study period, with a resulting rate below the statewide average, indicating that the intersection is operating in a generally safe manner. The collision rate calculations are provided in Appendix A.

Table 1 – Collision Rates at the	Study Intersections		
Study Intersection	Number of Collisions (2014-2019)	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)
1. SR 29/Ehlers Ln	1	0.04	0.16

Note: c/mve = collisions per million vehicles entering

Collision rates for the study roadway segments are compared to statewide averages for similar facilities in Table 2. Bale Lane was used as the northern boundary for the SR 29 segment north of Ehlers Lane while Weinberg Road was used as the southern boundary for the SR 29 segment south of Ehlers Lane. Collisions were reported at a below-average rate for the SR 29 segment south of Ehlers Lane while the collision rate for the segment north of Ehlers Lane was higher than the statewide average.

Table 2 – Collision Rates for the Study Roadway Segments								
Study Intersection	Number of Collisions (2014-2019)	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)					
1. SR 29 – North of Ehlers Lane	38	1.53	0.82					
2. SR 29 – South of Ehlers Lane	17	0.69	0.82					

Note: c/mve = collisions per million vehicles entering

For the SR 29 segment north of Ehlers Lane, there were 16 hit object and 13 rear-end collisions among the 38 reported collisions. There were also five sideswipe, three broadside, and one head on collision. The hit object crashes were primarily due to improper turning or unsafe speed and all of the rear-end crashes were attributed to unsafe speed. Additionally, a pattern of rear-end crashes at side streets or driveways may indicate that a left-turn pocket is needed since vehicles were hit from behind while stopped or turning. The sideswipe collisions were associated with improper turning and driving on the wrong side of the road. Increased enforcement and installation of a two-way left-turn lane on SR 29 could help reduce the incidence of rear-end collisions.

Alternative Modes

Pedestrian Facilities

Pedestrian facilities include sidewalks, crosswalks, pedestrian signal phases, curb ramps, curb extensions, and various streetscape amenities such as lighting, benches, etc. There are no pedestrian facilities in the study area given the rural nature.

Bicycle Facilities

The Highway Design Manual, Caltrans, 2017, classifies bikeways into four categories:

- Class I Multi-Use Path a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- Class II Bike Lane a striped and signed lane for one-way bike travel on a street or highway.
- Class III Bike Route signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- Class IV Bikeway also known as a separated bikeway, a Class IV Bikeway is for the exclusive use of bicycles and includes a separation between the bikeway and the motor vehicle traffic lane. The separation may include, but is not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking.

There are currently no bicycle facilities on Ehlers Lane. While not providing direct access to the project, bike lanes along Silverado Trail serve bicyclists traveling north-south through the area. There are two planned bicycle facilities in the project vicinity identified in the *Napa Countywide Bicycle Plan*, Napa Valley Transportation Authority (NVTA), 2019. Class II bike lanes are planned along SR 29 connecting St. Helena to Calistoga. The proposed Napa Valley Vine Trail would be a Class I bike path parallel to SR 29, which will connect from Calistoga to Vallejo when completed.

Transit Facilities

Transit services throughout Napa County are provided by Vine Transit. Route 10 provides service between Napa Valley College and Calistoga seven days a week. Service is available hourly on weekdays from 5:30 a.m. to 10:00 p.m. and on weekends from 6:00 a.m. to 8:00 p.m. The stops nearest the project site are on SR 29 just south of Byrd Hill Lane, approximately 0.7 miles from the project site. Both stops are equipped with benches and the southbound stop includes a shelter.

According to their website, all vehicles used by Vine Transit are wheelchair accessible and conform to standards set forth by the Americans with Disabilities Act (ADA). Dial-a-ride, which is paratransit or door-to-door service, is available for those who are unable to independently use the transit system due to a physical or mental disability. VineGo is VINE's paratransit service and is designed to serve the needs of individuals with disabilities in the cities of Calistoga, St. Helena, Napa, American Canyon, the Town of Yountville, and the unincorporated areas of Napa County. While reservations can be made for same day service, VineGo recommends reserving rides in advance.

Capacity Analysis

Intersection Level of Service Methodologies

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

The study intersection was analyzed using the "Two-Way Stop-Controlled" methodology published in the *Highway Capacity Manual* (HCM), 6th Edition, Transportation Research Board, 2018. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle. The "Two-Way Stop-Controlled" intersection capacity methodology determines a level of service for each minor turning movement by estimating the level of average delay in seconds per vehicle. Results are presented for individual movements together with the weighted overall average delay for the intersection.

The ranges of delay associated with the various levels of service are indicated in Table 3.

Table :	3 – Two-Way Stop-Controlled Intersection Level of Service Criteria
LOS A	Delay of 0 to 10 seconds. Gaps in traffic are readily available for drivers exiting the minor street.
LOS B	Delay of 10 to 15 seconds. Gaps in traffic are somewhat less readily available than with LOS A, but no queuing occurs on the minor street.
LOS C	Delay of 15 to 25 seconds. Acceptable gaps in traffic are less frequent, and drivers may approach while another vehicle is already waiting to exit the side street.
LOS D	Delay of 25 to 35 seconds. There are fewer acceptable gaps in traffic, and drivers may enter a queue of one or two vehicles on the side street.
LOSE	Delay of 35 to 50 seconds. Few acceptable gaps in traffic are available, and longer queues may form on the side street.
LOS F	Delay of more than 50 seconds. Drivers may wait for long periods before there is an acceptable gap in traffic for exiting the side streets, creating long queues.

Reference: Highway Capacity Manual, 6th Edition, Transportation Research Board, 2018

Two-Lane Highway Segment Level of Service Methodology

The roadway segment Level of Service methodology found in Chapter 15, "Two-Lane Highways," of the *Highway Capacity Manual* is the basis of the automobile LOS analysis. The methodology considers traffic volumes, terrain, roadway cross-section, the proportion of heavy vehicles, and the availability of passing zones. The LOS criteria for two-lane highways differs depending on whether the highway is considered "Class I," "Class II." Class I highways are typically long-distance routes connecting major traffic generators or national highway networks where motorists expect to travel at high speeds. Motorists do not necessarily expect to travel at high speeds on Class II highways, which often function as scenic or recreational routes and typically serve shorter trips. Class III highways may be

portions of Class I or Class II highways that pass through towns and communities and have a mix of local traffic and through traffic.

The measure of effectiveness by which Level of Service is determined on Class I and II highways is average travel speed (ATS) and percent time spent following (PTSF), or the proportion of time that drivers on the highway are limited in their speed by a driver in front of them. Class III highways are measured by percent of free-flow speed (PFFS), which represents the ability of vehicles to travel at or near the posted speed limit. SR 29 was defined as a Class II roadway for the purposes of this analysis. A summary of the PTSF breakpoints for Class II highways is shown in Table 4.

Table 4	Table 4 – Automobile Level of Service Criteria				
LOS	Class II Highways				
	PTSF (%)				
Α	≤40				
В	>40-55				
С	>55-70				
D	>70-85				
E	≤85				

Notes: LOS = Level of Service; PTSF = Percent Time Spent Following

Reference: Highway Capacity Manual, 6th Edition, Transportation Research Board, 2018

Traffic Operation Standards

Napa County

In the Circulation Element of the Napa County General Plan, the following policies have been adopted:

- Policy CIR-31 The County seeks to provide a roadway system that maintains current roadway capacities in most locations and is efficient in providing local access.
- Policy CIR-38 The County seeks to maintain operations of roads and intersections in the unincorporated County area that minimize travel delays and promote safe access for all users. Operational analysis shall be conducted according to the latest version of the Highway Capacity Manual and as described in the current version of the County's Transportation Impact Study Guidelines. In general, the County seeks to maintain Level of Service (LOS) D on arterial roadways and at signalized intersections, as the service level that best aligns with the County's desire to balance its rural character with the needs of supporting economic vitality and growth.

In situations where the County determines that achieving LOS D would cause an unacceptable conflict with other goals and objectives, minimizing collisions and the adequacy of local access will be the County's priorities. Mitigating operational impacts should first focus on reducing the project's vehicular trips through modifying the project definition, applying TDM strategies, and/or applying new technologies that could reduce vehicular travel and associated delays; then secondarily should consider physical infrastructure changes. Proposed mitigations will be evaluated for their effect on collisions and local access, and for their effectiveness in achieving the maximum potential reduction in

the project's operational impacts (see the County's Transportation Impact Study Guidelines for a list of potential mitigation measures).

The following roadway segments are exceptions to the LOS D standard described above:

- State Route 29 in the unincorporated areas between Yountville and Calistoga: LOS F is acceptable.
- o Silverado Trail between State Route 128 and Yountville Cross Road: LOS E is acceptable.
- State Route 12/121 between the Napa/Sonoma county line and Carneros Junction: LOS F is acceptable.
- o American Canyon Road from I-80 to American Canyon City Limit: LOS E is acceptable.

To provide a more quantitative method of adhering to the above standards, the County refers to a memorandum titled, Napa County Traffic Impact Study (TIS) Guidelines, County of Napa, 2021. The document establishes thresholds for road segments and different intersection control types. The memorandum states a project would cause an adverse effect requiring mitigation if, for Existing Conditions:

- An arterial segment operates at LOS A, B, C or D during the selected peak hours without Project trips, and deteriorates to LOS E or F with the addition of Project trips; or
- An arterial segment operates at LOS E or F during the selected peak hours without Project trips, and
 the addition of Project trips increases the total segment volume by one percent or more. The
 following equation should be used if the arterial segment operates at LOS E or F without the Project:
 - Project Contribution % = Project Trips ÷ Existing Volumes
- A signalized intersection operates at LOS A, B, C, or D during the selected peak hours without Project trips, and the LOS deteriorates to LOS E or F with the addition of Project trips; or
- A signalized intersection operates at LOS E or F during the selected peak hours without Project trips, and the addition of Project trips increases the total entering volume by one percent or more. The following equation should be applied:
 - Project Contribution % = Project Trips ÷ Existing Volumes
- An unsignalized intersection operates at LOS A, B, C, or D during the selected peak hours without Project trips, and the LOS deteriorates to LOS E or F with the addition of Project traffic; the peak hour traffic signal warrant criteria should also be evaluated and presented for informational purposes; or
- An unsignalized intersection operates at LOS E or F during the selected peak hours without Project trips, and the Project increases the delay by five seconds or more; the peak hour traffic signal warrant criteria should also be evaluated and presented for informational purposes.
 - <u>All-Way Stop-Controlled Intersections</u> The increase in delay should be calculated based on the overall average delay for the intersection.
 - <u>Side-Street Stop-Controlled Intersections</u> The increase in delay should be calculated based on the delay for the worst-case approach(es). Each stop-controlled approach that operates at LOS E or F should be analyzed individually.

A project would cause an adverse effect requiring mitigation if, for Future (Cumulative) Conditions, the Project's volume is equal to, or greater than **one percent** of the difference between Future and Existing volumes for an arterial, signalized intersection, or all-way stop-controlled intersection and **10 percent** for the impacted approach at two-way stop-controlled intersections.

- <u>Cumulative Conditions</u> A Project's contribution to a cumulative condition would be calculated as the Project's percentage contribution to the total growth in traffic. This calculation applies to arterials, signalized intersections, and unsignalized intersections.
 - Project Contribution % = Project Trips ÷ (Cumulative Volumes Existing Volumes)

Significance threshold for failing intersections: General Plan policy accepts LOS E and F in certain instances. If an unsignalized intersection is operating acceptably (LOS A through LOS D), and the project would cause the intersection to fall to LOS E or LOS F, the applicant must mitigate the impact to restore to LOS D at minimum, or the project is considered to adversely affect operation of the intersection. If an intersection is already LOS E or LOS F, and the project would increase delay by five or more seconds, the applicant must mitigate the impact to lower the increase in delay, or else the project would be considered to adversely affect the intersection. The same standards apply to the analysis of minor approaches to unsignalized intersections. As CEQA Guidelines have shifted away from LOS and toward VMT as the determining factor in identifying significant transportation impacts, adverse effects to intersections may still be the basis for conditioning transportation improvements to improve or maintain existing LOS or denying a project for the project's potentially negative effects on public safety.

Existing Conditions

The Existing Conditions scenario provides an evaluation of current operations based on existing traffic volumes during the afternoon p.m. peak hour on both Fridays and Saturdays. This condition does not include project-generated traffic volumes. Due to the COVID-19 pandemic, traffic volumes were below typical levels at the time this study was undertaken, so the analysis relied on data collected in 2018 and 2019. All count data was collected during typical harvest operations.

Turning movement volumes for SR 29/Ehlers Lane were estimated based on September/October 2018 daily counts on Ehlers Lane as cited in the *Ehlers Lane Traffic Study* by Parisi Transportation Consulting. Since recent pre-pandemic volume counts were not available for the SR 29 study segments, peak hour segment volumes were derived from October 2019 SR 29/Lodi Lane intersection counts and the calculated turning movement volumes at SR 29/Ehlers Lane. The percentage of heavy vehicles at the SR 29/Ehlers Lane intersection was estimated based on data collected in September 2017 at the SR 29/Lodi Lane intersection, which was selected due to its proximity and similar roadway configuration to the project intersection. For the purposes of this study, heavy vehicles were considered to be trucks hauling grapes or those with five or more axles. The data indicates that heavy vehicles represent four percent of all vehicles through the intersection of SR 29/Lodi Lane during the Friday p.m. peak hour and two percent during the Saturday p.m. peak hour. Copies of the count data relied upon for the study are provided in Appendix B.

Intersection Levels of Service

Under Existing Conditions, SR 29/Ehlers Lane is operating acceptably at LOS A overall and at LOS D on the stop-controlled Ehlers Lane approach during the weekday and weekend peak periods. The Existing traffic volumes are shown in Figure 2. A summary of the intersection Level of Service calculations is contained in Table 5, and copies of the calculations are provided in Appendix C.

Table 5 – Existing Peak Hour Intersection Levels of Service						
Study Intersection	Friday P	Friday PM Peak		Saturday PM Peak		
Approach	Delay	LOS	Delay	LOS		
1. SR 29/Ehlers Ln	1.5	Α	0.7	Α		
Westbound (Ehlers Ln) Approach	34.6	D	31.2	D		

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

Roadway Segment Levels of Service

Under Existing Conditions, the study segments all operate at LOS C during both peak hours, which meets the County's standard of LOS D. Existing roadway segment volumes are shown in Figure 2. A summary of the roadway segment calculations is shown in Table 6, and copies of the Level of Service calculations are provided in Appendix D.

Table 6 – Existing Peak Hour Roadway Segment Levels				
Study Segment	Friday PM Peak		Saturday PM Peak	
Direction	PTSF	LOS	PTSF	LOS
SR 29 – North of Ehlers Lane				
Northbound	64.4	С	64.5	С
Southbound	64.3	С	65.4	С
SR 29 – South of Ehlers Lane		454		A
Northbound	65.4	С	65.2	С
Southbound	64.8	С	65.2	С

Notes: PTSF = Percent Time Spent Following; LOS = Level of Service

Near-Term Conditions

Near-Term (Existing plus Approved) operating conditions were assessed with traffic from approved projects in and near the study area added to the Existing volumes. As directed by staff, the Bergman Family Winery project located at 3285 St Helena Highway (0.6 miles north of Ehlers Lane) was included in the evaluation of Near-Term Conditions. Based on information provided by staff, the project would generate an average of 27 trips per day during the harvest period, including five peak hour trips.

Traffic Impact Study for Ehlers Estate Winery
Figure 2 – Existing Traffic Volumes

Intersection Levels of Service

Under Near-Term Conditions, SR 29/Ehlers Lane intersection would operate at LOS A overall and the stop-controlled approach at SR 29/Ehlers Lane would operate at LOS D during the Friday p.m. peak hour and Saturday p.m. peak hour. The intersection volumes are shown in Figure 3 and a summary of the intersection Level of Service calculations is shown in Table 7.

Table 7 – Near-Term Peak Hour Intersection Levels of Service					
Study Intersection	Friday P	Friday PM Peak		Saturday PM Peak	
Approach	Delay	LOS	Delay	LOS	
1. SR 29/Ehlers Ln	1.5	Α	0.7	Α	
Westbound (Ehlers Ln) Approach	34.7	D	31.2	D	

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*;

Roadway Segment Levels of Service

Under Near-Term Conditions, both study roadway segments are expected to operate at LOS C during both peak hours. Near-Term segment volumes are shown in Figure 3 and a summary of the roadway segment Level of Service calculations is shown in Table 8.

Table 8 – Near-Term Peak Hour Roadway Segment Levels of Service					
Study Segment Direction	Friday F	Friday PM Peak		Saturday PM Peak	
	PTSF	LOS	PTSF	LOS	
SR 29 - North of Ehlers Lane					
Northbound	64.4	С	64.5	С	
Southbound	64.4	С	65.5	С	
SR 29 - South of Ehlers Lane					
Northbound	65.4	С	65.2	С	
Southbound	64.9	С	65.2	С	

Notes: PTSF = Percent Time Spent Following; LOS = Level of Service

Cumulative Conditions

Cumulative volumes for the horizon year 2040 were calculated based on output from the *Napa Solano Travel Demand Model*, maintained by the Solano Transportation Authority (STA). Base year (2015) and future (2040) segment volumes for the weekday p.m. peak hour were used to calculate growth factors for SR 29. Since Ehlers Lane is not included in the model, growth on this roadway was assumed to increase at one-half percent annually as there are limited opportunities for growth on the segment.

(W-Trans

Traffic Impact Study for Ehlers Estate Winery Figure 3 – Near-Term Traffic Volumes

The growth factors projected by the model were adjusted to account for the four years of growth that had already occurred between the base year (2015) and Existing (2019) count data, resulting in a growth factor of 1.46 for SR 29. The Existing volumes were then multiplied by the adjusted growth factors to estimate the future Friday p.m. peak hour and Saturday p.m. peak hour turning movement volumes at the study intersection. Roadway segment volumes for each segment were then derived from the projected future intersection turning movement volumes.

Intersection Levels of Service

Under Cumulative Conditions, and with no changes to the intersection's configuration or controls, the intersection is expected to operate at LOS A overall; the stop-controlled approach at SR 29/Ehlers Lane would be expected to operate at LOS F during the Friday p.m. and Saturday p.m. peak hours. Cumulative volumes are shown in Figure 4 and operating conditions are summarized in Table 9.

Table 9 – Cumulative Peak Hour Intersection Levels of Service					
Study Intersection	Friday P	Friday PM Peak		Saturday PM Peak	
Approach	Delay	LOS	Delay	LOS	
1. SR 29/Ehlers Ln	4.1	Α	1.3	Α	
Westbound (Ehlers Ln) Approach	136.0	F	86.1	F	

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*; **Bold** text = deficient operation;

Roadway Segment Levels of Service

Under Cumulative Conditions both study roadway segments are expected to operate at LOS D both peak hours, which is acceptable based on County standards. Cumulative segment volumes are shown in Figure 4 and a summary of the roadway segment Level of Service calculations is shown in Table 10.

Study Segment Direction	Friday F	Friday PM Peak		Saturday PM Peak	
	PTSF	LOS	PTSF	LOS	
SR 29 - North of Ehlers Lane				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Northbound	73.3	D	73.6	D	
Southbound	73.4	D	74.4	D	
SR 29 - South of Ehlers Lane					
Northbound	74.4	D	74.2	D	
Southbound	73.5	D	74.0	D	

Notes: PTSF = Percent Time Spent Following; LOS = Level of Service

W-Trans

Traffic Impact Study for Ehlers Estate Winery
Figure 4 – Cumulative Traffic Volumes

Project Description

The project is a proposed 2019 compliance program Use Permit Modification that would allow for visitation and increased production capacity. Under the proposed change up to 100 visitors per day would be permitted and production would increase from 25,000 gallons per year to 35,000 gallons per year. An increase in the number of full-time employees from two to 14 and the addition of four part-time employees is also proposed during harvest and non-harvest seasons. The proposed project site plan is shown in Figure 5.

Trip Generation

The County of Napa's Winery Traffic Information/Trip Generation Sheet was used to determine the anticipated trip generation for the permitted, existing, and proposed conditions. The form estimates the number of daily trips for Fridays and Saturdays based on the number of full- and part-time employees, maximum daily visitors, and production. Copies of the worksheets are provided in Appendix E.

As the County of Napa's Winery Traffic Information/Trip Generation Sheet does not include guidance on inbound versus outbound trips during the peak hours, based on driveway counts collected at various wineries in Napa and Sonoma counties it was assumed that two-thirds of trip ends at the winery would be outbound during the Friday p.m. peak hour since most of the trips would be associated with employees and customers leaving at closure of the winery. For the Saturday midday peak-hour it was assumed that inbound and outbound trip ends would be evenly split.

Based on the change in production and visitation, the winery would be expected to generate 46 trips during the Friday p.m. peak hour compared to 41 trips under existing conditions and two trips for conditions under the current permit. Similarly, during the Saturday peak hour the increase in visitation and production would result in 58 trips as compared to 52 under existing conditions, while there are two trips currently permitted. As shown in Table 11, this would result in a net increase of 18 trips per Friday and 17 trips per Saturday compared to existing conditions.

Table 11 – Trip Generation Scenario	Summary D	Saturday PM Peak Hour						
	Friday	Saturday	Trips	PM Pea In	Out	Trips	In	Out
Permitted	7	7	2	1	1	2	1	1
Existing (actual)	110	105	39	13	26	50	25	25
Proposed	128	122	45	15	30	57	28	29
Net Increase (vs. Existing)	18	17	6	2	4	7	3	4

Note: Trip generation as estimated above does not include special events

W-Trans

nax160.ai 02/21

Source: Bartelt Engineering 2/17

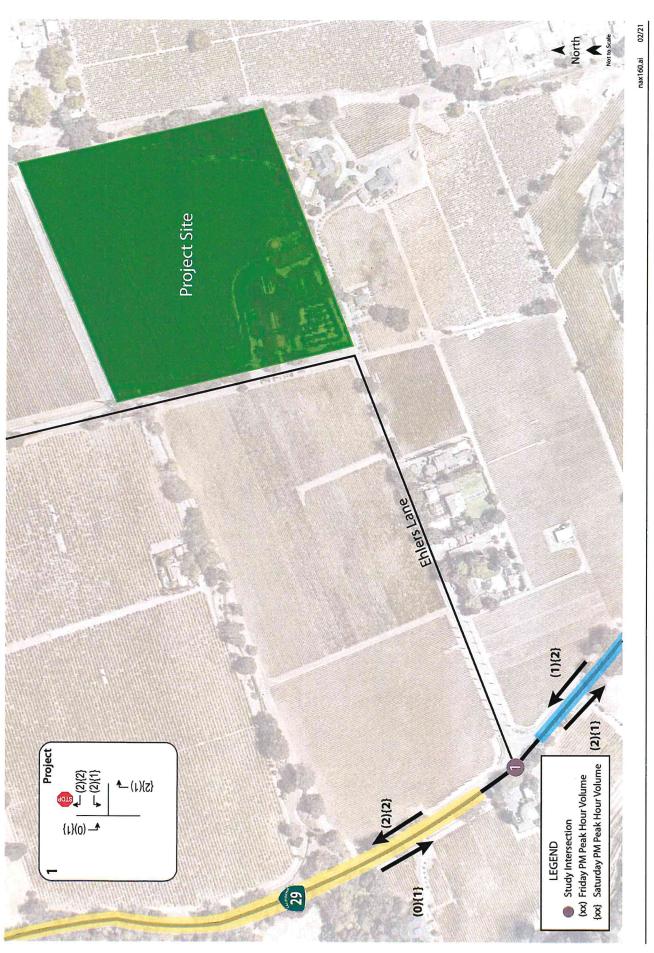
Trip Distribution

The pattern used to allocate new project trips to the street network was determined based on a review of existing traffic patterns. A distribution of 50 percent to the south and 50 percent to the north via SR

29 was used since, according to counts obtained from Caltrans, the directional split for traffic volumes on SR 29 is relatively equal for both the Friday p.m. and Saturday p.m. peak hours.

Intersection Operation

Existing plus Project Conditions


Upon the addition of project-related traffic to the Existing volumes, SR 29/Ehlers Lane would continue to operate at LOS A overall and it would operate at LOS D on the stop-controlled approach during the Saturday p.m. peak hour. During the Friday p.m. peak hour, the intersection would operate at LOS E with the addition of project-related trips, but the delay would increase only 0.5 seconds compared to Existing conditions. These results are summarized in Table 12. Project traffic volumes are shown in Figure 6.

Ta	Table 12 – Existing and Existing plus Project Peak Hour Intersection Levels of Service										
Study Intersection Approach		Ex	cisting (Condition	ıs	Existing plus Project					
		Friday PM		Saturday PM		Friday PM		Saturday PM			
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
1.	SR 29/Ehlers Ln	1.5	Α	0.7	Α	1.6	Α	0.7	Α		
	Westbound (Ehlers Ln) Approach	34.6	D	31.2	D	35.1	Ε	30.7	D		

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

It should be noted that with the addition of project-related traffic volumes, the westbound approach delay at the SR 29/Ehlers Lane intersection would decrease during the Saturday p.m. peak hour. Since the project adds traffic predominantly to the right-turn movement, and these turning movements typically have a low delay, it resulted in a slight reduction in the approach delay. Drivers would therefore experience little, if any, change in conditions as a result of the project.

Finding – The study intersection is expected to continue to operate acceptably at LOS A with the addition of project-related traffic. The stop-controlled approach at the study intersection is expected to continue operating acceptably Saturday peak hour and to change from LOS D to LOS E during the Friday p.m. peak hour upon the addition of project-generated traffic to Existing volumes. However, because operation without the project is on the verge of dropping to LOS E without the project and the projected 0.5-second increase in delay to a 35.1-second average is only 0.1 seconds over the threshold, given the conservative nature taken in estimating volumes it is reasonable to assume that this effect would be acceptable.

Traffic Impact Study for Ehlers Estate Winery
Figure 6 – Project Traffic Volumes

Near-Term plus Project Conditions

With project-related traffic added to Near-Term volumes, SR 29/Ehlers Lane would continue to operate at LOS D on the stop-controlled approach during the Saturday p.m. peak hour but would operate at LOS E during the Friday p.m. peak. As in the Existing conditions scenario, the change in the LOS during the p.m. peak reflects an increase in delay of 0.5 seconds. These results are summarized in Table 13.

Та	Table 13 – Near-Term and Near-Term plus Project Peak Hour Intersection Levels of Service									
Study Intersection Approach		Nea	ar-Term	Condition	ons	Near-Term plus Project				
		Friday PM		Saturday PM		Friday PM		Saturday PM		
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	
1.	SR 29/Ehlers Ln	1.5	Α	0.7	Α	2.6	Α	1.4	Α	
	Westbound (Ehlers Ln) Approach	34.7	D	31.2	D	35.2	E	30.8	D	

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*

As under the Existing Conditions scenario, with the addition of project-related traffic volumes, the westbound approach delay at the SR 29/Ehlers Lane intersection would be expected to decrease during the Saturday p.m. peak hour due to the project-related trips largely impacting the right-turn movement, which typically has minimal delay.

Finding – The study intersection is expected to continue to operate acceptably overall with the addition of project-related traffic. With the addition of project-related traffic to Near-Term volumes, the stop-controlled approach would operate at LOS E during the Friday p.m. peak hour, but as the increase in delay is 0.5 seconds this is seen as an acceptable effect.

Cumulative plus Project Conditions

Upon the addition of project-generated traffic to the anticipated Cumulative volumes, SR 29/Ehlers Lane would continue to operate acceptably overall and unacceptably at LOS F on the stop-controlled approach during both peak hours. The Cumulative plus Project operating conditions are summarized in Table 14.

Ta	ble 14 – Cumulative and Cumulative	plus Pro	ject Pe	ak Hour I	ntersec	tion Leve	els of Se	ervice		
Study Intersection Approach		Cumulative Conditions				Cumulative plus Project				
		Friday PM		Saturday PM		Friday PM		Saturday PM		
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	
1.	SR 29/Ehlers Ln	4.1	Α	1.3	Α	4.6	Α	1.4	Α	
	Westbound (Ehlers Ln) Approach	136.0	F	86.1	F	143.9	F	86.4	F	
	Restripe to Provide Right-Turn Lane	-10 <u>-</u> 3	- 3	-	1	116.9	F	80.4	F	

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*; **Bold** text = deficient operation

Finding – Under Cumulative conditions, SR 29/Ehlers Lane would operate acceptably overall. The stop-controlled approach would operate at LOS F without the project, and the addition of project-related

volumes would result in an increase in delay that would be greater than five seconds during the Friday p.m. peak period. Therefore, without mitigation the project would result in an adverse effect on intersection operations.

Recommendation – In order to achieve an acceptable effect on operation of the minor street approach at SR 29/Ehlers Lane, it is recommended that the westbound approach be restriped to include a dedicated right-turn lane to accommodate two vehicles. This would reduce the project-related delay during the Friday p.m. peak to less than five seconds, while the delay during the Saturday p.m. peak would be reduced below Cumulative conditions without the project.

Roadway Segment Operation

Existing plus Project Conditions

Under Existing plus Project Conditions, the study roadway segments are expected to continue operating acceptably at the same Levels of Service as without project traffic in both directions during both peak hours. These results are summarized in Table 15.

Table 15 – Existing and Existing p	lus Project Pe	ak Hour	Roadwa	y Segm	ent Leve	ls of Se	rvice		
Study Segment Direction	E	xisting (Condition	าร	Existing plus Project				
	Frida	Friday PM		Saturday PM		Friday PM		lay PM	
	PTSF	LOS	PTSF	LOS	PTSF	LOS	PTSF	LOS	
SR 29 - North of Ehlers Ln									
Northbound	64.4	С	64.5	С	64.4	С	64.6	С	
Southbound	64.3	С	65.4	C	64.4	С	65.5	С	
SR 29 - South of Ehlers Ln									
Northbound	65.4	С	65.2	С	65.4	С	65.2	С	
Southbound	64.8	С	65.2	С	64.9	С	65.2	С	

Notes: PTSF = Percent Time Spent Following; LOS = Level of Service

Finding – The study roadways are expected to continue operating acceptably at the same Levels of Service upon the addition of project-generated traffic.

Near-Term plus Project Conditions

Upon the addition of project-related traffic to Near-Term volumes, the study roadway segments are expected to continue operating acceptably at the same service levels as without project traffic in both directions during both peak hours. These results are summarized in Table 16.

Table 16 – Near-Term and Near-Term plus Project Peak Hour Roadway Segment Levels of Service									
Study Segment Direction	Ne	ar-Term	Condition	ons	Near-Term plus Project				
	Friday PM		Saturday PM		Friday PM		Saturday PM		
	PTSF	LOS	PTSF	LOS	PTSF	LOS	PTSF	LOS	
SR 29 - North of Ehlers Ln					9				
Northbound	64.4	С	64.5	С	64.5	С	64.6	С	
Southbound	64.4	С	65.5	С	64.4	С	65.5	С	
SR 29 - South of Ehlers Ln		7							
Northbound	65.4	С	65.2	С	65.4	С	65.3	С	
Southbound	64.9	С	65.2	С	65.0	С	65.2	С	

Notes: PTSF = Percent Time Spent Following; LOS = Level of Service

Finding – Under the Near-Term scenario, the study roadway segments are expected to continue operating acceptably at the same Levels of Service upon the addition of project-generated traffic.

Cumulative plus Project Conditions

With project-generated traffic added to the anticipated Cumulative volumes, the study roadways are expected to operate acceptably. The Cumulative plus Project operating conditions are summarized in Table 17.

Table 17 – Cumulative and Cumulative plus Project Peak Hour Roadway Segment Levels of Service									
Study Segment	Cur	nulative	Conditi	ons	Cumulative plus Project				
Direction		Friday PM		Saturday PM		Friday PM		ay PM	
	PTSF	LOS	PTSF	LOS	PTSF	LOS	PTSF	LOS	
SR 29 - North of Ehlers Ln									
Northbound	73.3	D	73.6	D	73.4	D	73.6	D	
Southbound	73.4	D	74.4	D	73.4	D	74.5	D	
SR 29 - South of Ehlers Ln									
Northbound	74.4	D	74.2	D	74.5	D	74.3	D	
Southbound	73.5	D	74.0	D	73.6	D	74.1	D	

Notes: PTSF = Percent Time Spent Following; LOS = Level of Service

Finding – Under Cumulative conditions, the study roadway segments are expected to continue operating acceptably at the same Levels of Service with the addition of project-related trips.

Vehicle Miles Traveled (VMT)

Background and Threshold of Significance

Senate Bill (SB) 743 established a change in the metric to be applied for determining transportation impacts associated with development projects. Rather than the delay-based criteria associated with a Level of Service analysis, the increase in Vehicle Miles Traveled (VMT) as a result of a project is now the basis for determining California Environmental Quality Act (CEQA) impacts with respect to transportation and traffic. As of the date of this analysis, the County of Napa has not yet established thresholds of significance related to VMT. As a result, the project-related VMT impacts were assessed based on guidance provided by the California Governor's Office of Planning and Research (OPR) in the publication *Transportation Impacts (SB 743) CEQA Guidelines Update and Technical Advisory*, 2018.

Project Impact

The OPR Technical Advisory identifies several criteria that may be used to identify certain types of projects that are unlikely to have a significant VMT impact and can be "screened" from further analysis. One of these screening criteria pertains to small projects, which OPR defines as generating fewer than 110 new vehicle trips per day on average. OPR specifies that VMT should be based on a typical weekday and should take into consideration seasonal fluctuations. The proposed project is anticipated to result in 15 new daily vehicle trips on harvest Friday and 27 new daily vehicle trips on a non-harvest Friday compared to actual, existing operation, which is the basis for CEQA evaluations. Since this is below the small-project threshold of 110 trips, it is reasonable to conclude that the project can be presumed to have a less-than-significant transportation impact on VMT.

Finding — Based on OPR guidance, the project would be expected to have a less-than-significant transportation impact on VMT.

Alternative Modes

Pedestrian Facilities

Consistent with expectations for a rural area, there are no existing pedestrian facilities in the project vicinity. Shoulders are present along SR 29.

Finding – While there are no pedestrian facilities serving the project site, nominal demand for pedestrian trips to and from the site is expected, so this condition is acceptable.

Bicycle Facilities

Existing bike lanes along the nearby Silverado Trail and shoulders on SR 29, together with planned future facilities and the shared use of minor streets, provide adequate access for bicyclists. The project will include an easement for the Napa Valley Vine Trail along the SR 29 frontage, which will further enhance bicycle access.

Finding – Bicycle facilities serving the project site are adequate.

Bicycle Storage

The County does not have specific bicycle parking requirements for wineries; however, the project should provide bicycle parking consistent with the requirements outlined in Chapter 18.110.040 of the Napa County Code of Ordinances which states that ten bicycle parking spaces should be provided for all nonresidential uses where ten or more automobile parking spaces are required. With a proposed supply of 22 permanent vehicle parking spaces, the project would need to provide ten bicycle spaces on-site.

Transit

Bus service is available along the SR 29 corridor. Existing stops are slightly further than one-half mile from the site, which is generally considered a comfortable walking distance. To access the stops pedestrians are required to walk along the roadway on Ehlers Lane and along the shoulders on SR 29.

Finding – Transit facilities serving the project site are adequate considering the rural location and limited anticipated demand.

Access and Circulation

Site Access

Ehlers Estate Winery would continue to be accessed from the existing driveway on Ehlers Lane.

Sight Distance

At driveway approaches a substantially clear line of sight should be maintained between the driver of a vehicle waiting on the driveway and the driver of an approaching vehicle. Sight distances along Ehlers Lane at the project driveway were evaluated based on sight distance criteria contained in the *Highway Design Manual* published by Caltrans. The recommended sight distances for driveways are based on stopping sight distance, with approach travel speeds used as the basis for determining the recommended sight distance.

Since Ehlers Lane does not have a speed limit sign, a prima facie speed limit of 25 miles per hour, which applies to private roads, was used. For an approach speed of 25 mph the recommended stopping sight distance is 150 feet. Based on a review of field conditions, sight distance at the driveway extends approximately 300 feet to the south and over 150 feet to the north. It was noted that north of the project driveway the roadway is narrower, with a width of approximately 18 feet. It can therefore be expected that travel speeds are reduced.

Finding – Adequate sight distance is available at the project driveway in both travel directions.

Access Analysis

Left-Turn Lane Warrants

The need for a left-turn lane on Ehlers Lane at the project driveways was evaluated based on the County of Napa's published guidance for where a turn lane is needed based on the daily traffic volume projected to use the driveway as a function of roadway ADT (Average Daily Traffic). The left-turn lane warrant is met when the corresponding value plots above the curve indicated on the Left Turn Lane Warrant Graph from the Napa County Road and Street Standards and is unwarranted if the value plots below the curve.

Based on the Napa County left turn lane warrant graph, a left-turn lane is not warranted on Ehlers Lane at the project driveway using Cumulative Plus Project volumes. The left-turn lane warrant graph is provided in Appendix F.

Finding – Upon the addition of project trips to Cumulative volumes, a left-turn lane would not be warranted at the project driveway.

Parking

The project was analyzed to determine whether the proposed parking supply would be sufficient for the anticipated daily demand during harvest conditions. The project site, as proposed, would have a total of 22 parking spaces.

Napa County does not currently have parking requirements for winery projects. Applying guidelines employed in other Napa County winery traffic studies, daily parking demand for the winery and tasting room could be accommodated by providing at least one space for every employee, as well as parking stalls for about 25 percent of the expected daily tasting room visitors. During typical operation, there would be a maximum of 13 employees (nine full-time and four part-time) on site at any one time, which would be monitored through the scheduling of shifts. The use permit would allow for a maximum of 100 daily visitors to the tasting room. Assuming the County's standard occupancy rate of 2.8 guests per vehicle, a total of 36 guest vehicles would visit the site over the course of the day; to accommodate 25 percent of the visitors at one time, nine parking spaces would be required. Therefore, 13 spaces would be required to accommodate employee parking needs and nine spaces would be needed for guest parking; the proposed on-site parking supply of 22 spaces would be sufficient for the estimated number of employees and guests. To discourage off-site parking, signs indicating that parking is prohibited should be posted along the west side of Ehlers Lane during events.

Finding – The proposed parking supply is expected to be adequate to accommodate the anticipated peak demand during typical operations.

Transportation Demand Management

Transportation Demand Management (TDM) measures aim to reduce single-occupancy vehicle trips during peak hours, parking demand, and total vehicle miles traveled (VMT) through use of alternative modes of transportation and more efficiently planned trips. As of July 2020, VMT analysis is required as part of the California Environmental Quality Act (CEQA) review process. While TDM measures would not be needed to offset project impacts, the implementation of such a program would help to support state and county goals to reduce VMT and to encourage the use of non-vehicle modes of transportation.

Due to the project's rural location, the site does not have as many options to reduce VMT as one located in an urban environment, but the winery would have up to 13 employees on site at one time as well as up to 100 daily visitors so there is potential to reduce vehicular trips and parking demand with implementation of a TDM program.

Proposed TDM Program

The focus of the project's TDM Program would be to provide information, encouragement, and access to travel options to reduce the number of vehicle trips. The following measures are proposed as part of the project and are consistent with the goals of Caltrans' *Smart Mobility 2010: A Call to Action for the New Decade*.

It should be noted that although most measures described below are intended for employees and can be implemented relatively easily, typically the bulk of VMT and greenhouse gas (GHG) emissions associated with wineries are generated by visitors. However, while this group represents a greater opportunity for reductions, successful implementation of TDM measures for visitors can be challenging.

Ridesharing Programs

Carpooling is one of the most common and cost-effective alternative modes of transportation and one that commuters can adopt part-time. There are numerous benefits to ridesharing. Carpooling can reduce peak-period vehicle trips and increase commuters' travel choices. Further, it reduces congestion, road and parking facility costs and pollution emissions. Carpooling tends to have the lowest cost per passenger-mile of any motorized mode of transportation, since it makes use of a vehicle seat that would otherwise be empty. Carpooling also provides consumer financial savings by decreasing fuel and parking costs.

Ridematching

The greatest barrier to workplace carpooling is often simply being able to identify and travel with other nearby employees. Fortunately, there are many services that can assist in pairing employees within the same organization or across organizations. The most basic publicly available service is 511.org's free ridematching service. There are also various private ridematching providers (e.g. Zimride, RideAmigos, Via, Scoop) that can effectively create carpool networks while making them safe and convenient for their users. The Napa Valley Transportation Authority (NVTA) uses RideAmigos as a resource for local employers as part of its V-Commute program.

Guaranteed Ride Home Program

One of the reasons that many employees do not carpool to work is the fear of being stranded should they need to leave in an emergency. Employees who carpool to work should be guaranteed a ride home in the case of an emergency or unique situation. The Napa Valley Transportation Authority (NVTA) offers a Guaranteed Ride Home (GRH) program, which is available to employees who carpool or commute via alternative modes. Participants are be able to use a taxi, rental car, Lyft, Uber, or other means to get home in an emergency – such as taking care of a sick child or other unexpected need – and are reimbursed for the full cost of the service. The program is available to all who work or attend college in Napa County and is free to join, but registration is required. As part of the project's TDM program, employees would be provided information about V-Commute and would be encouraged to register for the service.

On-Site Amenities

Although not a transportation program in and of itself, on-site employee and visitor amenities serve to reduce vehicle trips. This can take many forms depending on the need. For example, providing lunch or food options on-site allows workers and visitors to forgo midday trips to purchase lunch.

Cash-Out

A cash-out program operates when employers pay their employees a cash incentive for days when they use an alternative mode of transportation (transit, bike, walk, or carpool to work) to help reduce vehicle commute trips and emissions. The cash value of the subsidy can be equal to the cost they would otherwise incur for travel and would be offered to both employees who carpool to provide an equitable benefit.

Education, Outreach & Marketing

Transportation Coordinator

The presence of a staff person dedicated part-time to overseeing and managing the TDM program is helpful in ensuring the ongoing success of these programs. This would not be a distinct position, but instead would be a role that is integrated into the on-site manager. The duties for this position could include the following:

- Create and distribute employee transportation information welcome packets
- Maintain and update a bulletin board or other physical source of transportation information
- Distribute Napa Bicycle Coalition maps
- Administer the cash-out program
- Promote the ride-matching program

Welcome Packet for New Employees

New employees should be provided with a welcome packet containing relevant transportation information. The packet could include information about NVTA's V-Commute program, which offers resources related to non-automobile transportation options, such as bicycle transportation information, ride-matching services, and the guaranteed ride home program. Transit maps for Vine Transit service could also be provided.

Visitor Transportation Information

Providing guests with on-line information regarding transportation options for travel to the winery can help encourage guests to consider non-auto or rideshare options. This information should be emailed or mailed to guests as part of their registration confirmation process to assist in their logistics planning. Guests making appointments for four or more persons should be encouraged to use private vans or a shuttle for their entire group.

Monitor Performance

It is important to continually monitor the performance of a TDM program and adjust measures as necessary to ensure its success. Employers should conduct mode split and VMT surveys before the implementation of a TDM program and each year thereafter to both make adjustments and use as a marketing material. Employee satisfaction surveys are also an effective way of ensuring a quality TDM program.

Bicycle Benefits

Bicycle Parking

The provision of both short-term and long-term bicycle parking is important. Secure long-term parking (e.g. bike lockers) is a critical component in encouraging employees to bike to work as the lack of secure parking is often cited by employees as a deterrent. Short-term parking (e.g. bike racks) can be utilized by employees or visitors and is generally an inexpensive way to accommodate visitors traveling between wineries.

Changing and Shower Facilities

Bicycling to work can be an attractive option for employees, but it is less so if the employee appears sweaty or unkempt after a long ride. By offering a basic shower and changing facility, employers give workers the reassurance that they can bike to work and still appear presentable to visitors.

Shared Bicycles & Maintenance Tools

Many businesses have experience in providing one or more vehicles on-site for employee use during work hours. Today, many employers are offering the same benefit in the form of shared bicycles for employee or guest use. These bicycles are ideal for short trips and are a cost-effective way of providing a new mobility option to nearby wineries or other destinations during the workday. Bicycles that are shared or used by individuals can be serviced with simple tools such as a pump and tire patches that are kept on-site.

Recommendation — While the project would have a less-than-significant impact on VMT, it is recommended that the winery implement some or all of the TDM measures described above to reduce peak-hour vehicle trips, support the increase use of non-vehicle modes of transportation, and help reduce greenhouse gas emissions.

Conclusions and Recommendations

Conclusions

- The proposed modifications to the Use Permit would be expected to result in a net increase of 18 daily trips on a Friday during harvest season, including six new trips during the p.m. peak hour, and a net increase of 17 new trips on a Saturday during harvest season, with seven new trips during the p.m. peak hour compared to existing conditions.
- The study intersection of SR 29/Ehlers Lane is operating acceptably at LOS A overall under Existing
 conditions and would be expected to continue doing so under Near-Term and Cumulative Conditions
 and with project-related traffic added.
- The stop-controlled approach at the SR 29/Ehlers Lane intersection is operating acceptably at LOS D under Existing Conditions and would continue to do so under Near-Term Conditions. Upon the addition of project trips, the stop-controlled approach is expected to operate unacceptably at LOS E during the Friday p.m. peak. Under Cumulative Conditions, the stop-controlled approach is expected to operate unacceptably at LOS F during both peak hours. With the addition of project-related traffic to Cumulative volumes, the approach is expected to continue to operate at LOS F; however, the increase in delay is expected to be more than five seconds during the Friday p.m. peak period, resulting in an adverse effect.
- The study roadway segments of SR 29 are projected to operate acceptably at LOS D or better under Existing, Near-Term, and Cumulative Conditions, and would continue to do so with the addition of project traffic.
- While there are no pedestrian facilities serving the project site, pedestrian trips to and from the site are not expected given the rural context of the project, so this condition is acceptable.
- Bicycle facilities serving the project site are adequate to serve the project site.
- Transit facilities serving the project site are adequate considering the anticipated demand.
- Adequate sight distance is available at the project driveway in both travel directions.
- Upon the addition of project trips to Cumulative volumes, a left-turn lane would not be warranted at the project driveway.
- The proposed on-site parking supply would be adequate for the anticipated peak demand during typical operations.

Recommendations

 To achieve acceptable operation on the stop-controlled approach at the SR 29/Ehlers Lane intersection under Existing plus Project, Near-Term plus Project, and Cumulative plus Project conditions, it is recommended that the westbound approach be restriped to include a short dedicated right-turn lane. This would reduce the increase in delay to less than five seconds.

- While not required to mitigate transportation impacts, it is recommended that the winery implement
 a TDM program to encourage vehicle trip reduction and the use of non-vehicle transportation modes
 to reduce project-related VMT and greenhouse gas emissions.
- Ten bicycle parking spaces should be provided on-site to encourage bicycle transportation to the site.

Study Participants and References

Study Participants

Principal in Charge

Dalene J. Whitlock, PE, PTOE

Senior Planner

Barry Bergman, AICP

Assistant Engineer

Kimberly Tellez

Graphics

Cameron Wong

Editing/Formatting

Alex Scrobonia, Hannah Yung-Boxdell, Cameron Wong

Quality Control

Dalene J. Whitlock, PE, PTOE

References

2016 Collision Data on California State Highways, California Department of Transportation, 2018 Napa County Traffic Impact Study (TIS) Guidelines, County of Napa, 2021

Guidelines for Interpretation of General Plan Circulation Policies on Significance Criteria, Fehr & Peers, 2015

Highway Capacity Manual, 6th Edition, Transportation Research Board, 2018

Highway Design Manual, 6th Edition, California Department of Transportation, 2017

Intersection Channelization Design Guide, National Cooperative Highway Research Program (NCHRP) Report No. 279, Transportation Research Board, 1985

Napa County Code, Municipal Code Corporation, 2017

Napa County General Plan, County of Napa, 2013

Napa County Road and Street Standards, County of Napa, 2016

Napa Countywide Bicycle Plan, Napa Valley Transportation Authority, 2019

Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association (CAPCOA), 2010

Smart Mobility 2010: A Call to Action for the New Decade, California Department of Transportation, 2010

Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol, 2014-2019
Technical Advisory on Evaluating Transportation Impacts in CEQA, Governor's Office of Planning and Research, 2018

Trip Generation Manual, 10th Edition, Institute of Transportation Engineers, 2017 VINE Transit, http://www.ridethevine.com

NAX160

This page intentionally left blank

Appendix A

Collision Rate Calculations

This page intentionally left blank

Intersection Collision Rate Worksheet

Ehlers Estate Winery

Intersection # 1: SR 29 & Ehlers Lane

Date of Count: Saturday, January 00, 1900

Number of Collisions: 1 Number of Injuries: 1 Number of Injuries: 1
Number of Fatalities: 0
Average Daily Traffic (ADT): 14800
Start Date: October 1, 2014
End Date: September 30, 2019
Number of Years: 5

Intersection Type: Tee
Control Type: Stop & Yield Controls
Area: Rural

Number of Collisions x 1 Million Collision Rate = ---ADT x Days per Year x Number of Years

Collision Rate = $\frac{1}{14,800} \times \frac{1,000,000}{365} \times \frac{1}{x}$

Notes
ADT = average daily total vehicles entering intersection
c/mve = collisions per million vehicles entering intersection
* 2016 Collision Data on California State Highways, Caltrans

	nt Collision Rate Worksheet
Eh	lers Estate Winery
Location:	Between Ehlers Lane and Bale Lane
Date of Count: Average Daily Traffic (ADT):	Friday, October 18, 2019 13,600
	18
Number of Years:	
Highway Type: Area: Design Speed: Terrain:	≤55
Segment Length: Direction:	1.0 miles North/South
	Number of Collisions x 1 Million er Year x Segment Length x Number of Years
Collision Rate = 38 13,600	x 1,000,000 x 365 x 1 x 5
Collision	on Rate Fatality Rate Injury Rate
Study Segment 1.53	c/mvm 1.1% 39.5%
Notes ADT = average daily traffic volun c/mvm = collisions per million ve * 2016 Collision Data on Califor	hicle miles nia State Highways, Caltrans
	Between Weinberg Road and Ehlers Lane
Average Daily Traffic (ADT):	Friday, October 18, 2019 13,500
	5 0 October 1, 2014 September 30, 2019
Highway Type: Area: Design Speed: Terrain:	
Segment Length: Direction:	1.0 miles North/South
	Number of Collisions x 1 Million er Year x Segment Length x Number of Years
Collision Rate = 17 13,500	x 1,000,000 x 365 x 1 x 5
	n Rate Fatality Rate Injury Rate
No. at a second	

Notes
ADT = average daily traffic volume
c/mvm = collisions per million vehicle miles
2016 Collision Data on California State Highways, Caltrans

Appendix B

Traffic Counts

This page intentionally left blank

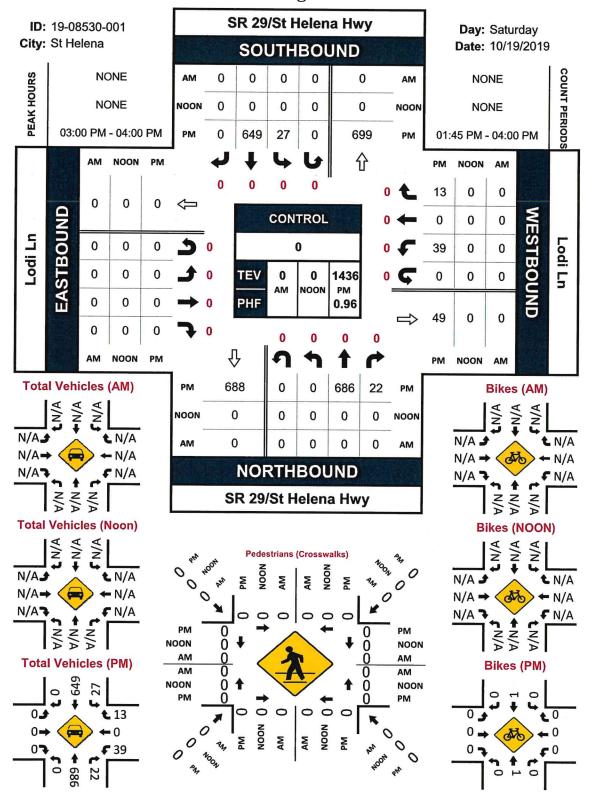
Daily Traffic Volume Counts

Week 1, Saturday September 15 through Friday September 21, 2018

Week 1	Ehle	ers Ln e/o S	R 29	Ehlers	Ln, n/o Eh	lers Est
Day	EB	WB	Total	NB	SB	Total
Saturday, 9/15	160	159	319	63	58	121
Sunday, 9/16	95	100	195	36	37	73
Monday, 9/17	192	190	382	73	71	144
Tuesday, 9/18	213	221	434	92	78	170
Wednesday, 9/19	206	202	408	93	90	183
Thursday, 9/20	218	207	425	92	103	195
Friday, 9/21	223	227	450	99	92	191
Weekday Average	210	209	420	90	87	177
Sat/Sun Average	128	130	257	50	48	97

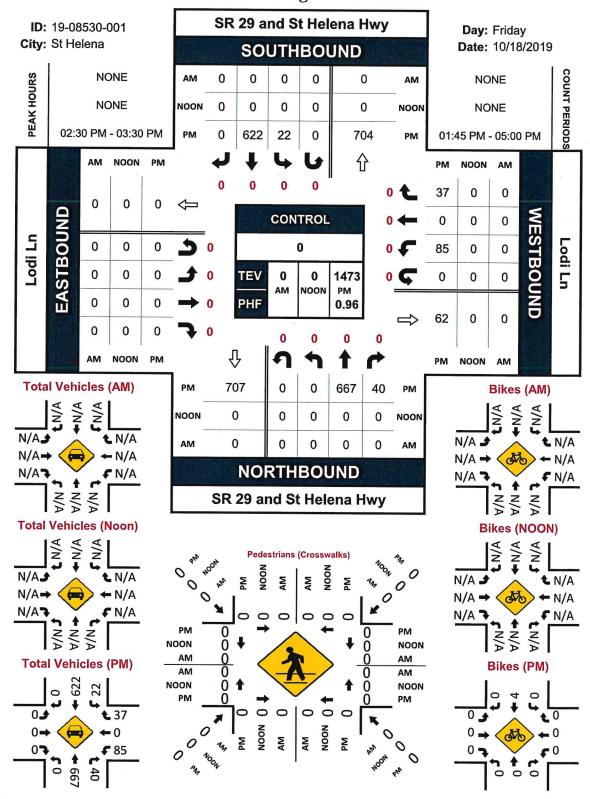
Week 2, Saturday September 22 through Friday September 28, 2018

Week 2	Ehle	ers Ln e/o S	R 29	Ehlers	Ln, n/o Ehl	ers Est
Day	EB	WB	Total	NB	SB	Total
Saturday, 9/22	159	160	319	72	69	141
Sunday, 9/23	108	105	213	52	53	105
Monday, 9/24	181	172	353	91	91	182
Tuesday, 9/25	214	209	423	97	94	191
Wednesday, 9/26	164	172	336	87	78	165
Thursday, 9/27	195	198	393	96	89	185
Friday, 9/28	257	265	522	123	105	228
Weekday Average	202	203	405	99	91	190
Sat/Sun Average	134	133	266	62	61	123


Week 3, Saturday September 29 through Friday October 5, 2018

Week 3	Ehle	ers Ln e/o S	R 29	Ehlers	Ln, n/o Ehl	ers Est
Day	EB	WB	Total	NB	SB	Total
Saturday, 9/29	207	199	406	93	95	188
Sunday, 9/30	96	93	189	47	53	100
Monday, 10/1	209	206	415	83	74	157
Tuesday, 10/2	177	178	355	81	79	160
Wednesday, 10/3	194	200	394	86	76	162
Thursday, 10/4	223	219	442	101	91	192
Friday, 10/5	260	265	525	113	108	221
Weekday Average	213	214	426	93	86	178
Sat/Sun Average	152	146	298	70	74	144

Source: Ehlers Lane Traffic Study, Parisi Consulting, 2020


SR 29/St Helena Hwy & Lodi Ln

Peak Hour Turning Movement Count

SR 29 and St Helena Hwy & Lodi Ln

Peak Hour Turning Movement Count

This page intentionally left blank

Appendix C

Intersection Level of Service Calculations

This page intentionally left blank

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln Control Type: Analysis Method: Analysis Period:

Two-way stop HCM 6th Edition 15 minutes

39.8 E 0.277

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Intersection Setup

Left Right 12.00 12.00 0 0 25.00 0.00 No 12.00 0 0.00 No 12.00 0 Right 12.00 SR 29 Northbound 00.00 No Thru 12.00 Turning Movement
Lane Width [n]
No. of Lanes in Pocket
Pocket Length [n]
Speed [mph]
Grade [%]
Crosswalk Lane Configuration Approach Name

Name	SR	SR 29			Ehle	Ehlers Ln
Base Volume Input [veh/h]	664	40	22	644	37	16
Base Volume Adjustment Factor	1,0000	1.0000	1.0000	1,0000	1,0000	1.0000
Heavy Vehicles Percentage [%]	4.00	4.00	4.00	4.00	4.00	4.00
Growth Factor	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000
In-Pracess Volume [veh/h]	0	0		٥	o	٥
Site-Generated Trips [veh/h]	0	0	0	0	o	0
Diverted Trips [veh/h]	o	0	0	0	0	٥
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	o	0	0	0
Total Hourly Volume [veh/h]	664	40	22	644	37	16
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	173	10	9	168	10	4
Total Analysis Volume [veh/h]	692	42	23	671	39	17
Pedestrian Volume [ped/h]						

Generated with PTV VISTRO Version 7,00-08

Priority Scheme	<u>u</u>	Free	ı.F.	Free	S	Stop
Flared Lane					Z	No.
Storage Area (veh)		0	0			
Two-Stage Gap Acceptance					z	92
Number of Storage Spaces in Median		0	0			
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	0.01	0.00	0.03	9,61	0.28	0.04
d_M, Delay for Movement [s/veh]	0000	00'0	9.29	0.00	39.81	22.60
Movement LOS	4	4	4	4	ш	O
95th-Percentile Queue Length [veh/ln]	0.00	0.00	90.0	90.0	1.28	1.28
95th-Percentile Queue Length [fMn]	0.00	0.00	2.05	2.05	32.10	32,10
d_A, Approach Delay [s/veh]	o	0.00	0.31	=	34.59	59
Approach LOS	ì	4	4			
d_I, Intersection Delay [s/veh]			1.45	92		
SO Locitoenatul						

Scenario 1: 1 Friday PM Existing TIS for Ehlers Estate Winery

Ww-Trans

W-Trans

Scenario 1: 1 Friday PM Existing TIS for Ehlers Estate Winery

W-Trans

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln

Two-way stop HCM 6th Edition 15 minutes Control Type: Analysis Method: Analysis Period:

35.5 E 0.140

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Intersection Setup

Ehlers Ln	Westbound	F	Thru Left	12.00 12.00	0	100,001	25.00	0.00	ů.
	Southbound	Ť	Left	12.00	0	100.00	50.00	00.00	S.
SR 29	Northbound	.t.	Right	12.00	0	100,00	50.00	0.00	No
SF	North		Thru	12.00	o	00'00	50	o,	_
Name	Approach	Lane Configuration	Turning Movement	Lane Width [ft]	No. of Lanes in Pocket	Packet Length [ft]	Speed [mph]	Grade [%]	Crosswalk

1,0000	Name	SR	SR 29			Ehle	Ehlers Ln
1,0000	Base Volume Input [veh/h]	677	22	22	671	18	9
2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0 <t< td=""><td>Base Volume Adjustment Factor</td><td>1.0000</td><td>1.0000</td><td>1.0000</td><td>1.0000</td><td>1.0000</td><td>1.0000</td></t<>	Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1,0000	Heavy Vehicles Percentage [%]	2.00	2.00	2.00	2.00	2.00	2.00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	In-Process Volume [veh/h]		0	0	0	o	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Site-Generated Trips [veh/h]	o	0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diverted Trips [veh/h]	o	0	0	0	0	0
1,0000 1	Pass-by Trips [veh/h]	o	0	0	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ting Site Adjustment Volume [veh/h]	0	0	0	0	0	0
677 22 22 671 18 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.0000 1.0000 1.0000 1.0000 1.0000 176 6 6 175 5 705 23 23 699 19	Other Volume [veh/h]	0	0	0	0	o	0
0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 705 23 23 689 19 0 0	Total Hourly Volume [veh/h]	677	22	22	671	18	9
1,0000 1,	Peak Hour Factor	0.9600	0.9600	0.96.0	0.9600	0.9600	0.9600
705 23 23 699 19	Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
706 23 23 699 19	Total 15-Minute Volume [veh/h]	176	9	9	175	2	2
Pedestrian Volume [ped/h]	Total Analysis Volume [veh/h]	705	23	23	669	19	9
	Pedestrian Volume [ped/h]	0		0		O	

Generated with PTIV VISTRO Version 7,00-08

Priority Scheme	ŭ.	Free	Free	95	150	Stop
Flared Lane					2	No
Storage Area [veh]		0				0
Two-Stage Gap Acceptance					2	No.
Number of Storage Spaces in Median		0				
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	10.01	0.00	0.03	0.01	0.14	0,01
d_M, Delay for Movement [s/veh]	00'0	00'0	9.22	00'0	35.50	17,36
Movement LOS	٨	4	4	4	9	O
95th-Percentile Queue Length [veh/ln]	0.00	00'0	0.08	90'0	0.53	0.53
95th-Percentile Queue Length [ft/ln]	0.00	0.00	2.02	2.02	13.23	13,23
d_A, Approach Delay [s/veh]	0	0.00	0.29	6	31	31,15
Approach LOS	`	4	4			۵
d_I, Intersection Delay [s/veh]			0.67	7		
00						

Scenario 2: 2 Saturday PM Existing TIS for Ehlers Estate Winery

W-Trans

W-Trans

W.Trans

Scenario 2: 2 Saturday PM Existing TIS for Ehlers Estate Winery

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln Control Type: Analysis Method: Analysis Period;

Two-way stop HCM 6th Edition 15 minutes

39.9 E 0.278

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Intersection Setup

Name	SR	SR 29			Ehle	Ehlers Ln
Base Volume Input [veh/h]	664	40	22	644	37	16
Base Volume Adjustment Factor	1,0000	1.0000	1.0000	1.0000	1,0000	1.0000
Heavy Vehicles Percentage [%]	4.00	4.00	4.00	4.00	4.00	4.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1,0000	1,0000
In-Process Volume [veh/h]	0	0	٥	0	0	0
Site-Generated Trips [veh/h]	٦	0	0	-	0	0
Diverted Trips [veh/h]	o	0	0	0	0	0
Pass-by Trips [veh/h]	o	0	0	0	0	
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	o	0	o	0	0	٥
Total Hourly Volume [veh/h]	999	40	22	645	37	16
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	173	10	9	168	10	4
Total Analysis Volume [veh/h]	693	42	23	672	39	17
Pedestrian Volume [ped/h]		0				

Generated with PTV VISTRO Version 7,00-08

Priority Scheme	ū	Free	Ē	Free	5.	Ston
Flared Lane						2
Storage Area [veh]						
files) para agains		5				0
Two-Stage Gap Acceptance					Z	S.
Number of Storage Spaces in Median		0				
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	0.01	0.00	0.03	9.01	0.28	0.04
d_M, Delay for Movement [s/veh]	0.00	00'0	9.29	0.00	39.94	22,67
Movement LOS	٧	٨	4	4	ш	O
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.08	0.08	1.29	1.29
95th-Percentile Queue Length [f/Jn]	0.00	0.00	2.06	2.06	32.21	32,21
d_A, Approach Delay [s/veh]	0	0.00	0.31	11	34.	34.70
Approach LOS		đ	٩			
d_I, Intersection Delay [s/veh]			1,5	1.45		
CO rejection						

Scenario 3: 3 Friday PM Baseline TIS for Ehlers Estate Winery

W-Trans

W.Trans

Scenario 3: 3 Friday PM Baseline TIS for Ehlers Estate Winery

W-Trans

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln

Two-way stop HCM 6th Edition 15 minutes Control Type: Analysis Method: Analysis Period:

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

35.6 E 0.140

Intersection Setup

_	_	_		_	_		_		_
s Ln	puno		Right	12.00	0	100,001	8		
Ehlers Ln	Westbound	F	Left	12.00	0	100.00	25.00	0.00	S
	puno		Thru	12.00	0	100,00	00	o	
	Southbound	T	Left	12.00	0	100,001	90.00	0.00	Š
29	puno		Right	12.00	0	100,00	00	0	
SR 29	Northbound		Thru	12.00	0	100.00	90.00	0.00	No.
Name	Approach	Lane Configuration	Turning Movement	Lane Width [R]	No. of Lanes in Pocket	Pocket Length [ft]	Speed [mph]	Grade [%]	Crosswalk

Nаme	SR	SR 29			Ehle	Ehlers Ln
Base Volume Input [veh/h]	677	22	22	671	18	9
Base Volume Adjustment Factor	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [%]	2.00	2.00	2.00	2.00	2.00	2.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000
In-Process Volume (veh/h)	0	0	0	0	0	0
Site-Generated Trips [veh/h]	-	o	0		0	0
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume (veh/h)	0	0	0	0	0	٥
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	878	22	22	672	18	9
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	177	9	9	175	5	2
Total Analysis Volume [veh/h]	902	23	23	700	19	9
Pedestrian Volume [ped/h]				,		

Generated with PTV VISTRO Version 7,00-08

Intersection Settings						
Priority Scheme	F	Free	Ĭ.	Free	ıs	Stop
Flared Lane					2	2
Storage Area [veh]		0		0		0
Two-Stage Gap Acceptance					Z	No
Number of Storage Spaces in Median	~	0				0
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	0.01	0.00	0,03	0.01	0.14	0.01
d_M, Delay for Movement [s/veh]	00'0	0.00	9.23	0.00	35.60	17.40
Movement LOS	٨	٩	4	٨	3	O
95th-Percentile Queue Length [veh/ln]	00'0	0.00	90.0	90.0	0.53	0.53
95th-Percentile Queue Length [f/Jn]	00'0	0.00	2.02	2.02	13,27	13.27
d_A, Approach Delay [s/veh]	0.0	0.00	.0	0.29	31.	31,23
Approach LOS		4	Ì	4		٥
d_I, Intersection Delay [s/veh]			0.67	37		
Intersection LOS						

Scenario 4: 4 Saturday PM Baseline TIS for Ehlers Estate Winery

W-Trans

WW-Trans

Scenario 4: 4 Saturday PM Baseline TIS for Ehlers Estate Winery

WW-Trans

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c): Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln Two-way stop HCM 6th Edition 15 minutes Control Type: Analysis Method: Analysis Period:

Intersection Setup

Left Right 12.00 12.00 0 0 25.00 0.00 No 12.00 0 Southbound 0.02 0.00 0.00 12.00 0 Right 12.00 Northbound SR 29 0.00 No 12.00 0 Tuning Movement
Lane Width [rt]
No. of Lanes in Pocket
Pocket Langth [rt]
Speed [mph]
Grade [%]
Grade [%] Lane Configuration Approach Name

ENIERS LD	14 37 16	1.0000 1.0000	00 4.00 4.00	1,1100 1,1100	0	0	0	0	0	0	0 41 18		1.0000 1.0000	1.0000	1.0000
	644	0 1,0000	4.00	0 1.4600	o	0	0	0	0	0	940	1,000			
_	40 22	1.0000 1.0000	4.00 4.00	1.4600 1.4600	0	0	0	0	0	0	58 32	1 0000			
SR 29	664 4	1.0000 1.0	4.00 4.	1.4600 1.4	0	0	0	0	0	0	969	1.0000		-	
Name	Base Volume Input [veh/h]	Base Volume Adjustment Factor	Heavy Vehicles Percentage [%]	Growth Factor	In-Process Volume [veh/h]	Site-Generated Trips [veh/h]	Diverted Trips [veh/h]	Pass-by Trips [veh/h]	Existing Site Adjustment Volume [veh/h]	Other Volume [veh/h]	Total Hourly Volume [veh/h]	Peak Hour Factor		Other Adjustment Factor	Other Adjustment Factor Total 15-Minute Volume (veh/h)

Generated with PTTV VISTRO Version 7.00-08

			The second secon			
Priority Scheme	Ĭ.	Free	_	Free	15	Stop
Flared Lane					z	2
Storage Area [veh]		0		0		
Two-Stage Gap Acceptance					z	S.
Number of Storage Spaces in Median		0		0		
W. Movement of missions of the second	1000	00.0	100			
V.C., MOVERNERI V.C. KALIO	0.01	0.00	0.05	5.01	0.70	90'0
d_M. Delay for Movement [s/veh]	0.00	02'0	10.66	00'0	151.08	101.61
Movement LOS	٧	4	8	4	ш	ш
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0,15	0.15	3.70	3.70
95th-Percentile Queue Length [Mn]	0.00	0.00	3.76	3.76	92.58	92.58
d_A, Approach Delay [s/veh]	0	0.00	0	0.35	135	135.99
Approach LOS		4		4		
d_I, Intersection Delay [s/veh]			4	4.08		
00 100000000000000000000000000000000000						

Scenario 5: 5 Friday PM Future TIS for Ehlers Estate Winery

Scenario 5: 5 Friday PM Future TIS for Ehlers Estate Winery

W-Trans

Two-way stop HCM 6th Editlon 15 minutes

Control Type: Analysis Method: Analysis Period:

99.8 F 0.363 Intersection Level Of Service Report
Intersection 1: SR 29/Ehlers Ln
Delay (sec / veh):
Level Of Service:
Volume to Cepacity (V/O):

Intersection Setup

_	_								
s Ln	puno		Right	12.00	0	100.00	00	0	
Ehlers Ln	Westbound	F	Left	12.00	0	100,00	25.00	0.00	ž
	puno		Thru	12.00	0	100,00	00	0	
	Southbound	T	Left	12.00	0	100,30	90.00	00:00	S
29	puno		Right	12.00	0	160,60	00	0	
SR 29	Northbound	<u>.</u>	Thru	12.00	0	160,00	90.00	00'0	N
Name	Approach	Lane Configuration	Turning Movement	Lane Width [ft]	No. of Lanes in Pocket	Packet Length [ft]	Speed [mph]	Grade [%]	Crosswalk

5	9	1.0000	2.00	1,1100	0	0	0	0	0	0	7	1.0000	1.0000	2	7	
Ehlers Ln	18	1,0000	2.00	1.1100	0	0		0	0	0	20	1.0000	1.0000	2	20	c
	671	1.0000	2.00	1.4600	0	0	0	0	0	0	086	1.0000	1.0000	245	980	
	22	1.0000	2.00	1,4600	0	0	0	0	0	0	32	1.0000	1.0000	8	32	
29	22	1.0000	2.00	1.4600	o	0	0	0	0	0	32	1.0000	1.0000	8	32	
SR 29	229	1.0000	2.00	1,4600	0	0	0	0	0	0	886	1.0000	1.0000	247	986	0
Лате	Base Volume Input [veh/h]	Base Volume Adjustment Factor	Heavy Vehicles Percentage [%]	Growth Factor	In-Process Volume (veh/h)	Site-Generated Trips [veh/h]	Diverted Trips [veh/h]	Pass-by Trips [veh/h]	Existing Site Adjustment Volume [veh/h]	Other Volume [veh/h]	Total Hourly Volume [veh/h]	Peak Hour Factor	Other Adjustment Factor	Total 15-Minute Volume [veh/h]	Total Analysis Volume [veh/h]	Padastrian Volume (ned/h)

Generated with PTV VISTRO Version 7,00-08

Intersection Settings						
Priority Scheme	Œ	Free	Fr	Free	Stop	
Flared Lane					_	운
Storage Area [veh]		0				
Two-Stage Gap Acceptance					2	2
Number of Storage Spaces in Median		0	0			
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	0.01	0.00	0.05	5.01	0.36	L
d_M, Delay for Movement [s/veh]	0.00	00'0	10.55	0.00	99.81	
Movement LOS	4	4	8	4	u	L
95th-Percentile Queue Length [veh/ln]	00:00	0.00	0.15	0.15	1.48	
95th-Percentile Queue Length [Mn]	0.00	0.00	3.70	3.70	37.07	
d_A, Approach Delay [s/veh]	0	0.00	0.33	33	98	86,05
Approach LOS		4	4			١
d_I, Intersection Delay [s/veh]			1.2	1.29		
O I noite estatul						١

Scenario 6: 6 Saturday PM Future TIS for Ehlers Estate Winery

W.Trans

Scenario 6: 6 Saturday PM Future TIS for Ehlers Estate Winery

W-Trans

W-Trans

Control Type: Analysis Method: Analysis Period:

Two-way stop HCM 6th Edition 15 minutes

Intersection 1: SR 29/Ehlers Ln
Delay (sec / veh):
Level Of Sentice:
Volume to Capacity (v/c):

40.5 E 0.292

Name	RS	SR 29			Ehle	Ehlers Ln
Approach	North	Northbound	South	Southbound	West	Westbound
Lane Configuration		. •			-	
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Pocket	0	0	0	0	0	0
Pocket Length [ft]	100,00	100,00	100.00	100,00	100,00	100.00
Speed [mph]	90	50.00	50	50.00	25.	25.00
Grade [%]	Ö	0.00	ō	0.00	0.0	0.00
Crosswalk	_	No	2	No	2	No.

664 40 22 644 37 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0 0 0 0 0 0 0 0	Name	SR	SR 29			Ehle	Ehlers Ln
1,0000	Base Volume Input [veh/h]	664	40	22	644	37	16
4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0	Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1,0000	Heavy Vehicles Percentage [%]	4.00	4.00	4.00	4.00	4.00	4.00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0 11 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	In-Process Volume [veh/h]	0	0	0	o	0	٥
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Site-Generated Trips [veh/h]	0	-	0	0	2	2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diverted Trips [veh/h]	0	0	0	0	0	
1,000	Pass-by Trips [veh/h]	0	0	0	0	0	0
664 41 22 644 39 0.5600 0.5600 0.5600 0.5600 1,0000 1,0000 1,0000 1,0000 173 11 6 168 10	sting Site Adjustment Volume [veh/h]	0	0	0	0	0	0
664 41 22 644 39 0.9600 0.9600 0.9600 0.9600 0.9600 1,0000 1,0000 1,0000 1,0000 1,0000 173 11 6 168 10 662 43 23 671 41	Other Volume [veh/h]	0	0	0	0	0	0
0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.0000 1.	Total Hourly Volume [veh/h]	664	41	22	644	39	18
1,0000 1,	Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
692 43 23 671 41 7	Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
692 43 23 671 41	Total 15-Minute Volume [veh/h]	173	11	9	168	10	5
Pedestrian Volume [ped/h]	Total Analysis Volume [veh/h]	692	43	23	671	41	19
	Pedestrian Volume [ped/h]	0		J		0	

Generated with PTTV VISTRO
Version 7.00-08

Intersection Settings

Priority Scheme	L	Free	u.	Free	188	Stop
Flared Lane					Z	No
Storage Area [veh]		0		0		
Two-Stage Gap Acceptance					Z	S.
Number of Storage Spaces in Median		0		0		
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	0.01	0.00	0.03	2.01	0.29	0.04
d_M, Delay for Movement [s/veh]	00'0	00'0	9.29	00'0	40.53	23.30
Movement LOS	4	٨	∢	4	В	O
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.08	90.0	1.39	1.39
95th-Percentile Queue Length [fMn]	0.00	0.00	2.06	2.06	34.74	34.74
d_A, Approach Delay [s/veh]	0	0.00	ö	0.31	35,08	1
Approach LOS		4		4	ш	
d_I, Intersection Delay [s/veh]			+	1.56		
20 Locitoestelal						

W-Trans

Scenario 7: 7 Friday PM Existing Plus Project TIS for Ehlers Estate Winery

Scenario 7: 7 Friday PM Existing Plus Project TIS for Ehlers Estate Winery

W.Trans

W-Trans

Control Type: Analysis Method: Analysis Period:

Two-way stop HCM 6th Edition 15 minutes

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln

35.9 E 0.148

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Intersection Setup

Right 12.00 0 25.00 0.00 No 12.00 0 12.00 0 Southbound 0.00 No 12.00 0 Right 12.00 Northbound SR 29 50.00 0.00 No Thru 12.00 Tunning Movement
Lane Width (it)
No. of Lanes in Pocket
Pocket Length (it)
Speed (mph)
Grade (%)
Crosswalk Lane Configuration Approach Name

	Г	Г		Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г
Ehlers Ln	9	1.0000	2.00	1.0000	0	7	0	0	0	0	80	0.9600	1.0000	2	80	
Ehle	18	1,0000	2:00	1.0000	0	-	0	0	0	0	19	0.9600	1.0000	9	20	C
	671	1.0000	2.00	1.0000	0	0	٥	0	0	0	671	0.96.0	1.0000	175	669	
	22	1.0000	2.00	1.0000	0	-	0	0	0	0	23	0.96.0	1.0000	9	24	e
29	22	1.0000	2.00	1.0000	0	2	0	0	0	0	24	0.9600	1.0000	9	25	
SR 29	229	1.0000	2.00	1.0000	0	0	0	0	0	0	229	0.9600	1.0000	176	705	0
Name	Base Volume Input [veh/h]	Base Volume Adjustment Factor	Heavy Vehicles Percentage [%]	Growth Factor	In-Process Volume [veh/h]	Site-Generated Trips [veh/h]	Diverted Trips [veh/h]	Pass-by Trips [veh/h]	Existing Site Adjustment Volume [veh/h]	Other Volume [veh/h]	Total Hourly Volume [veh/h]	Peak Hour Factor	Other Adjustment Factor	Total 15-Minute Volume [veh/h]	Total Analysis Volume [veh/h]	Pedestrian Volume [ped/h]

Generated with PTV VISTRO

Version 7,00-08	Intersection Setting	

Priority Scheme	ū	Free		Free	š	Stop
Flared Lane					z	No.
Storage Area [veh]		0		0		·
Two-Stage Gap Acceptance					z	No.
Number of Storage Spaces in Median		0		0		9
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	0.01	0,00	0.03	0.01	0.15	0.02
d_M, Delay for Movement [s/veh]	0,00	00'0	9.24	00'0	35.93	17.63
Movement LOS	٥	۷	4	4	В	ပ
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.08	90.0	0.58	0.58
95th-Percentile Queue Length [ft/In]	0.00	0.00	2.12	2.12	14.54	14.54
d_A. Approach Delay [s/veh]	ö	0.00	0	0.31	30.	30.70
Approach LOS		A		A		
d_l, Intersection Delay [s/veh]			0	0.73		
Intersection LOS						

W-Trans

W-Trans

Scenario 8: 8 Saturday PM Existing Plus Project TIS for Ehlers Estate Winery

Scenario 8: 8 Saturday PM Existing Plus Project TIS for Ehlers Estate Winery

WW-Trans

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln Control Type: Analysis Method: Analysis Period:

Two-way stop HCM 6th Edition 15 minutes

Intersection Setup

_	_	_	_	_	_	_	_	_	_
L.	puno		Right	12.00		100,00	0		
Ehlers Ln	Westbound	F	Left	12.00	0	100,00	25.00	00'0	Z
	pun		Thru	12.00	0	100,09	8	0	
	Southbound	T	Left	12.00	o	100,30	90.00	0.00	No
29	puno		Right	12.00	0	100,001	90	0	
SR 29	Northbound		Thru	12.00	0	100.00	90.00	00.00	N
Name	Approach	Lane Configuration	Turning Movement	Lane Width [ft]	No. of Lanes in Pocket	Pocket Length [ft]	Speed [mph]	Grade [%]	Crosswalk

0.04 23.38 C C 1.39 34.86

0.29

Stop ę

Free

Flared Lane
Slonage Area [val.]
Two-Slage Gap Acceptance
Number of Storage Spaces in Median

Priority Scheme

40.7 E 0.293

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Intersection Settings Version 7.00-08

Generated with PTV VISTRO

35.20

A 1.58 0.31

1.39

0.08

0.00

0.00

Movement, Approach, & Intersection Results
VIC, Movement VIC Ratio

d_M. Delay for Movement [a/wh]

Movement LOS

950th-Percentie Queue Length [thn]

d_A. Approach Delay [a/wh]

Approach LOS

d_I, Intersection Delay [a/wh]

Intersection LOS

Intersection LOS

0.03 9.30 0.08 2.06

Name	SR	SR 29			Ehle	Ehlers Ln
Base Volume Input [veh/h]	664	40	22	644	37	16
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000
Heavy Vehicles Percentage [%]	4,00	4.00	4.00	4.00	4.00	4.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	0	0	0	•	0	0
Site-Generated Trips [veh/h]	-	-	0	-	5	2
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	999	41	22	645	39	18
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	173	11	9	168	10	2
Total Analysis Volume [veh/h]	693	43	23	672	41	19
Pedestrian Volume [ped/h]		0		0		

W.Trans

Scenario 9: 9 Friday PM Baseline Plus Project TIS for Enlers Estate Winery W-Trans

W-Trans

Scenario 9: 9 Friday PM Baseline Plus Project TIS for Ehlers Estate Winery

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c): Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln

Two-way stop HCM 6th Edition 15 minutes

Control Type: Analysis Method: Analysis Period:

Intersection Setup

		_	_	_	_			_
punc		Right	12.00	0	100,00	0	0	
Westbe	F	Left	12.00	0	100.00	25.0	0.0	S.
puno		Thru	12.00	0	100,00	00	0	
Southb	T	Left	12.00	0	100,30	50.0	0.0	No.
puno		Right	12.00	0	100,00	00	00	
Northb	<u>.</u>	Thru	12.00	0	100.00	90.0	0.0	Š
Approach	Lane Configuration	Turning Movement	Lane Width [ft]	No. of Lanes in Pocket	Pocket Length [ft]	Speed [mph]	Grade [%]	Crosswalk
	Approach Northbound Southbound Westbound	Northbound Southbound	Northbound Southbound Westbound Westbound	Northbound Southbound Westbound Westbound Westbound Westbound Westbound Thru Left Thru Thru Left Thru Thru Left Thru Thru	Northbound Southbound Westbound Westbound Westbound Westbound Westbound Westbound Westbound Thru Left	Northbound Southbound Westbound Westbound Thru Right Left Thru Left Thru Left Thru Left Thru Left Left Thru Left Left	Nonthbound Southbound Westbound Westbound Westbound Westbound Westbound Westbound Westbound Thru Left	Northbound Southbound Nestitioned Ne

0.02

36.03

Stop

Free

Free

Priority Scheme

Intersection Settings Version 7,00-08

Flared Lane

36.0 E 0.149

Generated with PTV VISTRO

Storage Area (veh.)
Two-Stage Cap Acceptance
Number of Storage Spaces in Median

2

0.58 14.58

30.78

A 0.73

0.31

14.58 E 0.58

2.12

9.24 A A 0.08

A 00.00

0.00 0.00 0.00

Movement, Approach, & Intersection Results
VIC, Movement VOC Ratio

d_M, Delay for Movement LOS

SSIN-Percentile Queue Length (VehM)

GSIN-Percentile Queue Length (Mn)

d_A, Approach Delay [aven]

Approach LOS

d_I, Intersection Delay [aven]

Intersection LOS

Intersection LOS

Name	SR	SR 29			Ehle	Ehlers Ln
Base Volume Input [veh/h]	22.9	22	22	671	18	9
Base Volume Adjustment Factor	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [%]	2.00	2.00	2.00	2.00	2.00	2.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	o	0	0	0	0	٥
Site-Generated Trips [veh/h]	-	2	-		-	2
Diverted Trips [veh/h]	o	0	0	0	0	٥
Pass-by Trips [veh/h]	o	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	٥
Other Volume [veh/h]	o	٥	0	0	0	0
Total Hourly Volume [veh/h]	678	24	23	672	19	8
Peak Hour Factor	0.9600	0.9600	0.9600	0.9600	0.9600	0.9600
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	177	9	9	175	S	2
Total Analysis Volume [veh/h]	902	25	24	700	20	80
Pedestrian Volume [ped/h]						

Scenario 10: 10 Saturday PM Baseline Plus Project TIS for Ehlers Estate Winery

W-Trans

Scenario 10: 10 Saturday PM Baseine Plus Project TIS for Ehlers Estate Winery

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln Control Type: Analysis Method: Analysis Period:

Intersection Setup

Two-way stop HCM 6th Edition 15 minutes

159.7 F 0.738

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Right 12.00 25.00 0.00 No F 12.00 0 12.00 0 Southbound 0.00 No 12.00 Right 12.00 SR 29 Northbound 0.00 No 12.00 0 Turning Movement
Lane Width [ft]
No. of Lanes in Pocket
Pocket Length [ft]
Speed [mph]
Grade [%]
Crosswalk Lane Configuration Name Approach

Name	SR	SR 29			Ehle	Ehlers Ln
Base Volume Input [veh/h]	664	40	22	644	37	91
Base Volume Adjustment Factor	1,0000	1,0000	1.0000	1.0000	1,0000	1,0000
Heavy Vehicles Percentage [%]	4.00	4.00	4.00	4.00	4.00	4.00
Growth Factor	1.4600	1.4600	1.4600	1.4600	1.1100	1.1100
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	-	0	0	2	2
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	٥	0	0	0
Total Hourly Volume [veh/h]	696	59	32	940	43	50
Peak Hour Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	242	15	8	235	11	5
Total Analysis Volume [veh/h]	696	69	32	940	43	50
Pedestrian Volume [ped/h]						0

Generated with PTV VISTRO Version 7.00-08

Priority Scheme	Free	Free	Stop
Flared Lane			S
Storage Area [veh]	0	0	٥
Two-Stage Gap Acceptance			Š
Number of Storage Spaces in Median	0	G	c

V/C, Movement V/C Ratio	0.01	0.00	0.05	0.01	0.74	0.07
d_M, Delay for Movement [s/veh]	0.00	0,00	10.66	00.0	159.66	110,15
Movement LOS	٨	٨	8	4	u.	ш
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.15	0.15	4.01	4.01
95th-Percentile Queue Length [Mn]	0.00	0.00	3.77	3.77	100.15	100.15
d_A, Approach Delay [s/veh]	Ö	0.00	0.35	35	143	143.94
Approach LOS		4	d			
d_l, Intersection Delay [s/veh]			4.6	4.58		
Intersection LOS						

Scenario 11: 11 Friday PM Future Plus Project TIS for Ehlers Estate Wnery

W-Trans

W.Trans

Scenario 11: 11 Friday PM Future Plus Project TIS for Ehlers Estate Winery

Control Type: Analysis Method: Analysis Period:

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln Two-way stop HCM 6th Edition 15 minutes

162.8 F 0.738

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Intersection Setup

12.00 12.00 0 1 10.00 0 1 10.00 0 1 10.00 0 10 Ehlers Ln Westbound F Thru 12.00 Southbound 0.00 No 12.00 0 Right 12.00 Northbound SR 29 50.00 0.00 No 12.00 0 Tuning Movement
Lane Width [it]
No. of Lanes in Pocket
Pocket Length [it]
Speed [imph]
Grade [%]
Crosswalk Lane Configuration Approach Name

Name	SR	SR 29			Ehle	Ehlers Ln
Base Volume Input [veh/h]	664	40	22	644	37	16
Base Volume Adjustment Factor	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [%]	4.00	4.00	4.00	4.00	4.00	4.00
Growth Factor	1.4600	1.4600	1.4600	1.4600	1.1100	1.1100
In-Pracess Volume [veh/h]	0	0	0	٥	0	0
Site-Generated Trips [veh/h]	0	-	0	0	2	2
Diverted Trips [veh/h]	0	0	0	۰	0	٥
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	696	59	32	940	43	50
Peak Hour Factor	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000
Total 15-Minute Volume [veh/h]	242	15	8	235	11	2
Total Analysis Volume [veh/h]	696	59	32	940	43	20
Pedestrian Volume [ped/h]						0

Generated with PTV VISTRO Version 7,00-08

Priority Scheme	<u> </u>	Free	ū	Free	s	Stop
Flared Lane						
Storage Area [veh]		0		0		0
Two-Stage Gap Acceptance						e e
Number of Storage Spaces in Median		0		0		0
Movement, Approach, & Intersection Results						
V/C, Movement V/C Ratio	0.01	00'0	0.05	9.01	0.74	0.07
d_M, Delay for Movement [s/veh]	00.0	00'0	10.66	00'0	162.76	18.18
Movement LOS	٧	4	8	4	u	o
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.15	0.15	3.17	0.22
95th-Percentile Queue Length [f/Jn]	0.00	0.00	3.77	3.77	79.34	5.46
d_A, Approach Delay [s/veh]	ő	0.00	ő	0.35	116	16.86
Approach LOS	,	4		4		u.
d_I, Intersection Delay [s/veh]			3.	3.73		
20 Locitos reful					0,00	

Scenario 11: 11 Friday PM Future Plus Project - Mitigated TIS for Ehlers Estate Winery

W-Trans

W-Trans

Scenario 11: 11 Friday PM Future Plus Project - Mitigated TIS for Ehlers Estate Winery

W.Trans

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln

Two-way stop HCM 6th Edition 15 minutes

Control Type: Analysis Method: Analysis Period:

102.5 F 0.384 Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

Intersection Setup

Right 12.00 25.00 0.00 No F 12.00 0 Thru 12.00 0.00 No 12.00 0 Right 12.00 SR 29 Northbound 0.00 No 12.00 0 Turning Movement
Lane Width [r]
No. of Lanes in Pocket
Pocket Length [r]
Speed [mph]
Grade [%]
Crosswalk Lane Configuration Approach Name

677
1.0000
2.00
1.4600
0
0
0
0
0
0
988
1.0000
1.0000
247
986

Generated with PTV VISTRO Version 7,00-08

Intersection Settings			
Priority Scheme	Free	Free	Stop
Flared Lane			2
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			S.
Number of Storage Spaces in Median	0	0	0

Results
Intersection
Approach, &
Movement,

V/C, Movement V/C Ratio	0.01	0.00	0.05	9,01	0.38	0.03
d_M, Delay for Movement [s/veh]	0.00	00'0	10.57	00'0	102.49	48.86
Movement LOS	4	٨	8	4	ш	ш
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.15	0.15	1.63	1.63
85th-Percentile Queue Length [กัปก]	0.00	0.00	3.82	3.82	40.70	40.70
d_A, Approach Delay [s/veh]	0	0.00	0.34	14	86	86,40
Approach LOS		4	4			
d_I, Intersection Delay [s/veh]			1.4	.42		
Intersection LOS			L			

Scenario 12: 12 Saturday PM Future Plus Project TIS for Enlers Estate Winery

W.Trans

W-Trans

W.Trans

Scenario 12: 12 Saturday PM Future Plus Project TIS for Ehlers Estate Winery

Intersection Level Of Service Report Intersection 1: SR 29/Ehlers Ln Control Type: Analysis Method: Analysis Period:

Two-way stop HCM 6th Edition 15 minutes

Delay (sec / veh): Level Of Service: Volume to Capacity (v/c):

107.3 F 0.384

Intersection Setup

Ehlers Ln Westbound F Thru 12.00 % 0.00 % Left 12.00 Right 12.00 SR 29 Northbound 0.00 No 12.00 0 Turning Movement
Lane Width [rt]
No. of Lanes in Pocket
Pocket Langth [rt]
Speed [mph]
Grade [%]
Crosswalk Lane Configuration Approach Name

0.03 17.67 C 0.09 2.37

0.38

80.41

4 <u>£</u> 0.34

1.40

3.82

3.82

0.00

0.00

000

B 0.15 10.67

Stop

Free

Free

Priority Scheme

Intersection Settings Version 7.00-08

Generated with PTV VISTRO

ŝ

Volumes

_	_	_		_	_	_	_	_	_	_	_		_	_	_	_
s Ln	9	1.0000	2:00	1.1100	0	2	0	0	0	0	6	1.0000	1.0000	2	6	
Ehlers Ln	18	1.0000	2.00	1,1100	0	-	0	0	0	0	21	1.0000	1.0000	9	21	G
	671	1.0000	2.00	1.4600	0	0	0	0	0	0	980	1.0000	1.0000	245	086	
	22	1.0000	2.00	1.4600	0	-	0	0	o	0	33	1.0000	1.0000	8	33	0
29	22	1.0000	2.00	1.4600	0	2	0	0	0	0	34	1.0000	1.0000	6	34	
SR 29	229	1.0000	2.00	1,4600	0	0	0	0	0	o	988	1.0000	1.0000	247	886	
Name	Base Volume Input [veh/h]	Base Volume Adjustment Factor	Heavy Vehicles Percentage [%]	Growth Factor	In-Process Volume [veh/h]	Site-Generated Trips [veh/h]	Diverted Trips [veh/h]	Pass-by Trips [veh/h]	Existing Site Adjustment Volume [veh/h]	Other Volume [veh/h]	Total Hourly Volume [veh/h]	Peak Hour Factor	Other Adjustment Factor	Total 15-Minute Volume [veh/h]	Total Analysis Volume [veh/h]	Pedestrian Volume [ped/h]

Flared Lane
Storage Area [veh]
Two-Stage Gap Acceptance
Number of Storage Spaces in Median d_M, Delay for Movement [a/veh]
Movement LOS
95th-Percentile Queue Length [weh/m]
95th-Percentile Queue Length [wh]
d_A Approach Delay [a/veh] Movement, Approach, & Intersection Results
VIC, Movement VIC Ratio Approach LOS
d_I, Intersection Delay [s/veh]
Intersection LOS Ww-Trans

Scenario 12: 12 Saturday PM Future Plus Project - Mitigated TIS for Ehlers Estate Whery

W-Trans

W-Trans

Scenario 12: 12 Saturday PM Future Plus Project - Mitigated TIS for Ehlers Estate Winery

Appendix D

Roadway Segment Level of Service Calculations

This page intentionally left blank

		HCS7 Two	o Larie	Ingriwa	у кероп	
Pr	oject Information					
Ana	alyst	KT		Date		2/10/2021
Age	ency	W-Trans	O CONTROL OF A PARTY AND A PAR	Analysis Yea	ar	
Juri	isdiction	County of Napa		Time Period	l Analyzed	Friday PM Existing
Pro	ject Description	SR 29 – North of Lane (NB) – Frida		Unit		United States Customar
			Segi	ment 1		
Ve	hicle Inputs					
Seg	ment Type	Passing Constrain	ned	Length, ft		5280
Lan	e Width, ft	12		Shoulder W	idth, ft	6
Spe	ed Limit, mi/h	50		Access Poin	t Density, pts/mi	7.0
De	emand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	708		Opposing D	emand Flow Rate, veh/h	-
Pea	k Hour Factor	0.96		Total Trucks	, %	4.00
Seg	ment Capacity, veh/h	1700		Demand/Ca	pacity (D/C)	0.42
Int	termediate Results					
Seg	ment Vertical Class	1		Free-Flow S	peed, mi/h	55.1
Spe	ed Slope Coefficient	3.54750		Speed Powe	er Coefficient	0.41674
PF S	Slope Coefficient	-1.33524		PF Power Co	pefficient	0.74794
In P	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		8.7
%In	nproved % Followers	0.0		% Improved Avg Speed		0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	ulus, it Superelevation, %		52.2
Ve	hicle Results					
Ave	rage Speed, mi/h	52.2		Percent Follo	owers, %	64.4
Seg	ment Travel Time, minutes	1.15			ensity, followers/mi/ln	8.7
Veh	icle LOS	lc				

		HCS7 Two-L	ane riigiiw	ау кероп	
Pr	oject Information				
Ana	alyst	КТ	Date		2/10/2021
Age	ency	W-Trans	Analysis Ye	ear	
Juri	sdiction	County of Napa	Time Perio	d Analyzed	Friday PM Existing
Pro	ject Description	SR 29 – North of Ehle Lane (SB) – Friday PM			United States Customar
		S	egment 1		
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder V	Vidth, ft	6
Spe	ed Limit, mi/h	50	Access Poi	nt Density, pts/mi	17.0
De	mand and Capacity				
Dire	ectional Demand Flow Rate, veh/h	694	Opposing	Demand Flow Rate, veh/h	-
Pea	k Hour Factor	0.96	Total Truck	s, %	4.00
Seg	ment Capacity, veh/h	1700	Demand/C	apacity (D/C)	0.41
Int	ermediate Results				
Seg	ment Vertical Class	1	Free-Flow :	Speed, mi/h	52.6
Spe	ed Slope Coefficient	3.41200	Speed Pow	er Coefficient	0.41674
PF S	Slope Coefficient	-1.35195	PF Power C	oefficient	0.74086
In P	assing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	9.0
%lm	nproved % Followers	0.0	% Improve	d Avg Speed	0.0
Su	bsegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	49.9
Vel	hicle Results				
Ave	rage Speed, mi/h	49.9	Percent Fol	lowers, %	64.3
Seg	ment Travel Time, minutes	1.20	Followers D	Density, followers/mi/ln	9.0
Vehi	icle LOS	С			

Pro	ject Information				
		КТ	Data		2/10/2021
Anal			Date	- V	2/10/2021
Ager		W-Trans	Analys		E.I. DAE.
-	diction	County of Napa		eriod Analyzed	Friday PM Existing
Proje	ect Description	SR 29 – South of El Lane (NB) – Friday			United States Customar
			Segment '		
Veh	nicle Inputs				
Segn	nent Type	Passing Constraine	d Length	, ft	5280
Lane	Width, ft	12	Should	er Width, ft	6
Spee	d Limit, mi/h	50	Access	Point Density, pts/mi	8.0
Der	mand and Capacity				
Direc	ctional Demand Flow Rate, veh/h	733	Oppos	ing Demand Flow Rate, veh,	/h -
Peak Hour Factor		0.96	Total To	ucks, %	4.00
Segment Capacity, veh/h		1700	Demar	d/Capacity (D/C)	0.43
Inte	ermediate Results				
Segn	nent Vertical Class	1	Free-Fl	ow Speed, mi/h	54.9
Spee	d Slope Coefficient	3.53395	Speed	Power Coefficient	0.41674
PF SI	ope Coefficient	-1.33700	PF Pow	er Coefficient	0.74725
In Pa	ssing Lane Effective Length?	No	Total S	egment Density, veh/mi/ln	9.2
%lm	proved % Followers	0.0	% Impi	oved Avg Speed	0.0
Sub	segment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation,	% Average Speed, mi/h
1	Tangent	5280	-	-	51.9
Veh	nicle Results				
Aver	age Speed, mi/h	51.9	Percen	t Followers, %	65.4
Segn	nent Travel Time, minutes	1.16	Follow	ers Density, followers/mi/ln	9.2
Vehic	cle LOS	c			

	HCS7 Two-	Lane Highwa	ay Report	
Project Information				
Analyst	кт	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	-
Jurisdiction	County of Napa	Time Perio	d Analyzed	Friday PM Existing
Project Description	SR 29 – South of Eh Lane (SB) – Friday P			United States Customar
		Segment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	vidth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	15.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	709	Opposing [Demand Flow Rate, veh/h	-
Peak Hour Factor	0.96	Total Trucks	s, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	Speed, mi/h	53.1
Speed Slope Coefficient	3.43910	Speed Pow	er Coefficient	0.41674
PF Slope Coefficient	-1.34878	PF Power C	oefficient	0.74231
In Passing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	9.1
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	50.3
Vehicle Results				
Average Speed, mi/h	50.3	Percent Foll	lowers, %	64.8
Segment Travel Time, minutes	1.19	Followers D	Pensity, followers/mi/ln	9.1
Vehicle LOS	С		The second secon	

Droinet Information				
Project Information				
Analyst	KT	Date	e)	2/10/2021
Agency	W-Trans	Analysis Yea	ar	
Jurisdiction	County of Napa	Time Period	d Analyzed	Saturday PM Existing
Project Description	SR 29 – North of Ehle Lane (NB) – Saturday			United States Customa
	S	Segment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poin	t Density, pts/mi	7.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	711	Opposing D	Demand Flow Rate, veh/h	-
Peak Hour Factor	0.96	Total Trucks	;, %	2.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	peed, mi/h	55.2
Speed Slope Coefficient	3.55111	Speed Powe	er Coefficient	0.41674
PF Slope Coefficient	-1.33501	PF Power Co	oefficient	0.74784
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	8.8
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	52.3
Vehicle Results				
Average Speed, mi/h	52.3	Percent Foll	owers, %	64.5
Segment Travel Time, minutes	1.15	Followers D	ensity, followers/mi/ln	8.8
Vehicle LOS	С			

rved. HCS IM Two-Lane Version 7.8 1_SR 29 – North of Ehlers Lane (NB) – Saturday PM – E.xuf

		HC3/ TW0-	Lane Highwa	ay Report	
Pr	oject Information				
Ana	ılyst	кт			2/10/2021
Age	ency	W-Trans	Analysis Ye	ar	
Juri	sdiction	County of Napa	Time Period	d Analyzed	Saturday PM Existing
Pro	ject Description	SR 29 – North of Eh Lane (SB) – Saturda			United States Customar
			Segment 1		
Ve	hicle Inputs	in the second			
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder W	/idth, ft	6
Spe	ed Limit, mi/h	50	Access Poin	nt Density, pts/mi	17.0
De	mand and Capacity				
Directional Demand Flow Rate, veh/h		722	Opposing D	Demand Flow Rate, veh/h	1-
Pea	k Hour Factor	0.96	Total Trucks	5, %	2.00
Seg	ment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Int	ermediate Results				
Seg	ment Vertical Class	T1	Free-Flow S	ipeed, mi/h	52.7
Spe	ed Slope Coefficient	3.41561	Speed Powe	er Coefficient	0.41674
PF S	lope Coefficient	-1.35177	PF Power Co	oefficient	0.74077
In P	assing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.5
%In	proved % Followers	0.0	% Improved	d Avg Speed	0.0
Su	bsegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent 5280 -		-	-	49.9
Ve	hicle Results				
Average Speed, mi/h 49.9		49.9	Percent Foll	owers, %	65.4
Seg	ment Travel Time, minutes	1.20	Followers D	ensity, followers/mi/ln	9.5
Veh	cle LOS	С			

		HCS7 Two-L	ane Highwa	ay Keport	
Pr	oject Information				
Ana	alyst	КТ	Date	e Central in montal and distinct of congress in transaction in the contact Artist Constitution and American Con-	2/10/2021
Age	ency	W-Trans	Analysis Yea	ar	
Juri	isdiction	County of Napa	Time Period	d Analyzed	Saturday PM Existing
Pro	ject Description	SR 29 – South of Ehle Lane (NB) – Saturday			United States Customar
		S	egment 1		
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder W	idth, ft	6
Spe	eed Limit, mi/h	50	Access Poin	t Density, pts/mi	8.0
De	emand and Capacity				
Dire	ectional Demand Flow Rate, veh/h	728	Opposing D	Demand Flow Rate, veh/h	-
Pea	k Hour Factor	0.96	Total Trucks	, %	2.00
Seg	ment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.43
Int	termediate Results				
Seg	ment Vertical Class	1	Free-Flow S	peed, mi/h	54.9
Spe	ed Slope Coefficient	3.53756	Speed Powe	er Coefficient	0.41674
PF S	Slope Coefficient	-1.33678	PF Power Co	pefficient	0.74714
In P	assing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.1
%In	nproved % Followers	0.0	% Improved	l Avg Speed	0.0
Su	bsegment Data		à		
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	52.0
Ve	hicle Results				
Ave	rage Speed, mi/h	52.0	Percent Foll	owers, %	65.2
Seg	ment Travel Time, minutes	1.15		ensity, followers/mi/ln	9.1
 Veh	icle LOS	c			

	HCS7 Two	-Lane Highw	ay Report		
Project Information					
Analyst KT		Date		2/10/2021	
Agency	W-Trans	Analysis Ye	ear		
Jurisdiction	County of Napa	Time Perio	d Analyzed	Saturday PM Existing	
Project Description	SR 29 – South of Lane (SB) – Saturo			United States Customar	
		Segment 1			
Vehicle Inputs					
Segment Type	Passing Constrain	ed Length, ft		5280	
Lane Width, ft	12	Shoulder V	Vidth, ft	6	
Speed Limit, mi/h	50	Access Poi	nt Density, pts/mi	15.0	
Demand and Capacity					
Directional Demand Flow Rate, veh/h	718	Opposing	Demand Flow Rate, veh/h	-	
Peak Hour Factor	0.96	. Total Truck	s, %	2.00	
Segment Capacity, veh/h	1700	Demand/C	apacity (D/C)	0.42	
Intermediate Results					
Segment Vertical Class	1	Free-Flow	Speed, mi/h	53.2	
Speed Slope Coefficient	3.44271	Speed Pow	er Coefficient	0.41674	
PF Slope Coefficient	-1.34859	PF Power C	Coefficient	0.74221	
In Passing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	9.3	
%Improved % Followers	0.0	% Improve	d Avg Speed	0.0	
Subsegment Data					
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h	
1 Tangent	5280	-	-	50.4	
Vehicle Results					
Average Speed, mi/h	50.4	Percent Fol	lowers, %	65.2	
Segment Travel Time, minutes	1.19		Density, followers/mi/ln	9.3	
Vehicle LOS	С				

	HCS7 Two-La	ane Highwa	ay Report		
Project Information					
Analyst KT		Date		2/10/2021	
Agency	W-Trans	Analysis Ye	ar		
Jurisdiction	County of Napa	Time Period	d Analyzed	Friday PM Baseline	
Project Description	SR 29 – North of Ehler Lane (NB) – Friday PM			United States Customar	
	So	egment 1			
Vehicle Inputs					
Segment Type	Passing Constrained	Length, ft		5280	
Lane Width, ft	12	Shoulder W	/idth, ft	6	
Speed Limit, mi/h 50		Access Poin	nt Density, pts/mi	7.0	
Demand and Capacity		Algorithm (
Directional Demand Flow Rate, veh/h	709	Opposing [Demand Flow Rate, veh/h	1-	
Peak Hour Factor	0.96	Total Trucks	5, %	4.00	
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42	
Intermediate Results					
Segment Vertical Class	1	Free-Flow S	peed, mi/h	55.1	
Speed Slope Coefficient	3.54750	Speed Powe	er Coefficient	0.41674	
PF Slope Coefficient	-1.33524	PF Power Co	oefficient	0.74794	
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	8.7	
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0	
Subsegment Data					
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h	
1 Tangent	5280	-	-	52.2	
Vehicle Results					
Average Speed, mi/h	52.2	Percent Followers, %		64.4	
Segment Travel Time, minutes	1.15	Followers D	ensity, followers/mi/ln	8.7	
Vehicle LOS	С				

Generated: 02/22/2021 14:10:38

		HCS/Two-	Lane Highwa	ay Report	
Pro	oject Information				
Ana	ılyst	КТ	Date		2/10/2021
Age	ency	W-Trans	Analysis Ye	ar	¥
Juri	sdiction	County of Napa	Time Perio	d Analyzed	Friday PM Baseline
Proj	ect Description	SR 29 – North of Eh Lane (SB) – Friday P			United States Customary
			Segment 1		
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder V	Vidth, ft	6
Spe	ed Limit, mi/h	50	Access Poir	nt Density, pts/mi	17.0
De	mand and Capacity				
Directional Demand Flow Rate, veh/h		695	Opposing I	Demand Flow Rate, veh/h	-
Peal	k Hour Factor	0.96	Total Trucks	5, %	4.00
Seg	ment Capacity, veh/h	1700	Demand/C	apacity (D/C)	0.41
Int	ermediate Results				
Seg	ment Vertical Class	1	Free-Flow S	Speed, mi/h	52.6
Spe	ed Slope Coefficient	3.41200	Speed Pow	er Coefficient	0.41674
PF S	lope Coefficient	-1.35195	PF Power C	oefficient	0.74086
In Pa	assing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	9.0
%lm	proved % Followers	0.0	% Improve	d Avg Speed	0.0
Sul	bsegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	49.9
Vel	nicle Results		T is		
Ave	rage Speed, mi/h	49.9	Percent Fol	lowers, %	64.4
Segi	ment Travel Time, minutes	1.20	Followers D	Pensity, followers/mi/ln	9.0
Vehi	cle LOS	С			

1_SR 29 – North of Ehlers Lane (SB) – Friday PM – B.xuf

Pr	oject Information					
TO AND THE REAL PROPERTY.	alyst	Ткт		Date		2/10/2021
	ency	W-Trans		Analysis Yea	ar	2/10/2021
-	sdiction	County of Napa	**************************************	Time Period	The state of the s	Friday PM Baseline
Pro	ject Description	SR 29 – South of Lane (NB) – Frid		Unit		United States Customar
			Seg	ment 1		
Ve	hicle Inputs					
Seg	ment Type	Passing Constrai	ined	Length, ft		5280
Lan	e Width, ft	12		Shoulder W	idth, ft	6
Spe	ed Limit, mi/h	50		Access Poin	t Density, pts/mi	8.0
De	mand and Capacity					
Directional Demand Flow Rate, veh/h		734		Opposing Demand Flow Rate, veh/h		<u> </u>
Pea	k Hour Factor	0.96		Total Trucks	, %	4.00
Seg	ment Capacity, veh/h	1700		Demand/Ca	pacity (D/C)	0.43
Int	ermediate Results					
Seg	ment Vertical Class	1		Free-Flow Speed, mi/h		54.9
Spe	ed Slope Coefficient	3.53395		Speed Power Coefficient		0.41674
PF S	Slope Coefficient	-1.33700		PF Power Coefficient		0.74725
In P	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		9.2
%Im	nproved % Followers	0.0		% Improved Avg Speed		0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent		5280	-		-	51.9
Vel	hicle Results					
Ave	rage Speed, mi/h	51.9		Percent Follo	owers, %	65.4
Seg	ment Travel Time, minutes	1.16		Followers De	ensity, followers/mi/ln	9.2
Vehi	icle LOS	С				

	HCS7 Two-L		ay report	
Project Information				
Analyst	KT	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ear	
Jurisdiction	County of Napa	Time Perio	d Analyzed	Friday PM Baseline
Project Description	SR 29 – South of Ehle Lane (SB) – Friday PM			United States Customa
	S	Segment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	Vidth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	15.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	710	Opposing I	Demand Flow Rate, veh/h	-
Peak Hour Factor	0.96	Total Trucks	s, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	Speed, mi/h	53.1
Speed Slope Coefficient	3.43910	Speed Pow	er Coefficient	0.41674
PF Slope Coefficient	-1.34878	PF Power C	oefficient	0.74231
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.2
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	50.3
Vehicle Results				
Average Speed, mi/h	50.3	Percent Foll	owers, %	64.9
Segment Travel Time, minutes	1.19	Followers D	ensity, followers/mi/ln	9.2
Vehicle LOS	С			Ann transfer of the state of th

Ducinet Information					
Project Information					
Analyst	KT	Date			2/10/2021
Agency	W-Trans	Anal	ysis Year	•	
Jurisdiction	County of Napa	Time	Period Analyzed		Saturday PM Baseline
Project Description	SR 29 – North o Lane (NB) – Satu				United States Customar
		Segment	:1		
Vehicle Inputs					
Segment Type	Passing Constra	ined Leng	th, ft		5280
Lane Width, ft	12	Shou	lder Width, ft		6
Speed Limit, mi/h	50	Acce	ss Point Density, բ	ots/mi	7.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	713	Орро	Opposing Demand Flow Rate, veh/h		1-
Peak Hour Factor	0.96	Total	Trucks, %	and the start of t	2.00
Segment Capacity, veh/h	1700	Dem	and/Capacity (D/0	C)	0.42
Intermediate Results					
Segment Vertical Class	1	Free-	Flow Speed, mi/h		55.2
Speed Slope Coefficient	3.55111	Spee	Speed Power Coefficient		0.41674
PF Slope Coefficient	-1.33501	PF Pc	PF Power Coefficient		0.74784
In Passing Lane Effective Length?	No	Total	Total Segment Density, veh/mi/ln		8.8
%Improved % Followers	0.0	% Im	% Improved Avg Speed		0.0
Subsegment Data					
# Segment Type	Length, ft	Radius, ft	Sup	perelevation, %	Average Speed, mi/h
1 Tangent	5280	-	- -		52.3
Vehicle Results					
Average Speed, mi/h	52.3	Perce	nt Followers, %		64.5
Segment Travel Time, minutes	1.15	Follo	Followers Density, followers/mi/ln		8.8
Vehicle LOS	С				_

		HCS7 Two-La	9		
Proj	ect Information				
Analy	st	кт			2/10/2021
Agend	су	W-Trans	Analysis Ye	ar	
Jurisd	iction	County of Napa	Time Period	d Analyzed	Saturday PM Baseline
Projec	t Description	SR 29 – North of Ehler Lane (SB) – Saturday P			United States Customa
		So	egment 1		
Vehi	icle Inputs				
Segme	ent Type	Passing Constrained	Length, ft		5280
Lane V	Width, ft	12	Shoulder W	/idth, ft	6
Speed	l Limit, mi/h	50	Access Poir	nt Density, pts/mi	17.0
Dem	and and Capacity				
Directional Demand Flow Rate, veh/h		723	Opposing D	Demand Flow Rate, veh/h	
Peak F	Hour Factor	0.96	Total Trucks	5, %	2.00
Segme	ent Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.43
Inter	rmediate Results				
Segme	ent Vertical Class	1	Free-Flow S	peed, mi/h	52.7
Speed	Slope Coefficient	3.41561	Speed Powe	er Coefficient	0.41674
PF Slo	pe Coefficient	-1.35177	PF Power Co	oefficient	0.74077
In Pass	sing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.5
%lmpr	roved % Followers	0.0	% Improved	d Avg Speed	0.0
Subs	segment Data				
# 5	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	49.9
Vehi	cle Results				,
Averag	ge Speed, mi/h	49.9	Percent Foll	owers, %	65.5
Segme	ent Travel Time, minutes	1.20		ensity, followers/mi/ln	9.5
Vehicle	e LOS	С			

		The state of the s	A CHARLES			
Pr	oject Information					
Ana	alyst	кт	Date		2/10/2021	
Age	ency	W-Trans	Analysis Y	ear		
Juri	sdiction	County of Napa	Time Perio	d Analyzed	Saturday PM Baseline	
Pro	ject Description	SR 29 – South of El Lane (NB) – Saturda			United States Customar	
			Segment 1			
Ve	hicle Inputs					
Seg	ment Type	Passing Constraine	d Length, ft		5280	
Lan	e Width, ft	12	Shoulder	Vidth, ft	6	
Spe	ed Limit, mi/h	50	Access Po	nt Density, pts/mi	8.0	
De	mand and Capacity					
Directional Demand Flow Rate, veh/h		729	Opposing	Demand Flow Rate, veh/h	T-	
Pea	k Hour Factor	0.96	Total Truck	rs, %	2.00	
Seg	ment Capacity, veh/h	1700	Demand/0	Capacity (D/C)	0.43	
Int	ermediate Results					
Seg	ment Vertical Class	1	Free-Flow	Speed, mi/h	54.9	
Spe	ed Slope Coefficient	3.53756	Speed Pov	ver Coefficient	0.41674	
PF S	Slope Coefficient	-1.33678	PF Power	Coefficient	0.74714	
In P	assing Lane Effective Length?	No	Total Segn	nent Density, veh/mi/ln	9.1	
%In	nproved % Followers	0.0	% Improve	d Avg Speed	0.0	
Su	bsegment Data					
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	5280	-	-	52.0	
Ve	hicle Results					
Ave	rage Speed, mi/h	52.0	Percent Fo	llowers, %	65.2	
Seg	ment Travel Time, minutes	1.15	Followers	Density, followers/mi/ln	9.1	
Veh	icle LOS	С				

		HC3/ IWO-	Lane Highwa	ay Report	
Pr	oject Information				
Analyst KT		Date	AND STATE AND A STATE OF THE PROPERTY OF THE PROPERTY AND A STATE OF THE PROPERTY AND	2/10/2021	
Age	ency	W-Trans	Analysis Ye	ar	
Juri	sdiction	County of Napa	Time Period	d Analyzed	Saturday PM Baseline
Pro	ect Description	SR 29 – South of Eh Lane (SB) – Saturday			United States Customar
			Segment 1		
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder W	idth, ft	6
Spe	ed Limit, mi/h	50	Access Poin	t Density, pts/mi	15.0
De	mand and Capacity				
Directional Demand Flow Rate, veh/h 7		719	Opposing D	Demand Flow Rate, veh/h	-
Peal	K Hour Factor	0.96	Total Trucks	, %	2.00
Seg	ment Capacity, veh/h	1700	Demand/Ca	pacity (D/C)	0.42
Int	ermediate Results				
Seg	ment Vertical Class	1	Free-Flow S	peed, mi/h	53.2
Spe	ed Slope Coefficient	3.44271	Speed Powe	er Coefficient	0.41674
PF S	lope Coefficient	-1.34859	PF Power Co	pefficient	0.74221
In Pa	assing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.3
%lm	proved % Followers	0.0	% Improved	Avg Speed	0.0
Sul	osegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent 5280 -		-	-	50.4
Vel	nicle Results				
Aver	rage Speed, mi/h	50.4	Percent Foll	owers, %	65.2
Segr	ment Travel Time, minutes	1.19	Followers D	ensity, followers/mi/ln	9.3
Vehi	cle LOS	С			

Dec	iest Information					
Pro	ject Information					
Anal	yst	КТ		Date		2/10/2021
Ager	ncy	W-Trans		Analysis Ye	ar	
Juris	diction	County of Napa		Time Period	d Analyzed	Friday PM Future
Proje	ect Description	SR 29 – North o Lane (NB) – Frid		Unit		United States Customa
			Segm	nent 1		
Veh	icle Inputs					
Segn	nent Type	Passing Constra	ined	Length, ft		5280
Lane	Width, ft	12		Shoulder W	ridth, ft	6
Spee	d Limit, mi/h	50		Access Poin	t Density, pts/mi	7.0
Der	mand and Capacity					
Directional Demand Flow Rate, veh/h		987		Opposing Demand Flow Rate, veh/h		T-
Peak	Hour Factor	1.00		Total Trucks	, %	4.00
Segn	nent Capacity, veh/h	1700		Demand/Ca	apacity (D/C)	0.58
Inte	ermediate Results					
Segn	nent Vertical Class	1		Free-Flow Speed, mi/h		55.1
Spee	d Slope Coefficient	3.54750		Speed Power Coefficient		0.41674
PF SI	ope Coefficient	-1.33524		PF Power Coefficient		0.74794
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.0
%lmp	proved % Followers	0.0		% Improved Avg Speed		0.0
Sub	segment Data					
#	Segment Type	Length, ft	Radi	us, ft	Superelevation, %	Average Speed, mi/h
1 Tangent		5280	-		-	51.7
Veh	icle Results					
Avera	age Speed, mi/h	51.7		Percent Followers, %		73.3
Segm	nent Travel Time, minutes	1.16		Followers Density, followers/mi/ln		14.0
Vehic	le LOS	D				

		HCS7 Two-	Lane Highv	vay Report	
Pro	ject Information				
Anal	yst	КТ	Date		2/10/2021
Ager	ncy	W-Trans	Analysis `	Year	- L
Juris	diction	County of Napa	Time Peri	iod Analyzed	Friday PM Future
Proje	ect Description	SR 29 – North of Eh Lane (SB) – Friday P			United States Customar
			Segment 1		
Veh	nicle Inputs				
Segn	nent Type	Passing Constrained	Length, f	t	5280
Lane	Width, ft	12	Shoulder	Width, ft	6
Spee	d Limit, mi/h	50	Access Po	oint Density, pts/mi	17.0
Der	nand and Capacity				
Direc	tional Demand Flow Rate, veh/h	972	Opposing	g Demand Flow Rate, veh/h	T-
Peak	Hour Factor	1.00	Total Truc	cks, %	4.00
Segn	nent Capacity, veh/h	1700	Demand/	Capacity (D/C)	0.57
Inte	ermediate Results				
Segn	nent Vertical Class	1	Free-Flow	v Speed, mi/h	52.6
Spee	d Slope Coefficient	3.41200	Speed Po	wer Coefficient	0.41674
PF SI	ope Coefficient	-1.35195	PF Power	Coefficient	0.74086
In Pa	ssing Lane Effective Length?	No	Total Seg	ment Density, veh/mi/ln	14.4
%lmp	proved % Followers	0.0	% Improv	red Avg Speed	0.0
Sub	segment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280		-	49.4
Veh	icle Results				
Avera	age Speed, mi/h	49.4	Percent F	ollowers, %	73.4
-	nent Travel Time, minutes	1.21		Density, followers/mi/ln	14.4
Vehic	cle LOS	D			

red. HCSTMI Two-Lane Version 7.8 1_SR 29 – North of Ehlers Lane (SB) – Friday PM – F.xuf

D	ject Information					
Ana	yst	KT		Date		2/10/2021
Age	ncy	W-Trans	,	Analysis Yea	ar	
Juris	diction	County of Napa		Time Period	l Analyzed	Friday PM Future
Proj	ect Description	SR 29 – South of Ehle Lane (NB) – Friday PN		Unit		United States Customar
			Segm	ent 1		
Vel	nicle Inputs					
Segr	ment Type	Passing Constrained		Length, ft		5280
Lane	Width, ft	12		Shoulder W	idth, ft	6
Spe	ed Limit, mi/h	50		Access Poin	t Density, pts/mi	8.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	1027		Opposing D	emand Flow Rate, veh/h	T-
Peak	Hour Factor	1.00		Total Trucks, %		4.00
Segr	ment Capacity, veh/h	1700		Demand/Ca	pacity (D/C)	0.60
Int	ermediate Results					
Segr	nent Vertical Class	1	T	Free-Flow S	peed, mi/h	54.9
Spe	ed Slope Coefficient	3.53395		Speed Power Coefficient		0.41674
PF S	ope Coefficient	-1.33700	PF Power Coefficient		pefficient	0.74725
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.9
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Suk	segment Data					
#	Segment Type	Length, ft	Radiu	us, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	51.4
Veł	nicle Results					
Average Speed, mi/h 51.4		51.4		Percent Followers, %		74.4
Segr	nent Travel Time, minutes	1.17		Followers Density, followers/mi/ln		14.9
Vehi	cle LOS	D		,		

		HCS7 Two-La			
Pr	oject Information				
Ana	alyst	КТ	Date	_	2/10/2021
Ag	ency	W-Trans	Analysis Yea	ar	
Juri	isdiction	County of Napa	Time Period	d Analyzed	Friday PM Future
Pro	ject Description	SR 29 – South of Ehler Lane (SB) – Friday PM	s Unit		United States Customa
		S	egment 1		
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder W	/idth, ft	6
Spe	eed Limit, mi/h	50	Access Poin	t Density, pts/mi	15.0
De	emand and Capacity				
Dire	ectional Demand Flow Rate, veh/h	981	Opposing D	Demand Flow Rate, veh/h	1-
Pea	k Hour Factor	1.00	Total Trucks	, %	4.00
Seg	ment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.58
Int	termediate Results				
Seg	ment Vertical Class	1	Free-Flow S	peed, mi/h	53.1
Spe	ed Slope Coefficient	3.43910	Speed Powe	er Coefficient	0.41674
PF S	Slope Coefficient	-1.34878	PF Power Co	pefficient	0.74231
In P	assing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	14.5
%In	nproved % Followers	0.0	% Improved	l Avg Speed	0.0
Su	bsegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	49.9
Ve	hicle Results				
Ave	rage Speed, mi/h	49.9	Percent Foll	owers, %	73.5
Seg	ment Travel Time, minutes	1.20		ensity, followers/mi/ln	14.5
Vehicle LOS		D			

	HCS7 Two	-Lane Hig	hway Report	
Project Information				
Analyst	КТ	Date		2/10/2021
Agency	W-Trans	Anal	sis Year	
Jurisdiction	County of Napa	Time	Period Analyzed	Saturday PM Future
Project Description	SR 29 – North of Lane (NB) – Satur			United States Customar
		Segment	1	
Vehicle Inputs				
Segment Type	Passing Constrain	ed Leng	th, ft	5280
Lane Width, ft	12	Shou	lder Width, ft	6
Speed Limit, mi/h	50	Acce	ss Point Density, pts/mi	7.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	995	Орро	osing Demand Flow Rate, veh	n/h -
Peak Hour Factor	1.00	Total	Trucks, %	2.00
Segment Capacity, veh/h	1700	Dem	and/Capacity (D/C)	0.59
Intermediate Results				
Segment Vertical Class	1	Free-	Flow Speed, mi/h	55.2
Speed Slope Coefficient	3.55111	Spee	d Power Coefficient	0.41674
PF Slope Coefficient	-1.33501	PF Pc	wer Coefficient	0.74784
In Passing Lane Effective Length?	No	Total	Segment Density, veh/mi/ln	14.1
%Improved % Followers	0.0	% Im	proved Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation	n, % Average Speed, mi/h
1 Tangent	5280	-	-	51.8
Vehicle Results				
Average Speed, mi/h 51.8		Perce	nt Followers, %	73.6
Segment Travel Time, minutes	1.16		wers Density, followers/mi/ln	
Vehicle LOS	D			

		HCS7 Two-La			
Proje	ct Information				
Analyst		КТ	Date		2/10/2021
Agency		W-Trans	Analysis Yea	ar	
Jurisdic	tion	County of Napa	Time Period	d Analyzed	Saturday PM Future
Project	Description	SR 29 – North of Ehler Lane (SB) – Saturday P			United States Customa
		Se	egment 1		
Vehic	le Inputs				
Segmer	nt Type	Passing Constrained	Length, ft		5280
Lane W	idth, ft	12	Shoulder W	/idth, ft	6
Speed L	Limit, mi/h	50	Access Poin	t Density, pts/mi	17.0
Dema	and and Capacity				
Directio	onal Demand Flow Rate, veh/h	1012	Opposing D	Demand Flow Rate, veh/h	1-
Peak Ho	our Factor	1.00	Total Trucks	;, %	2.00
Segmer	nt Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.60
Interr	mediate Results				
Segmen	nt Vertical Class	1	Free-Flow S	peed, mi/h	52.7
Speed S	Slope Coefficient	3.41561	Speed Powe	er Coefficient	0.41674
PF Slope	e Coefficient	-1.35177	PF Power Co	pefficient	0.74077
In Passir	ng Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	15.2
%lmpro	ved % Followers	0.0	% Improved	l Avg Speed	0.0
Subse	egment Data				
# Se	egment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Ta	angent	5280	-	-	49.4
Vehic	le Results				
Average	e Speed, mi/h	49.4	Percent Followers, %		74.4
Segmen	nt Travel Time, minutes	1.21	Followers D	ensity, followers/mi/ln	15.2
Vehicle LOS		E			

Project Information				
Project Information	——————————————————————————————————————			
Analyst	KT	Date		2/10/2021
Agency	W-Trans	Analysi	s Year	
Jurisdiction	County of Napa	Time P	eriod Analyzed	Saturday PM Future
Project Description	SR 29 – South o Lane (NB) – Satu			United States Customa
		Segment 1		
Vehicle Inputs				
Segment Type	Passing Constra	ined Length	ft	5280
Lane Width, ft	12	Should	er Width, ft	6
Speed Limit, mi/h	50	Access	Point Density, pts/mi	8.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	1020	Opposi	ng Demand Flow Rate, veh/h	
Peak Hour Factor	1.00	Total Tr	ucks, %	2.00
Segment Capacity, veh/h	1700	Deman	d/Capacity (D/C)	0.60
Intermediate Results				
Segment Vertical Class	1	Free-Flo	ow Speed, mi/h	54.9
Speed Slope Coefficient	3.53756	Speed I	Power Coefficient	0.41674
PF Slope Coefficient	-1.33678	PF Pow	er Coefficient	0.74714
In Passing Lane Effective Length?	No	Total Se	gment Density, veh/mi/ln	14.7
%Improved % Followers	0.0	% Impr	oved Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-		51.5
Vehicle Results				
Average Speed, mi/h 51.5		Percent	Followers, %	74.2
Segment Travel Time, minutes	1.16	Followe	rs Density, followers/mi/ln	14.7
Vehicle LOS	D			

Pr	oject Information					
Ana	alyst	кт	Date		The state of the s	2/10/2021
Age	ency	W-Trans	Analy	sis Year		
Juri	sdiction	County of Napa	Time	Period Anal	yzed	Saturday PM Future
Pro	ject Description	SR 29 – South o Lane (SB) – Satu		A		United States Customar
			Segment	1		
Ve	hicle Inputs					
Seg	ment Type	Passing Constra	ined Lengt	th, ft		5280
Lan	e Width, ft	12	Shou	lder Width,	ft	6
Spe	ed Limit, mi/h	50	Acces	s Point Den	sity, pts/mi	15.0
De	mand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	1000	Орро	sing Demar	nd Flow Rate, veh/h	
Pea	k Hour Factor	1.00	Total	Trucks, %		2.00
Seg	ment Capacity, veh/h	1700	Dema	and/Capacit	y (D/C)	0.59
Int	ermediate Results					
Seg	ment Vertical Class	1	Free-	Free-Flow Speed, mi/h		53.2
Spe	ed Slope Coefficient	3.44271	Speed	d Power Coe	efficient	0.41674
PF S	Slope Coefficient	-1.34859	PF Po	PF Power Coefficient		0.74221
In P	assing Lane Effective Length?	No	Total	Total Segment Density, veh/mi/ln		14.8
%ln	nproved % Followers	0.0	% Imp	% Improved Avg Speed		0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Radius, ft		Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	49.9
Ve	hicle Results					
Average Speed, mi/h		49.9	Perce	Percent Followers, %		74.0
Seg	ment Travel Time, minutes	1.20	Follov	Followers Density, followers/mi/ln		14.8
Veh	icle LOS	D				

	HCS7 Two-La	ine Highwa	ay Report	
Project Information				
Analyst	кт	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Period	d Analyzed	Friday PM Existing plus Project
Project Description	SR 29 – North of Ehlers Lane (NB) – Friday PM	Unit		United States Customar
	Se	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	7.0
Demand and Capacity	(arms)			
Directional Demand Flow Rate, veh/h	710	Opposing D	Demand Flow Rate, veh/h	l-
Peak Hour Factor	0.96	Total Trucks	5, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	peed, mi/h	55.1
Speed Slope Coefficient	3.54750	Speed Power Coefficient		0.41674
PF Slope Coefficient	-1.33524	PF Power Co	oefficient	0.74794
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	8.8
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	52.2
Vehicle Results				
Average Speed, mi/h 52.2		Percent Foll	owers, %	64.4
Segment Travel Time, minutes	1.15	Followers D	ensity, followers/mi/ln	8.8
Vehicle LOS	С			

HCS™ Two-Lane Version 7.8

Generated: 02/12/2021 16:55:32

Pr	oject Information				
		T _V T			
	alyst	KT	Date		2/10/2021
-	ency	W-Trans	Analysis Yea		
Juri	sdiction	County of Napa	Time Period	Analyzed	Friday PM Existing plus Project
Pro	ject Description	SR 29 – North of Ehler Lane (SB) – Friday PM	s Unit		United States Customary
		So	egment 1		
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder Wi	idth, ft	6
Spe	ed Limit, mi/h	50	Access Point	t Density, pts/mi	17.0
De	mand and Capacity				
Dire	ectional Demand Flow Rate, veh/h	695	Opposing D	emand Flow Rate, veh/h	<u> -</u>
Pea	k Hour Factor	0.96	Total Trucks,	%	4.00
Seg	ment Capacity, veh/h	1700	Demand/Ca	pacity (D/C)	0.41
Int	ermediate Results				
Seg	ment Vertical Class	1	Free-Flow Sp	peed, mi/h	52.6
Spe	ed Slope Coefficient	3.41200	Speed Powe	r Coefficient	0.41674
PF S	Slope Coefficient	-1.35195	PF Power Co	efficient	0.74086
In P	assing Lane Effective Length?	No	Total Segme	nt Density, veh/mi/ln	9.0
%In	proved % Followers	0.0	% Improved	Avg Speed	0.0
Su	bsegment Data		7.74		
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	49.9
Ve	hicle Results				
Ave	rage Speed, mi/h	49.9	Percent Follo	owers, %	64.4
Seg	ment Travel Time, minutes	1.20	Followers De	ensity, followers/mi/ln	9.0
		С			

1_SR 29 - North of Ehlers Lane (SB) - Friday PM - E+P.xuf

Project Information				
Analyst	Ткт	In-t-		1242424
		Date		2/10/2021
Agency	W-Trans	Analysis Yea		
Jurisdiction	County of Napa	Time Period	Analyzed	Friday PM Existing plus Project
Project Description	SR 29 – South of Ehler Lane (NB) – Friday PM			United States Customary
	Se	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder Wi	dth, ft	6
Speed Limit, mi/h	50	Access Point	Density, pts/mi	8.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	733	Opposing D	emand Flow Rate, veh/h	<u> -</u>
Peak Hour Factor	0.96	Total Trucks,	%	4.00
Segment Capacity, veh/h	1700	Demand/Ca	pacity (D/C)	0.43
Intermediate Results				
Segment Vertical Class	1	Free-Flow Sp	peed, mi/h	54.9
Speed Slope Coefficient	3.53395	Speed Powe	r Coefficient	0.41674
PF Slope Coefficient	-1.33700	PF Power Co	efficient	0.74725
In Passing Lane Effective Length?	No	Total Segme	nt Density, veh/mi/ln	9.2
%Improved % Followers	0.0	% Improved	Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	51.9
Vehicle Results				
Average Speed, mi/h	51.9	Percent Follo	owers, %	65.4
Segment Travel Time, minutes	1.16	Followers De	ensity, followers/mi/ln	9.2
Vehicle LOS	С			

2_SR 29 - South of Ehlers Lane (NB) - Friday PM - E+P.xuf

	HCS7 Two-La	ane Highwa	ay Report	
Project Information				
Analyst	КТ	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Period	d Analyzed	Friday PM Existing plus Project
Project Description	SR 29 – South of Ehler Lane (SB) – Friday PM	s Unit		United States Customar
	Se	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poin	nt Density, pts/mi	15.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	711	Opposing D	Demand Flow Rate, veh/h	-
Peak Hour Factor	0.96	Total Trucks	5, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	peed, mi/h	53.1
Speed Slope Coefficient	3.43910	Speed Powe	er Coefficient	0.41674
PF Slope Coefficient	-1.34878	PF Power Co	oefficient	0.74231
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.2
%Improved % Followers	0.0	% Improved	l Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	50.3
Vehicle Results				
Average Speed, mi/h 50.3		Percent Foll	owers, %	64.9
Segment Travel Time, minutes	1.19	Followers D	ensity, followers/mi/ln	9.2
Vehicle LOS	С			

HCS™ Two-Lane Version 7.8

Generated: 02/12/2021 16:58:20

2_SR 29 - South of Ehlers Lane (SB) - Friday PM - E+P.xuf

	HCS7 Two-La	ne Highwa	ay Report	
Project Information				
Analyst	KT	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Period	d Analyzed	Saturday PM Existing plu Project
Project Description	SR 29 – North of Ehlers Lane (NB) – Saturday P			United States Customary
	Se	gment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	7.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	714	Opposing D	Demand Flow Rate, veh/h	
Peak Hour Factor	0.96	Total Trucks	5, %	2.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	peed, mi/h	55.2
Speed Slope Coefficient	3.55111	Speed Powe	er Coefficient	0.41674
PF Slope Coefficient	-1.33501	PF Power Co	oefficient	0.74784
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	8.8
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-		52.3
Vehicle Results				
Average Speed, mi/h	52.3	Percent Foll	owers, %	64.6
Segment Travel Time, minutes	1.15	Followers D	ensity, followers/mi/ln	8.8
Vehicle LOS	С			

Generated: 02/12/2021 16:58:47

1_SR 29 - North of Ehlers Lane (NB) - Saturday PM - E+P.xuf

Project Information				
Analyst	Ткт	Date		2/10/2021
Agency	W-Trans	Analysis	Year	2,10,2021
Jurisdiction	County of Napa		iod Analyzed	Saturday PM Existing plu Project
Project Description	SR 29 – North of Eh Lane (SB) – Saturda			United States Customary
		Segment 1		n nez
Vehicle Inputs				
Segment Type	Passing Constrained	d Length, f	t	5280
Lane Width, ft	12	Shoulder	Width, ft	6
Speed Limit, mi/h	50	Access P	oint Density, pts/mi	17.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	724	Opposing	g Demand Flow Rate, veh/h	-
Peak Hour Factor	0.96	Total True	cks, %	2.00
Segment Capacity, veh/h	1700	Demand,	/Capacity (D/C)	0.43
Intermediate Results				
Segment Vertical Class	1	Free-Flov	v Speed, mi/h	52.7
Speed Slope Coefficient	3.41561	Speed Po	ower Coefficient	0.41674
PF Slope Coefficient	-1.35177	PF Power	Coefficient	0.74077
In Passing Lane Effective Length?	No	Total Seg	ment Density, veh/mi/ln	9.5
%Improved % Followers	0.0	% Improv	ved Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	49.9
Vehicle Results				
Average Speed, mi/h 49.9		Percent F	ollowers, %	65.5
Segment Travel Time, minutes	minutes 1.20		Density, followers/mi/ln	9.5
Vehicle LOS				

	HCS7 Two-La	ane Highw	ay Report	
Project Information				
Analyst	КТ	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ear	
Jurisdiction	County of Napa	Time Perio	d Analyzed	Saturday PM Existing plue Project
Project Description	SR 29 – South of Ehlers Lane (NB) – Saturday P			United States Customary
	Se	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft	-	5280
Lane Width, ft	12	Shoulder V	Vidth, ft	6
Speed Limit, mi/h	50	Access Poi	nt Density, pts/mi	8.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	729	Opposing	Demand Flow Rate, veh/h	
Peak Hour Factor	0.96	Total Truck	s, %	2.00
Segment Capacity, veh/h	1700	Demand/C	apacity (D/C)	0.43
Intermediate Results				
Segment Vertical Class	1	Free-Flow :	Speed, mi/h	54.9
Speed Slope Coefficient	3.53756	Speed Pow	er Coefficient	0.41674
PF Slope Coefficient	-1.33678	PF Power C	Coefficient	0.74714
In Passing Lane Effective Length?	No	Total Segm	nent Density, veh/mi/ln	9.1
%Improved % Followers	0.0	% Improve	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	52.0
Vehicle Results				
Average Speed, mi/h 52.0		Percent Fol	llowers, %	65.2
Segment Travel Time, minutes	1.15		Density, followers/mi/ln	9.1
Vehicle LOS	С			

2_SR 29 – South of Ehlers Lane (NB) – Saturday PM – E+P.xuf

Pr	oject Information					
	alyst	KT	Da			2/10/2021
Age	ency	W-Trans	An	alysis Year		
Juri	sdiction	County of Napa	Tir	ne Period Ana	lyzed	Saturday PM Existing plu Project
Pro	ject Description	SR 29 – South of Ehl Lane (SB) – Saturday		iit		United States Customary
013) 72			Segme	nt 1		
Ve	hicle Inputs					
Seg	ment Type	Passing Constrained	Lei	ngth, ft		5280
Lan	e Width, ft	12	Sh	oulder Width,	ft	6
Spe	ed Limit, mi/h	50		Access Point Density, pts/mi		15.0
De	emand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	719	Ор	Opposing Demand Flow Rate, veh/h		<u> </u> -
Pea	k Hour Factor	0.96	Tot	tal Trucks, %		2.00
Seg	ment Capacity, veh/h	1700	De	mand/Capacit	y (D/C)	0.42
Int	termediate Results					
Seg	ment Vertical Class	1	Fre	e-Flow Speed,	, mi/h	53.2
Spe	ed Slope Coefficient	3.44271		Speed Power Coefficient		0.41674
PF S	Slope Coefficient	-1.34859		PF Power Coefficient		0.74221
In P	assing Lane Effective Length?	No	Tot	Total Segment Density, veh/mi/ln		9.3
%In	nproved % Followers	0.0	%	% Improved Avg Speed		0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Radius,	ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	1-		-	50.4
Ve	hicle Results					
Average Speed, mi/h 50.4		Per	Percent Followers, %		65.2	
Seg	ment Travel Time, minutes	1.19			, followers/mi/ln	9.3
Vehicle LOS		C		The state of the s		

	HCS7 Two-La	ane Highwa	ay Report	
Project Information				
Analyst	КТ	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Period	d Analyzed	Friday PM Baseline plus Project
Project Description	SR 29 – North of Ehler Lane (NB) – Friday PM			United States Customar
	S	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	7.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	711	Opposing [Demand Flow Rate, veh/h	1-
Peak Hour Factor	0.96	Total Trucks	5, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.42
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	ipeed, mi/h	55.1
Speed Slope Coefficient	3.54750	Speed Pow	er Coefficient	0.41674
PF Slope Coefficient	-1.33524	PF Power C	oefficient	0.74794
In Passing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	8.8
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-		52.2
Vehicle Results				
Average Speed, mi/h 52.2		Percent Followers, %		64.5
Segment Travel Time, minutes	1.15	Followers D	ensity, followers/mi/ln	8.8
Vehicle LOS	С			

Generated: 02/22/2021 14:24:11

	HCS7 Two-La	ane Highwa	ay Report	
Project Information			12 mare 1	
Analyst	кт	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	2
Jurisdiction	County of Napa	Time Period	d Analyzed	Friday PM Baseline plus Project
Project Description	SR 29 – North of Ehler Lane (SB) – Friday PM	s Unit		United States Customary
	Se	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	17.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	695	Opposing D	Demand Flow Rate, veh/h	
Peak Hour Factor	0.96	Total Trucks	5, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.41
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	peed, mi/h	52.6
Speed Slope Coefficient	3.41200	Speed Powe	er Coefficient	0.41674
PF Slope Coefficient	-1.35195	PF Power Co	oefficient	0.74086
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.0
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	Tangent 5280 -		-	49.9
Vehicle Results				
Average Speed, mi/h 49.9		Percent Foll	owers, %	64.4
Segment Travel Time, minutes	1.20	Followers D	ensity, followers/mi/ln	9.0
Vehicle LOS	С			

HCS TM Two-Lane Version 7.8

Generated: 02/22/2021 14:25:08

	HCS7 Two-La	ane Highwa	ay Report	
Project Information				
Analyst	КТ	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Perio	d Analyzed	Friday PM Baseline plus Project
Project Description	SR 29 – South of Ehler Lane (NB) – Friday PM			United States Customar
	S	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	Vidth, ft	6
Speed Limit, mi/h	· 50	Access Poir	nt Density, pts/mi	8.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	735	Opposing [Demand Flow Rate, veh/h	<u> </u>
Peak Hour Factor	0.96	Total Trucks	5, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.43
Intermediate Results			Zalandi Zalandi yakin di masa	7744
Segment Vertical Class]1	Free-Flow Speed, mi/h		54.9
Speed Slope Coefficient	3.53395	Speed Pow	er Coefficient	0.41674
PF Slope Coefficient	-1.33700	PF Power C	oefficient	0.74725
In Passing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	9.3
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	51.9
Vehicle Results				
Average Speed, mi/h 51.9		Percent Foll	lowers, %	65.4
Segment Travel Time, minutes	1.16	Followers D	Pensity, followers/mi/ln	9.3
Vehicle LOS	С			

HCS TM Two-Lane Version 7.8

Generated: 02/22/2021 14:25:55

Pr	oject Information					
	alyst	КТ	In:	ate		12/10/2021
	ency	W-Trans				2/10/2021
-	isdiction			nalysis Year	F	
Juli	suiction	County of Napa	1"	me Period Ana	ilyzed	Friday PM Baseline plus Project
Pro	ject Description	SR 29 – South of Eh Lane (SB) – Friday P		nit		United States Customar
			Segme	nt 1		
Ve	hicle Inputs					
Seg	ment Type	Passing Constrained	d Le	ngth, ft		5280
Lan	e Width, ft	12	Sh	oulder Width,	ft	6
Spe	ed Limit, mi/h	50		Access Point Density, pts/mi		15.0
De	emand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	713	Op	pposing Dema	nd Flow Rate, veh/h	1-
Pea	k Hour Factor	0.96	To	Total Trucks, %		4.00
Seg	ment Capacity, veh/h	1700	De	emand/Capaci	ty (D/C)	0.42
Int	termediate Results					7 4.2
Seg	ment Vertical Class	1	Fre	ee-Flow Speed	, mi/h	53.1
Spe	ed Slope Coefficient	3.43910		Speed Power Coefficient		0.41674
PF S	Slope Coefficient	-1.34878	PF	PF Power Coefficient		0.74231
In P	assing Lane Effective Length?	No	To	Total Segment Density, veh/mi/ln		9.2
%In	nproved % Followers	0.0	%	% Improved Avg Speed		0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Radius,	ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	50.3
Ve	hicle Results					
Average Speed, mi/h 50.3		Per	Percent Followers, %		65.0	
Seg	ment Travel Time, minutes	1.19	Fol	Followers Density, followers/mi/ln		9.2
Vehicle LOS		С				

D-	niast Information				
Pro	oject Information				
Ana	llyst	KT	Date		2/10/2021
Age	ency	W-Trans	Analysis Yea	r	
Juri	sdiction	County of Napa	Time Period	Analyzed	Saturday PM Baseline plu Project
Proj	ect Description	SR 29 – North of Ehle Lane (NB) – Saturday			United States Customary
		S	egment 1		
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	Length, ft		5280
Lan	e Width, ft	12	Shoulder W	idth, ft	6
Spe	ed Limit, mi/h	50	Access Point	t Density, pts/mi	7.0
De	mand and Capacity				
Dire	ectional Demand Flow Rate, veh/h	715	Opposing D	emand Flow Rate, veh/h	I -
Pea	k Hour Factor	0.96	Total Trucks,	%	2.00
Seg	ment Capacity, veh/h	1700	Demand/Ca	pacity (D/C)	0.42
Int	ermediate Results				
Seg	ment Vertical Class	1	Free-Flow S _I	peed, mi/h	55.2
Spe	ed Slope Coefficient	3.55111	Speed Powe	r Coefficient	0.41674
PF S	lope Coefficient	-1.33501	PF Power Co	pefficient	0.74784
In P	assing Lane Effective Length?	No	Total Segme	nt Density, veh/mi/ln	8.8
%lm	proved % Followers	0.0	% Improved	Avg Speed	0.0
Su	bsegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	52.3
Vel	hicle Results				
Average Speed, mi/h 52.3		Percent Follo	owers, %	64.6	
Seg	ment Travel Time, minutes	1.15	Followers De	ensity, followers/mi/ln	8.8
Vehicle LOS		С			

	HCS7 Two-La	ane Highwa	ay Report	
Project Information				
Analyst	КТ	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Perio	d Analyzed	Saturday PM Baseline plu Project
Project Description	SR 29 – North of Ehler Lane (SB) – Saturday P			United States Customary
	Se	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	vidth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	17.0
Demand and Capacity	1			
Directional Demand Flow Rate, veh/h	724	Opposing I	Demand Flow Rate, veh/h	-
Peak Hour Factor	0.96	Total Trucks	5, %	2.00
Segment Capacity, veh/h	1700	Demand/C	apacity (D/C)	0.43
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	Speed, mi/h	52.7
Speed Slope Coefficient	3.41561	Speed Pow	er Coefficient	0.41674
PF Slope Coefficient	-1.35177	PF Power C	oefficient	0.74077
In Passing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	9.5
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	49.9
Vehicle Results				
Average Speed, mi/h 49.9		Percent Fol	lowers, %	65.5
Segment Travel Time, minutes	1.20	Followers D	Pensity, followers/mi/ln	9.5
Vehicle LOS	С			

Generated: 02/22/2021 14:27:53

	HCS7 Two-La	ne Highwa	ay Report	
Project Information		and date		
Analyst	КТ	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Period	d Analyzed	Saturday PM Baseline plus Project
Project Description	SR 29 – South of Ehlers Lane (NB) – Saturday P			United States Customary
	Se	gment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	8.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	731	Opposing [Demand Flow Rate, veh/h	1
Peak Hour Factor	0.96	Total Trucks	5, %	2.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.43
Intermediate Results				
Segment Vertical Class	1	Free-Flow S	peed, mi/h	54.9
Speed Slope Coefficient	3.53756	Speed Powe	er Coefficient	0.41674
PF Slope Coefficient	-1.33678	PF Power C	oefficient	0.74714
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	9.2
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	-	52.0
Vehicle Results				
Average Speed, mi/h 52.0		Percent Foll	owers, %	65.3
Segment Travel Time, minutes	1.15	Followers D	ensity, followers/mi/ln	9.2
Vehicle LOS	С			

Generated: 02/22/2021 14:28:29

D-	sis et Informe tiere					
Pr	oject Information					
Ana	alyst	KT		Date		2/10/2021
Age	ency	W-Trans		Analysis Yea	ır	
Juri	isdiction	County of Napa		Time Period	Analyzed	Saturday PM Baseline plu Project
Pro	ject Description	SR 29 – South of Eh Lane (SB) – Saturda		Unit		United States Customary
			Segm	nent 1		
Ve	hicle Inputs					
Seg	ment Type	Passing Constrained	d	Length, ft		5280
Lan	e Width, ft	12		Shoulder W	idth, ft	6
Spe	eed Limit, mi/h	50		Access Point Density, pts/mi		15.0
De	emand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	720		Opposing Demand Flow Rate, veh/h		1-
Pea	k Hour Factor	0.96		Total Trucks, %		2.00
Seg	ment Capacity, veh/h	1700	d income a	Demand/Ca	pacity (D/C)	0.42
Int	termediate Results					
Seg	ment Vertical Class	1		Free-Flow S	peed, mi/h	53.2
Spe	ed Slope Coefficient	3.44271		Speed Power Coefficient		0.41674
PF S	Slope Coefficient	-1.34859		PF Power Coefficient		0.74221
In P	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		9.3
%In	nproved % Followers	0.0		% Improved Avg Speed		0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Radi	us, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	1	-	50.4
Ve	hicle Results					TERREST TO
Average Speed, mi/h 50.4			Percent Followers, %		65.2	
Seg	ment Travel Time, minutes	1.19			ensity, followers/mi/ln	9.3
Vehicle LOS		C				

2_SR 29 - South of Ehlers Lane (SB) - Saturday PM - B+P.xuf

	HCS7 Two-La	ane Highwa	ay Report	
Project Information		Files		
Analyst	KT	Date		2/10/2021
Agency	W-Trans	Analysis Ye	ar	
Jurisdiction	County of Napa	Time Period	d Analyzed	Friday PM Future plus Project
Project Description	SR 29 – North of Ehler Lane (NB) – Friday PM			United States Customar
	So	egment 1		
Vehicle Inputs				
Segment Type	Passing Constrained	Length, ft		5280
Lane Width, ft	12	Shoulder W	/idth, ft	6
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	7.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	989	Opposing [Demand Flow Rate, veh/h	=
Peak Hour Factor	1.00	Total Trucks	5, %	4.00
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.58
Intermediate Results				A Mary No.
Segment Vertical Class	1	Free-Flow Speed, mi/h		55.1
Speed Slope Coefficient	3.54750	Speed Powe	er Coefficient	0.41674
PF Slope Coefficient	-1.33524	PF Power C	oefficient	0.74794
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	14.0
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	5280	-	- ^ -	51.7
Vehicle Results				
Average Speed, mi/h 51.7		Percent Foll	owers, %	73.4
Segment Travel Time, minutes	1.16	Followers D	ensity, followers/mi/ln	14.0
Vehicle LOS	D			

Generated: 02/22/2021 14:40:21

Pr	oject Information				
Ana	alyst	КТ	Date		2/10/2021
Age	ency	W-Trans	Analysis Ye	ear	
Juri	isdiction	County of Napa		od Analyzed	Friday PM Future plus Project
Pro	ject Description	SR 29 – North of Ehler Lane (SB) – Friday PM	s Unit		United States Customar
		S	egment 1		
Ve	hicle Inputs				
Seg	gment Type	Passing Constrained	Length, ft		5280
Lan	ne Width, ft	12	Shoulder V	Vidth, ft	6
Spe	eed Limit, mi/h	50	Access Poi	nt Density, pts/mi	17.0
De	emand and Capacity				
Directional Demand Flow Rate, veh/h		972	Opposing	Demand Flow Rate, veh/h	-
Pea	k Hour Factor	1.00	Total Truck	s, %	4.00
Segment Capacity, veh/h		1700	Demand/C	apacity (D/C)	0.57
Int	termediate Results				
Seg	ment Vertical Class	1	Free-Flow :	Speed, mi/h	52.6
Spe	eed Slope Coefficient	3.41200	Speed Pow	ver Coefficient	0.41674
PF S	Slope Coefficient	-1.35195	PF Power C	Coefficient	0.74086
In P	Passing Lane Effective Length?	No	Total Segm	nent Density, veh/mi/ln	14.4
%In	nproved % Followers	0.0	% Improve	d Avg Speed	0.0
Su	bsegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-	-	49.4
Ve	hicle Results				
Ave	rage Speed, mi/h	49.4	Percent Followers, %		73.4
Seg	ment Travel Time, minutes	1.21	Followers D	Density, followers/mi/ln	14.4
Vehicle LOS		D			

Pr	oject Information			A 10 M 1 M 1 M	
	alyst	KT	Date		2/10/2021
Age	ency	W-Trans	Analy	sis Year	27.107.202.1
Juri	isdiction	County of Napa		Period Analyzed	Friday PM Future plus Project
Pro	ject Description	SR 29 – South of Eh Lane (NB) – Friday F			United States Customan
			Segment	1	
Ve	hicle Inputs				
Seg	ment Type	Passing Constrained	d Lengt	h, ft	5280
Lan	e Width, ft	12	Shoul	der Width, ft	6
Spe	ed Limit, mi/h	50	Acces	s Point Density, pts/mi	8.0
De	emand and Capacity				
Directional Demand Flow Rate, veh/h		1028	Орро	sing Demand Flow Rate, veh	/h -
Pea	k Hour Factor	1.00	Total '	Frucks, %	4.00
Segment Capacity, veh/h		1700	Dema	nd/Capacity (D/C)	0.60
Int	termediate Results				
Seg	ment Vertical Class	1	Free-F	low Speed, mi/h	54.9
Spe	ed Slope Coefficient	3.53395	Speed	Power Coefficient	0.41674
PF S	Slope Coefficient	-1.33700	PF Po	ver Coefficient	0.74725
In P	assing Lane Effective Length?	No	Total S	Segment Density, veh/mi/ln	14.9
%In	nproved % Followers	0.0	% Imp	roved Avg Speed	0.0
Su	bsegment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation,	% Average Speed, mi/h
1	Tangent	5280	-	-	51.4
Ve	hicle Results		4771		
Ave	rage Speed, mi/h	51.4	Percer	t Followers, %	74.5
Seg	ment Travel Time, minutes	1.17	Follow	ers Density, followers/mi/ln	14.9
Vehicle LOS		D			

2_SR 29 - South of Ehlers Lane (NB) - Friday PM - F+P.xuf

-		HCS7 Two	-Laii	e mgnwa _:	y Report		
Pro	oject Information						
Ana	ılyst	KT	1	Date		2/10/2021	
Age	ency	W-Trans		Analysis Year	•		
Juri	sdiction	County of Napa	*	Time Period	Analyzed	Friday PM Future plus Project	
Proj	iect Description	SR 29 – South of Lane (SB) – Friday		Unit		United States Customar	
97			Seg	ment 1			
Ve	hicle Inputs						
Seg	ment Type	Passing Constrain	ied	Length, ft		5280	
Lane	e Width, ft	12		Shoulder Wie	dth, ft	6	
Spe	ed Limit, mi/h	50		Access Point Density, pts/mi		15.0	
De	mand and Capacity						
Dire	ectional Demand Flow Rate, veh/h	983	983		emand Flow Rate, veh/h	1-	
Peal	k Hour Factor	1.00		Total Trucks, %		4.00	
Seg	ment Capacity, veh/h	1700		Demand/Cap	pacity (D/C)	0.58	
Int	ermediate Results						
Seg	ment Vertical Class	1		Free-Flow Sp	eed, mi/h	53.1	
Spe	ed Slope Coefficient	3.43910		Speed Power Coefficient		0.41674	
PF S	ilope Coefficient	-1.34878		PF Power Coefficient		0.74231	
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.5	
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0	
Sul	bsegment Data						
#	Segment Type	Length, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	5280	-	A	-	49.9	
Vel	hicle Results						
Avei	rage Speed, mi/h	49.9		Percent Followers, %		73.6	
Segi	ment Travel Time, minutes	1.20		Followers Density, followers/mi/ln		14.5	
Vehicle LOS		D					

Pr	oject Information					
	alyst	Т кт		Date		2/10/2021
	ency	W-Trans		Analysis Yea	r	2/10/2021
	sdiction	County of Napa		Time Period		Saturday PM Future plu Project
Pro	ject Description	SR 29 – North of Er Lane (NB) – Saturda		Unit		United States Customa
			Segn	nent 1		
Ve	hicle Inputs					
Seg	ment Type	Passing Constrained	d	Length, ft		5280
Lan	e Width, ft	12		Shoulder Width, ft		6
Spe	ed Limit, mi/h	50		Access Point Density, pts/mi		7.0
De	emand and Capacity					
Directional Demand Flow Rate, veh/h 997		997	Opposing Demand Flow Rate, veh/h		-	
Pea	k Hour Factor	1.00		Total Trucks, %		2.00
Seg	ment Capacity, veh/h	1700		Demand/Cap	pacity (D/C)	0.59
Int	termediate Results					
Seg	ment Vertical Class	1		Free-Flow Sp	peed, mi/h	55.2
Spe	ed Slope Coefficient	3.55111		Speed Power Coefficient		0.41674
PF S	Slope Coefficient	-1.33501		PF Power Coefficient		0.74784
In P	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.2
%ln	nproved % Followers	0.0		% Improved Avg Speed		0.0
Su	bsegment Data		(A)			
#	Segment Type	Length, ft	Radi	ius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-		-	51.8
Ve	hicle Results					
Ave	rage Speed, mi/h	51.8		Percent Follo	owers, %	73.6
Seg	ment Travel Time, minutes	1.16		Followers Density, followers/mi/ln		14.2
Vehicle LOS		D				

	HCS7 Two-La	ne Highwa	ay Report		
Project Information		T. Market			
Analyst	кт	Date	COMMISSION STREET	2/10/2021	
Agency	W-Trans	Analysis Ye	ar		
Jurisdiction	County of Napa	Time Period	d Analyzed	Saturday PM Future plu Project	
Project Description	SR 29 – North of Ehlers Lane (SB) – Saturday Pl			United States Customar	
	Se	egment 1			
Vehicle Inputs					
Segment Type	Passing Constrained	Length, ft		5280	
Lane Width, ft	12	Shoulder W	/idth, ft	6	
Speed Limit, mi/h	50	Access Poir	nt Density, pts/mi	17.0	
Demand and Capacity					
Directional Demand Flow Rate, veh/h 1013		Opposing [Demand Flow Rate, veh/h	1-	
Peak Hour Factor	1.00	Total Trucks, %		2.00	
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.60	
Intermediate Results					
Segment Vertical Class	1	Free-Flow S	Speed, mi/h	52.7	
Speed Slope Coefficient	3.41561	Speed Pow	er Coefficient	0.41674	
PF Slope Coefficient	-1.35177	PF Power C	oefficient	0.74077	
In Passing Lane Effective Length?	No	Total Segm	ent Density, veh/mi/ln	15.3	
%Improved % Followers	0.0	% Improved	d Avg Speed	0.0	
Subsegment Data					
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h	
1 Tangent	5280	-	-	49.4	
Vehicle Results					
Average Speed, mi/h	49.4	Percent Foll	lowers, %	74.5	
Segment Travel Time, minutes	1.21	Followers D	ensity, followers/mi/ln	15.3	
Vehicle LOS	E				

Copyright © 2021 University of Florida. All Rights Reserved. HCS TMM Two-Lane Version 7.8

Generated: 02/22/2021 14:45:57

D	oject Information	ma # 4 7 7 7 1 1 1				
Analyst		KT		Date		2/10/2021
Age	ency	W-Trans		Analysis Yea	nr	1
Juris	sdiction	County of Napa		Time Period	Analyzed	Saturday PM Future plu Project
Proj	iect Description	SR 29 – South of Lane (NB) – Satur		Unit		United States Customa
			Segi	ment 1		
Vel	hicle Inputs					
Seg	ment Type	Passing Constrair	ned	Length, ft		5280
Lane	e Width, ft	12	***************************************	Shoulder W	idth, ft	6
Spe	ed Limit, mi/h	50		Access Point Density, pts/mi		8.0
De	mand and Capacity					
Directional Demand Flow Rate, veh/h 10.		1022	1022		emand Flow Rate, veh/h	-
Peak	k Hour Factor	1.00		Total Trucks, %		2.00
Segi	ment Capacity, veh/h	1700		Demand/Ca	pacity (D/C)	0.60
Int	ermediate Results					
Segi	ment Vertical Class	1		Free-Flow Sp	peed, mi/h	54.9
Spe	ed Slope Coefficient	3.53756		Speed Power Coefficient		0.41674
PF S	lope Coefficient	-1.33678		PF Power Coefficient		0.74714
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.7
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Sul	segment Data					
#	Segment Type	Length, ft	Ra	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	5280	-			51.5
Vel	nicle Results		Na (1)			
Average Speed, mi/h		51.5		Percent Follo	owers, %	74.3
Segr	ment Travel Time, minutes	1.16		Followers Density, followers/mi/ln		14.7
Vehicle LOS		D		- 2 State Density, followers, filly iff		

2_SR 29 – South of Ehlers Lane (NB) – Saturday PM – F+P.xuf

	HCS7 Two-La	ne Highwa	ay Report		
Project Information					
Analyst	кт	Date		2/10/2021	
Agency	W-Trans	Analysis Ye	ar		
Jurisdiction	County of Napa	Time Period	d Analyzed	Saturday PM Future plu Project	
Project Description	SR 29 – South of Ehlers Lane (SB) – Saturday P			United States Customar	
	Se	gment 1			
Vehicle Inputs					
Segment Type	Passing Constrained	Length, ft		5280	
Lane Width, ft	12	Shoulder W	/idth, ft	6	
Speed Limit, mi/h	50	Access Poin	t Density, pts/mi	15.0	
Demand and Capacity					
Directional Demand Flow Rate, veh/h	1001	Opposing D	Demand Flow Rate, veh/h	-	
Peak Hour Factor	1.00	Total Trucks	;, %	2.00	
Segment Capacity, veh/h	1700	Demand/Ca	apacity (D/C)	0.59	
Intermediate Results					
Segment Vertical Class	1	Free-Flow S	peed, mi/h	53.2	
Speed Slope Coefficient	3.44271	Speed Powe	er Coefficient	0.41674	
PF Slope Coefficient	-1.34859	PF Power Co	pefficient	0.74221	
In Passing Lane Effective Length?	No	Total Segme	ent Density, veh/mi/ln	14.9	
%Improved % Followers	0.0	% Improved	l Avg Speed	0.0	
Subsegment Data					
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h	
1 Tangent	5280		-	49.9	
Vehicle Results					
Average Speed, mi/h	49.9	Percent Foll	owers, %	74.1	
Segment Travel Time, minutes	1.20	Followers D	ensity, followers/mi/ln	14.9	
Vehicle LOS	D	,			

Copyright © 2021 University of Florida. All Rights Reserved. HCSTM Two-Lane Version 7.8

Generated: 02/22/2021 14:47:13

Appendix E

Trip Generation Spreadsheets

This page intentionally left blank

Existing Conditions Winery Traffic Information / Trip Generation

<u>Determine Winery Daily Trips.</u> Complete Sections A through I below to determine your winery project's estimated baseline daily and peak hour trips.

Proj	ect Name: Ehlers Estate Winery	Project Scenario:	Permitted			
Sec	tion A. Maximum Daily Weekday Tr	affic (Friday, non-harvest sea	son)			
1. 2. 3. 4.		_x 1.90 one-way trips per employed _/2.6 visitors per vehicle x 2 one-way 00 x 0.009 daily truck trips x 2 one-way	e ay trips	= = = = = = = = = = = = = = = = = = = =	6.1 0.0 0.0 0.5 7	_ daily trips _ daily trips _ daily trips _ daily trips _ daily trips
<u>Sect</u>	ion B. Maximum Daily Weekday Traffi	c (Friday, harvest season)				
6. 7. 8. 9.	Total number of FT employees: 2 Total number of PT employees: 0 Maximum weekday visitors: 0 Gallons of production: 25000 /1,00	_ x 3.05 one-way trips per employee _ x 1.90 one-way trips per employee _ /2.6 visitors per vehicle x 2 one-way 00 x 0.009 daily truck trips x 2 one-way	e ay trips	=_=====================================	6.1 0.0 0.0 0.5	_ daily trips _ daily trips _ daily trips _ daily trips
10.	Avg. annual tons of grape on-haul: 0	_ / 144 truck trips x 2 one-way trips		= -	0.0	daily trips
11.			TOTAL	=	7	_ _daily trips
Sect	ion C. Maximum Daily Weekend Traffi	c (Saturday, non-harvest season)_			_
12. 13. 14. 15.		2 x 3.05 one-way trips per em 0 x 1.90 one-way trips per em /2.8 visitors per vehicle x 2 one-way 0 x 0.009 daily truck trips x 2 one-way	ployee ny trips	=-	6.1 0.0 0.0 0.0 6	_daily trips _daily trips _daily trips _daily trips _daily trips
Sect	<u>ion D. Maximum Daily Weekend Traffi</u>	c (Saturday, harvest season)				
17. 18. 19. 20. 21.	Maximum Saturday visitors: 0	2 x 3.05 one-way trips per em 0 x 1.90 one-way trips per em _/2.8 visitors per vehicle x 2 one-way 0 x 0.009 daily truck trips2 x 2 one-way 0 / 144 truck trips x 2 one-way	ployee ny trips way trips	= -	6.1 0.0 0.0 0.5 0.0 7	daily trips daily trips daily trips daily trips daily trips daily trips
<u>Sect</u>	ion E. PM Peak Hour Trip Generation (Friday, non-harvest season)		_		_
Sect	(Sum of daily trips from Sec. A, lines 3 an ion F. PM Peak Hour Trip Generation (2)	=_	2	PM peak trips
Jecc						
	(Sum of daily trips, Sec. B, lines 8, 9, 10)			=_	2	PM peak trips
Sect	<u>ion G. PM Peak Hour Trip Generation (</u>	Saturday, non-harvest season)				
	(Daily trips from Sec. C, line 14 and 15) x			=_	2	PM peak trips
<u>Sect</u>	ion H. PM Peak Hour Trip Generation (Saturday, harvest season)				
	(Sum of daily trips Sec. D, lines 19, 20, 21) x 0.57 + (No. of FTE) + (line 18 / 2)		-	2	PM peak trips
Sect	ion I. Maximum Annual Trips					
	(Sec. A, line 5 x 206) + (Sec. B, line 11 x 55) + (Sec. C, line 16 x 82) + (Sec. D, line 22 x 2	2)	=	2473	Annual trips

Existing Conditions Winery Traffic Information / Trip Generation

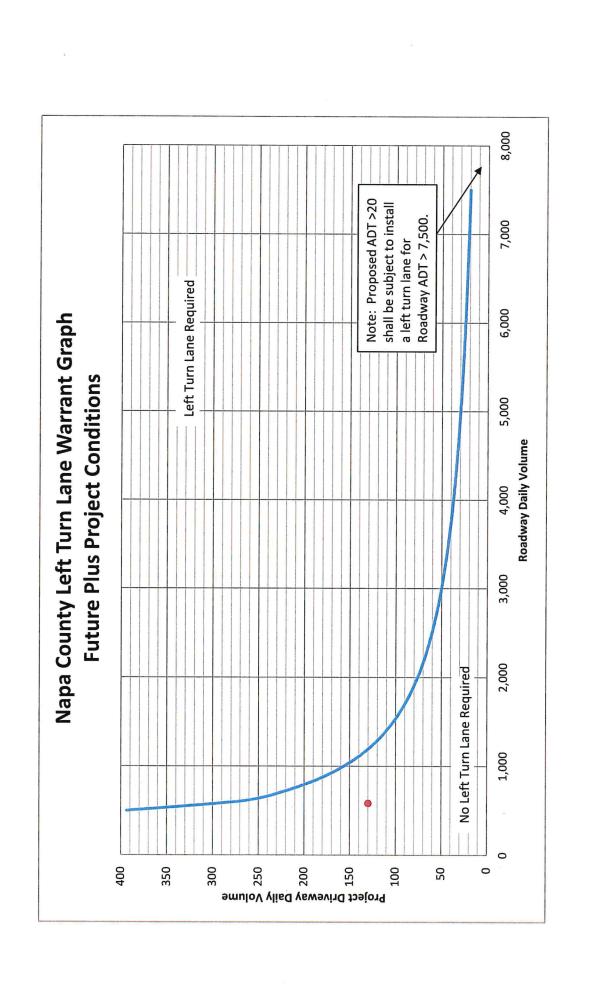
<u>Determine Winery Daily Trips.</u> Complete Sections A through I below to determine your winery project's estimated baseline daily and peak hour trips.

Proj	ect Name: Ehlers Estate Winery Project Scenario: Existin	g					
Section A. Maximum Daily Weekday Traffic (Friday, non-harvest season)							
1. 2. 3. 4. 5.	Total number of FT employees: 12 x 3.05 one-way trips per employee Total number of PT employees: 2 x 1.90 one-way trips per employee Maximum weekday visitors: 90 /2.6 visitors per vehicle x 2 one-way trips Gallons of production: 29000 /1,000 x 0.009 daily truck trips2 x 2 one-way trips TOTA	= 36.6 daily trips = 3.8 daily trips = 69.2 daily trips = 0.5 daily trips = 110 daily trips					
Sect	ion B. Maximum Daily Weekday Traffic (Friday, harvest season)						
6. 7. 8. 9. 10.	Total number of FT employees: Total number of PT employees: Maximum weekday visitors: Gallons of production: 29000 Avg. annual tons of grape on-haul: 2 x 3.05 one-way trips per employee 2 x 1.90 one-way trips per employee 4 x 1.90 one-way trips per employee 7 x 1.90 one-way trips per employee 4 x 1.90 one-way trips per employee 7 x 1.90 one-way trips per employee 4 x 1.90 one-way trips per employee 7 x 1.90 one-way trips per employee 4 x 1.90 one-way trips per employee 7 x 1.90 one-way trips per employee 7 x 1.90 one-way trips per employee 10 x 1.90 one-way trips per employee 11 x 1.90 one-way trips per employee 12 x 1.90 one-way trips per employee 13 x 1.90 one-way trips per employee 14 x 1.90 one-way trips per employee 15 x 1.90 one-way trips per employee 16 x 2 one-way trips 17 x 1.90 one-way trips per employee 18 x 1.90 one-way trips per employee 19 x 1.90 one-way trips per employee 10 x 1.90 one-way trips per employee	= 36.6 daily trips = 3.8 daily trips = 69.2 daily trips = 0.5 daily trips = 0.0 daily trips = 110 daily trips					
Sect	ion C. Maximum Daily Weekend Traffic (Saturday, non-harvest season)						
12. 13. 14. 15.	Total number of FT Sat. employees: Total number of PT Sat. employees: Maximum Saturday visitors: 90 /2.8 visitors per vehicle x 2 one-way trips Gallons of Production: 0 /1,000 x 0.009 daily truck trips x 2 one-way trips TOTA	= 15.3 daily trips = 1.9 daily trips = 64.3 daily trips = 0.0 daily trips L = 82 daily trips					
Sect	ion D. Maximum Daily Weekend Traffic (Saturday, harvest season)						
17. 18. 19. 20. 21. 22.	Total number of FT Sat. employees: 12 x 3.05 one-way trips per employee Total number of PT Sat. employees: 2 x 1.90 one-way trips per employee Maximum Saturday visitors: 90 /2.8 visitors per vehicle x 2 one-way trips Gallons of production: 29000 /1,000 x 0.009 daily truck trips2 x 2 one-way trips Avg. annual tons of grape on-haul: 0 / 144 truck trips x 2 one-way trips TOTA	= 36.6 daily trips = 3.8 daily trips = 64.3 daily trips = 0.5 daily trips = 0.0 daily trips L = 105 daily trips					
Sect	ion E. PM Peak Hour Trip Generation (Friday, non-harvest season)						
	(Sum of daily trips from Sec. A, lines 3 and 4) \times 0.38 + (No. of FTE) + (line 2 / 2)	= 39 PM peak trips					
Sect	ion F. PM Peak Hour Trip Generation (Friday, harvest season)						
	(Sum of daily trips, Sec. B, lines 8, 9, 10) x 0.38 + (No. of FTE) + (line 7 / 2)	= 39 PM peak trips					
Secti	ion G. PM Peak Hour Trip Generation (Saturday, non-harvest season)						
	(Daily trips from Sec. C, line 14 and 15) x $0.57 +$ (No. of FTE) + (line 13 / 2)	= 42 PM peak trips					
Secti	ion H. PM Peak Hour Trip Generation (Saturday, harvest season)						
	(Sum of daily trips Sec. D, lines 19, 20, 21) x 0.57 + (No. of FTE) + (line 18 / 2)	= 50 PM peak trips					
<u>Secti</u>	ion I. Maximum Annual Trips						
	(Sec. A, line 5 x 206) + (Sec. B, line 11 x 55) + (Sec. C, line 16 x 82) + (Sec. D, line 22 x 22)	= 37744 Annual trips					

Proposed Project Winery Traffic Information / Trip Generation

<u>Determine Winery Daily Trips.</u> Complete Sections J through R below to determine your winery project's estimated future and peak hour trips.

Pro	ject Name: Ehlers Estate Winery	Project Scenario:	Proposed		
Sec	tion J. Maximum Daily Weekd	ay Traffic (Friday, non-harvest sea	ison)		
1. 2. 3. 4. 5.	Total number of FT employees: Total number of PT employees: Maximum weekday visitors: Gallons of production: 35000	x 3.05 one-way trips per employed x 1.90 one-way trips per employed 100 /2.6 visitors per vehicle x 2 one-vehicle x 0.009 daily truck trips2 x 2 one-vehicle x	ee vay trips	= 42.7 = 7.6 = 76.9 = 0.6 = 128	daily trips daily trips daily trips daily trips daily trips daily trips
Sec	tion K. Maximum Daily Weekday	Traffic (Friday, harvest season)			
6. 7. 8. 9. 10.	Total number of FT employees: Total number of PT employees: Maximum weekday visitors: Gallons of production: 35000 Avg. annual tons of grape on-haul:	x 3.05 one-way trips per employed x 1.90 one-way trips per employed 100 /2.6 visitors per vehicle x 2 one-way 1,000 x 0.009 daily truck trips 2 x 2 one-way trips 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2	ee vay trips -way trips	= 42.7 = 7.6 = 76.9 = 0.6 = 0.0 = 128	daily trips daily trips daily trips daily trips daily trips
	tion L. Maximum Daily Weekend	Traffic (Saturday, non-harvest seaso		= 128	_ daily trips
12. 13. 14. 15.	Total number of FT Sat. employees Total number of PT Sat. employees Maximum Saturday visitors: Gallons of Production: 0		mployee vay trips	= 15.3 = 3.8 = 71.4 = 0.0 = 91	_ daily trips _ daily trips _ daily trips _ daily trips _ daily trips
Sec	tion M. Maximum Daily Weekend	Traffic (Saturday, harvest season)			
17. 18. 19. 20. 21.	Total number of FT Sat. employees Total number of PT Sat. employees Maximum Saturday visitors: Gallons of production: 35000 Avg. annual tons of grape on-haul:		mployee vay trips -way trips	= 42.7 = 7.6 = 71.4 = 0.6 = 0.0 = 122	daily trips
Sect	tion N. PM Peak Hour Trip Genera	ation (Friday, non-harvest season)			_
Sect	tion O. PM Peak Hour Trip Genera	s 3 and 4) x 0.38 + (No. of FTE) + (line 2 / ation (Friday, harvest season) 9, 10) x 0.38 + (No. of FTE) + (line 7 / 2)	2)	= 45	PM peak trips - PM peak trips
Sect		tion (Saturday, non-harvest season)			-
		15) x 0.57 + (No. of FTE) + (line 13 / 2)		= 47	PM peak trips
	(Sum of daily trips Sec. M, lines 19	, 20, 21) x 0.57 + (No. of FTE) + (line 18 / 2	2)	= 57	PM peak trips
Sect	tion R. Maximum Annual Trips				-
	(Sec. J, line 5 x 206) + (Sec. K, line 11 x	55) + (Sec. L, line 16 x 82) + (Sec. M, line 22 x	22)	= 43554	Annual trips


This page intentionally left blank

Appendix F

Left-Turn Lane Warrant Graph

This page intentionally left blank

