

Revised Wastewater Feasibility Study

Benjamin Ranch Winery, Use Permit Application No. P13-00371-UP Planning Commission Hearing, May 19, 2021

ONSITE WASTEWATER DISPERSAL FEASIBILITY STUDY FOR THE BENJAMIN RANCH WINERY 8895 CONN CREEK ROAD, NAPA COUNTY APN 030-120-016

As required by Napa County Planning, Building and Environmental Services (PBES), this study outlines the feasibility of providing onsite wastewater disposal for a potential winery and Visitors Center on the above referenced parcel located at 8895 Conn Creek Road, Napa County, CA.

PROJECT DESCRIPTION

The project proposes the installation of a Visitors Center, commercial kitchen, and full crush winery on a $54.64\pm$ acre parcel with the intent of the facility having the capability of producing 475,000 gallons of wine per year. The parcel is currently developed with a vineyard manager's office, $47.5\pm$ acres of vineyard, miscellaneous structures associated with vineyard operations and access roads. The project also proposes a Lot Line Adjustment increasing the parcel size to $63.97\pm$ acres. Refer to the attached Use Permit drawings for the existing and proposed development.

Along with the proposed wine production at the site, the project proposes a moderate staffing and marketing plan which includes the following for the proposed winery: 30 year around full-time employees, 5 seasonal dayshift (harvest) employees and 5 seasonal swing shift (harvest) employees and the following for the proposed Visitors Center: 15 year around full-time employees and 5 part-time employees. 1 additional year around full-time employee is added to account for the onsite Vineyard Manager. The project proposes to offer private tours and tastings for a maximum number of 150 guests per day Monday through Wednesday and 300 guests per day Thursday through Sunday. The project also proposes to offer Large Events for a maximum of 150 guests that may occur Monday through Sunday up to an annual maximum of 8 events – no more than 2 large events may occur in a given month – no more than 1 large event may occur on any given day. The winery may also hold an event related to the Auction Napa Valley. In no case shall the daily combined tours and tastings and marketing event visitation exceed 300 guests. All marketing events will serve food provided by an offsite caterer.

Table 1 summarizes the proposed marketing plan:

TABLE 1: MARKETING PLAN SUMMARY		
Guest Experience	Frequency	Number of Guests
Proposed	Proposed	Proposed
Large Events	8 per year	150 per event
Auction Napa Valley	annual	150 per event
Private Tours & Tastings	Daily (M, T, W)	up to 150 per day
Private Tours & Tastings	Daily (Th, F, Sa, Su)	up to 300 per day

As part of our work, representatives from Bartelt Engineering have reviewed the planned operational methods for the winery with our Client, reviewed the parcel files at Napa County Environmental Health, held conversations with Napa County Environmental Health staff, performed a reconnaissance of the site to view existing conditions and conducted a site evaluation on June 5, 2013 to evaluate the feasibility of installing an onsite wastewater dispersal system to serve the proposed winery and Visitors Center.

This study and the attached Use Permit Drawings will demonstrate that the proposed winery improvements and marketing plan can feasibly be developed and that the parcel can adequately dispose of all wastewater onsite.

WATER USE ANALYSIS

Bartelt Engineering has completed a Water Availability Analysis (WAA) for the proposed winery. According to the Water Availability Analysis, the proposed parcel configuration would be allotted $63.97\pm$ acre-feet of water per year. The Water Availability Analysis estimates that the proposed water uses for the entire parcel (vineyard and winery production of 475,000 gallons of wine per year) will be approximately 41.79± acre-feet of water per year (see the Water Availability Analysis prepared by Bartelt Engineering for more information on the proposed water use).

WASTEWATER ANALYSIS

Winery Production Process Wastewater Flow

The winery facility's production wastewater (PW) flow rates for harvest and non-harvest seasons can be calculated as follows:

Harvest Peak Winery Process Wastewater Flow=

$$\left(\frac{475,000 \text{ gallons of wine}}{\text{year}}\right) \times \left(\frac{1.5 \text{ gallons of water}}{1 \text{ gallon of wine}}\right) \times \left(\frac{1 \text{ year}}{61 \text{ days of crush}}\right) =$$

Harvest Peak Winery Process Wastewater Flow = 11,680 gallons per day (gpd)

Non-Harvest Peak Winery Process Wastewater Flow =

$$\left(\frac{475,000 \text{ gallons of wine}}{\text{year}}\right) \times \left(\frac{4.5 \text{ gallons water}}{1 \text{ gallon of wine}}\right) \times \left(\frac{1 \text{ year}}{304 \text{ days}}\right) =$$

Non-Harvest Peak Winery Process Wastewater Flow = 7,031 gpd

Sanitary Wastewater Flow

All plumbing fixtures in the winery production facility and Visitors Center will be water saving fixtures per the California Plumbing Code as adopted by the Napa County Building Division. The sanitary wastewater generated at the winery production facility and Visitors Center including full-time employees, seasonal (harvest) employees and guests and can be itemized as follows:

Winery Employees:

- 30 Year Around Full-Time Employees x 15 gpd per employee = 450 gpd
- 5 Seasonal Dayshift (Harvest) Employees x 15 gpd per employee = 75 gpd

• 5 Seasonal Swing Shift (Harvest) Employees x 15 gpd per employee = 75 gpd Vineyard Manager:

1 Year Around Full-Time Employee x 15 gpd per employee = 15 gpd
 Visitors Center Employees:

- 15 Year Around Full-Time Employees x 15 gpd per employee = 225 gpd
- 5 Part-Time Employees x 15 gpd per employee = 75 gpd

The sanitary wastewater generated by guests at the Visitors Center can be itemized as follows:

Guests:

- Large Events:

 (150 guests per event) x (3 gpd per guest) x 75% usage rate = 338 gpd per event
 (10 event staff) x (15 gpd per event staff) = 150 gpd per event

 Private Tours and Tasting (M, T, W):

 (150 guests per day) x (3 gpd per guest) x 60% usage rate= 270 gpd
- Private Tours and Tasting (Th, F, Sa, Su):
 (300 guests per day) x (3 gpd per guest) x 60% usage rate= 540 gpd
- **Note:** This feasibility study assumes that portable toilets, offsite meal preparation and catering services are utilized during Large events regardless of the season and 75% of the event guests are assumed to use the Visitors Center restrooms during these events.

Kitchen Sanitary Wastewater Flow

Meal preparations may occur for employees in the commercial kitchen within the Visitors Center. Kitchen waste consisting primarily of fats, oils and grease (FOG) as well as organic material would be generated during food preparation. Per PBES requirements, grease interceptors are required to be plumbed to a commercial kitchen with an onsite wastewater treatment system.

Wastewater generated for employee meal preparation is calculated per PBES requirement which includes a generation rate of 5 gpd per employee for kitchen waste from meal preparation/clean-up. The sanitary wastewater flow generated from kitchen waste is calculated below:

Kitchen Waste:

- \circ (46 full-time employees) x (5 gpd per employee) = 230 gpd
- (15 part-time/harvest employees) x (5 gpd per employee) = 75 gpd

Total Harvest Season and Non-Harvest Season Peak Sanitary Wastewater Flow

The total proposed harvest season peak sanitary wastewater flow is the combination of the winery production facility, Visitors Center, and commercial kitchen sanitary wastewater flows during the months of August through November (harvest). The total proposed non-harvest season peak sanitary wastewater flow is the combination of the winery production facility, Visitors Center, and commercial kitchen sanitary wastewater flows during the months of December through July (non-harvest).

Table 2A below outlines the sanitary wastewater flows generated by employees and guests during a combination of events for a single day in harvest and non-harvest seasons.

TABLE 2A: HARVEST AND NON-HARVEST SEASON DAILY SANITARY WASTEWATER FLOWS								
		Daily Occurrence						
		Harv	/est			Non-F	larvest	
Winery Employees	600	600	600	600	450	450	450	450
Vineyard Manager	15	15	15	15	15	15	15	15
Visitors Center Employees	300	300	300	300	300	300	300	300
Private Tours and Tastings (M, T, W)	270			270	270			270
Kitchen Waste	305	305	305	305	230	230	230	230
Large Event			488	488			488	488
Private Tours and Tastings (Th, F, Sa, Su)		540				540		
Total Flow (gpd)	1,490	1,760	1,708	1,978	1,265	1,535	1,483	1,753

Design Wastewater Flows

The greatest practical harvest and non-harvest season peak process and sanitary wastewater flows are summarized in the following Table 2B:

TABLE 2B: HARVEST AND NON-HARVEST SEASON PEAK WASTEWATER SUMMARY				
Wastewater Source	Har	Harvest No		
	(gr	od)	(gpd)	
	Winery	615	465	
Sanitary Wastewater	Visitors 1,363 Center 1,363		1,288	
Process Wastewater	11,680		7,031	

December 2020 – Revised Job No. 12-17

WASTEWATER EFFLUENT DISPERSAL METHODS

Bartelt Engineering proposes several options for the dispersal of wastewater generated by the winery production facility, Visitors Center, and commercial kitchen. A final treatment and dispersal option will be selected for installation following approval of the Use Permit Application. The proposed options are discussed further in the following sections. Refer to the associated Use Permit Drawings for location of the proposed treatment and dispersal methods.

Proposed Preferred Wastewater Option

Under the preferred option, separate wastewater conveyance, treatment, and dispersal systems are proposed. Process wastewater would be pretreated then surface applied as vineyard/landscape irrigation. Sanitary wastewater would also be pretreated then dispersed via a subsurface drip field.

Proposed Seasonal Surface Drip Irrigation Process Wastewater Dispersal System

The proposed process wastewater treatment system will consist of several steps. The floors of the proposed winery buildings will be sloped so that all process wastewater is collected in trench drains and floor drains. The winery process wastewater collected in the trench drains and floor drains will then gravity flow into septic tanks fitted with filters to remove finer solids. From the septic tanks, the process wastewater effluent will gravity flow into a sump vault before being pumped to 2 - 15,000± gallon equalization tanks.

The process wastewater effluent in the equalization tanks will then be treated by a pretreatment system. After the winery process wastewater effluent has been treated, the treated effluent will then be stored in a storage tank from which it will be distributed via seasonal surface irrigation on a designated portion of the existing vineyards on the parcel.

Surface Drip Irrigation Wastewater Flow Balance

A process wastewater flow balance was determined by estimating the monthly wastewater produced (see Table I), the potential/available volume of treated effluent that can be disposed of in the vineyard each month (see Table III), the average irrigation flow based on estimated vineyard irrigation practice (see Table IV) and sizing a storage tank to be able to store excess treated wastewater effluent until it can be properly disposed of in the vineyard (see Table V). Precipitation data for a 10-year return period was used for the irrigation analysis (see Table II). The estimates for a 10-year return period were taken from Oakville 1W Weather Station data derived from 1948-1981 Normals.

The treated wastewater effluent storage tank should have a minimum volume of 126,000 gallons (see attached Table V) to provide for some storage of the treated effluent through the winter months when surface drip land application is minimal and to equalize differences between the wastewater generation rate and the irrigation application rate. Reference evapotranspiration rates and crop coefficients were used to calculate the irrigation demand for the existing vineyard (see Table III). Reference evapotranspiration rates and crop coefficients were obtained from the California Irrigation Management Information System website (http://wwwcimis.water.ca.gov) for the Oakville #77 weather station (attached). It was assumed that available groundwater in the root zone is depleted by May and that irrigation is primarily applied to the vines for the months of May through

October. In the months where the irrigation demand exceeds the amount of treated effluent that is available for irrigation, it is assumed that the entire irrigation requirement for the vines is not met or that another water source (onsite wells) is used to supply additional irrigation water.

The winery effluent surface irrigation drip dispersal area design is based on the use of $45.7\pm$ acres or approximately 47,397 existing grape vines located adjacent to the winery. The dispersal area will need to be verified once all dispersal field setbacks are determined.

Furthermore, all dispersal field areas will need to be labeled with signage indicating the use of treated effluent for irrigation in accordance with Napa County Environmental Health standards.

Winery and Visitors Center Sanitary Wastewater Dispersal Systems

Due to the distance $(380 \pm \text{ feet})$ between the winery and the Visitors Center, the project's preferred option proposes 2 sanitary wastewater dispersal systems, 1 dedicated to the winery and 1 dedicated to the Visitors Center.

The winery and Visitors Center sanitary wastewater would gravity flow to a series of septic tanks fitted with filters for solids removal. Kitchen waste would flow into a grease interceptor prior to entering the septic tanks. From the septic tanks, sanitary wastewater effluent will gravity flow to a recirculation/blend tank where the effluent would be pretreated through an approved pretreatment system. Pretreated effluent is proposed to be dispersed through a subsurface drip field(s) by means of a timed-dose pumping system.

Sanitary Wastewater Effluent Subsurface Drip Dispersal Field and Replacement Area

Based on the site evaluation performed by Bartelt Engineering on June 5, 2013, test pits #1 through #6 showed similar results and are acceptable for a subsurface drip dispersal type septic system and 200% replacement area. The site evaluation determined that the soil in the area of these test pits is Clay Loam/Sandy Clay/Sandy Clay Loam. For the evaluated soil types, Napa County and GeoFlow Incorporated recommend a soil hydraulic loading rate^{1,2} of 0.6 gal/sf/day. The maximum acceptable depth found during the site evaluation was approximately 40 inches. Napa County Standards require a minimum of 24 inches of useable soil below the drip lines. The maximum acceptable soil depth found at the site allows for 34 inches of useable soil beneath drip emitters buried 6 inches below the surface. The required dispersal field area can be calculated as follows:

Winery Dispersal Field

Dispersal Field Area = $\left(\frac{615 \text{ gal}}{\text{day}}\right) \times \left(\frac{\text{day ft}^2}{0.6 \text{ gal}}\right) = 1,025$ square feet; use 1,040 square feet

The dispersal field area is based on 2 foot lateral spacing between drip lines and 2 foot emitter spacing.

¹Hydraulic loading rate is based on *Table III-2 Soil Hydraulic Loading Rates* from Napa County Onsite Wastewater Treatment Systems (OWTS) Technical Standards, Final Draft.

² Referenced from *Table 1 Drip Loading Rates Considering Soils Structure* of The Subsurface Drip Dispersal and Reuse Design, Installation and Maintenance Guidelines prepared by GeoFlow Incorporated.

December 2020 – Revised Job No. 12-17

The required number of emitters is calculated as follows:

Required Number of Emitters = 1,040 square feet X $\frac{1 \text{ emitter}}{4 \text{ square feet}}$ = 260 emitters

To make the best use of the available dispersal field area we recommend the system consist of 4 lines that are 130 feet long for a total of 520 lineal feet of drip line. This layout provides 260 emitters.

Visitors Center Dispersal Field

Dispersal Field Area = $\left(\frac{1,363 \text{ gal}}{\text{day}}\right) \times \left(\frac{\text{day ft}^2}{0.6 \text{ gal}}\right)$ = 2,272 square feet; use 2,300± square feet The dispersal field area is based on 2 foot lateral spacing between drip lines and 2 foot emitter spacing.

The required number of emitters is calculated as follows:

Required Number of Emitters = 2,300 square feet X $\frac{1 \text{ emitter}}{4 \text{ square feet}}$ = 575 emitters

To make the best use of the available dispersal field area we recommend the system consist of 10 lines that are 115 feet long for a total of 1,150 lineal feet of drip line. This layout provides 575 emitters.

A suitable dispersal and replacement area adjacent to the Visitors Center will need to be evaluated.

TANK SIZING

All septic and grease interceptor tanks should be sized to provide a minimum of 2 days retention time during peak wastewater flow. Based on discussions with the manufacturers of pretreatment systems, the equalization tank should be sized for a minimum of 1.5 days of peak flow capacity. The irrigation storage tank should be sized based on vineyard irrigation demands and flow balance calculations, see enclosed spreadsheets for preliminary calculations on treated wastewater flows and irrigation demands. All septic and grease interceptor tanks should have a Zabel A300 filter or approved equal installed at the outlet to aid in the screening of suspended solids and the reduction of BOD in the wastewater effluent stream.

CONCLUSIONS

The parcel will be able to support the proposed 475,000 gallon winery and Visitors Center by utilizing a pretreatment system to treat the process wastewater effluent and dispose of treated effluent through surface drip irrigation to the vineyard and disposing of the sanitary sewer effluent through onsite subsurface drip dispersal fields utilizing an approved pretreatment system to pretreat the sanitary sewer effluent.

Full design calculations and construction plans will be completed after approval of the Use Permit currently under consideration.

ATTACHMENTS

Process Wastewater Flow Table I Rainfall Rates Table II Potential Vineyard Irrigation Demand Table III Irrigation Flow Table IV Treated Process Waste Irrigation Storage Tank Balance Table V Reference World Climate Average Rainfall Reference Evapotranspiration Rates and Crop Coefficients Site Evaluation

REFERENCES

California Onsite Wastewater Association (COWA). "Pumping and Pressure Distribution Systems." May 1998.

Geoflow, Inc. Wastewater Design, Installation and Maintenance Guidelines. v1, 2007.

Napa County Department of Environmental Management. "Regulations for Design, Construction and Installation of Alternative Sewage Treatment Systems." http://www.countyofnapa.org/WorkArea/DownloadAsset.aspx?id=4294980363, October 28, 2013.

Telsco Industries. "Turf Irrigation Manual." By James A. Watkins. 1987.

- U.S. Department of Health, Education and Welfare, Public Health Service Publication. *Manual of Septic-Tank Practice.* 1967.
- U.S. Environmental Protection Agency. "Onsite Wastewater Treatment Systems Manual." February 2002.

Benjamin Ranch Winery Process Wastewater Flow Table I

Total annual wine production (gallons):	475,000
Annual water usage per gallon of wine (gallons):	6
Annual process wastewater flow (gallons):	2,850,000
Average process wastewater flow (gpd):	7,808

MONTHLY WASTEWATER FLOW (gallons/month):

Month	Percent	Wastewater Flow
September	12.5	356,250
October	12.5	356,250
November	7.5	213,750
December	7.5	213,750
January	5.5	156,750
February	5.5	156,750
March	5.5	156,750
April	7.5	213,750
May	7.5	213,750
June	7.5	213,750
July	8.5	242,250
August	12.5	356,250
TOTALS	100.0	2,850,000

Notes:

> Wastewater monthly proportioning is based on information provided by property owner.

> The annual water usage per gallon of wine is assumed to be 6 gallons.

Benjamin Ranch Winery Rainfall Rates Table II

MONTHLY RAINFALL (inches/month):

Month	Site Rainfall	10-year Rainfall
September	0.40	0.56
October	2.10	2.94
November	3.50	4.90
December	5.60	7.84
January	7.70	10.78
February	6.70	9.38
March	3.70	5.18
April	1.90	2.66
May	0.50	0.70
June	0.10	0.14
July	0.10	0.14
August	0.10	0.14
TOTALS	32.40	45.36

Notes:

- > Site rainfall = Napa, CA (Oakville 1W Weather Station 1948 1981). See www.worldclimate.com
- > 10 year rainfall = Site rainfall x 1.4

Benjamin Ranch Winery Potential Vineyard Irrigation Demand Table III

Vineyard Irrigation Drip Field Area (acres):

Month	Days	^(a) Reference Evapotranspiration ET _o (in/mo)	^(b) Grapevine Crop Coefficient K _c	^(c) Grapevine Evapotranspiration ET _c (in/mo)	^(d) Precipitation 10-year (in/mo)	^(e) Irrigation Demand (in/mo)	^(f) Total Irrigation Demand (gallons/mo)
September	30	4.98	0.729	3.6	0.56	3.1	3,807,587
Öctober	31	3.46	0.729	2.5	2.94	0.0	0
November	30	1.63	0.729	1.2	4.90	0.0	0
December	31	1.15	0.729	0.8	7.84	0.0	0
January	31	1.61	0.729	1.2	10.78	0.0	0
February	28	2.57	0.729	1.9	9.38	0.0	0
March	31	3.51	0.729	2.6	5.18	0.0	0
April	30	4.53	0.729	3.3	2.66	0.6	794,739
May	31	6.89	0.729	5.0	0.70	4.3	5,360,723
June	30	7.33	0.729	5.3	0.14	5.2	6,453,468
July	31	7.05	0.729	5.1	0.14	5.0	6,200,314
August	31	6.35	0.729	4.6	0.14	4.5	5,567,430
TOTALS	365	51.06	8.74	37.2	45.36	22.7	28,184,262

(a) Average monthly reference evapotranspiration. Station #77, Oakville, for the period from April 2012 to March 2013. See www.cimis.water.ca.gov

(b) K_c coefficients for grapevines

(c) $ET_c = ET_o \times K_c$

(d) 10-year precipitation = Average precipitation x 1.4. See Rainfall Rates, Table II

(e) Irrigation Demand = ET_c - 10-year precipitation

(f) Total irrigation demand (gallons/month) = (No. of acres) x irrigation demand (inches/month) / 12 (inches/foot) x 325851 (gallons/acre-feet)

Grapevine Crop Coefficient (Kc) is calculated based on the following vineyard information:

45.70

A = Row Width =	7 feet		
B = Vine Spacing =	6 feet		
C = Area per Vine =	42 sq-ft		
D = Average Width of Measured			
Shaded Area Between Two Vines	3 feet		
E = Shaded Area per Vine			
= 'B' x 'D' =	18 sq-ft		
PSA (percent shaded area)			
= 'E' / 'C'=	0.429	or	43%
The Grapevine Crop Coefficient (Kc) is calculate	ed with the follo	wing equation where 0.017 is	the

Solution of the equation describing the relationship between the percent shaded area and the crop coefficient of Thompson Seedless vines $Kc = PSA \times 0.017 = 0.729$

References:

> Irrigation of winegrapes in California, By Larry E. Williams, Department of Viticulture & Enology University of California-Davis, and Kearney Agricultural Center

> Irrigation Scheduling of grapevines with Evapotranspiration Data, by Ed Hellman, viticulture Extension Specialist, AgriLIFE Extension, Texas A&M system

> California Irrigation Management Information System (CIMIS)

Benjamin Ranch Winery Irrigation Flow Table IV

Vineyard area (acres): Row spacing (feet):		45.70 7
Vine spacing (feet): Total number of irrigated vines	5:	6 47,397
Seasonal irrigation (May - Octo Seasonal irrigation per vine (ga	100	
Non-Seasonal irrigation* (Nove Depth of irrigation (inches/mo		
	November	0.25
	December	0.25
	January	0.25
	February	0.25
	March	0.25
Frost protection irrigation* (Apr	ril):	
Depth of irrigation (inches/mo	nth):	0.40

Depth of irrigation (inches/month):

MONTHLY IRRIGATION FLOW (gallons/month):

Month	Seasonal Percent	Seasonal Irrigation per Vine	Total Irrigation
September	6.0	6.0	284,385
October	20.0	20.0	947,949
November*			310,216
December*			310,216
January*			310,216
February*			310,216
March*			310,216
April			496,346
May	20.0	20.0	947,949
June	20.0	20.0	947,949
July	20.0	20.0	947,949
August	14.0	14.0	663,564
TOTALS	100.0	100.0	6,787,170

* Total non-seasonal irrigation =

(vineyard area)*(43,560 sq.-ft./acre)*(depth of irrigation/12 in./ft.)*

(7.48 gal./cu.-ft.)

Benjamin Ranch Winery Treated Process Wastewater Irrigation Storage Tank Balance Table V

WASTEWATER TANK BALANCE (GALLONS):

Month	Beginning Balance	Wastewater Flow	Actual Irrigation	Tank Balance
September	0	356,250	284,385	71,865
October	71,865	356,250	947,949	0
November	0	213,750	310,216	0
December	0	213,750	310,216	0
January	0	156,750	310,216	0
February	0	156,750	310,216	0
March	0	156,750	310,216	0
April	0	213,750	496,346	0
May	0	213,750	947,949	0
June	0	213,750	947,949	0
July	0	242,250	947,949	0
August	0	356,250	663,564	0
	TOTALS	2,850,000	6,787,170	
	Average	237,500	565,597	

Recommended Tank Capacity (gallons):	126,000
Recommended Tank Capacity (acre-feet):	0.39

Notes:

Water balance calculations assume storage tank is empty at the beginning of November.

In months when the irrigation demand exceeds the beginning balance plus the wastewater flow it is assumed that the full irrigation demand is not met or that the additional irrigation water is supplied from an alternate source.

OAKVILLE 1 W, NAPA COUNTY, CALIFORNIA USA

WorldClimate

Weather station **OAKVILLE 1 W, NAPA COUNTY** is at about 38.45°N 122.41°W. Height about 49m/ 160 feet above sea level.

Average Rainfall

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
mm	195.5	170.6	95.2	47.2	11.8	3.4	2.1	1.9	10.1	54.6	89.2	143.1	825.5
inches	7.7	6.7	3.7	1.9	0.5	0.1	0.1	0.1	0.4	2.1	3.5	5.6	32.5

Source: OAKVILLE 1 W, NAPA COUNTY data derived from <u>NCDC Cooperative Stations</u>. 23 complete years between 1948 and 1981

Map of the area around OAKVILLE 1 W, NAPA COUNTY from tiger.census.gov.

Locations outside the continental US are not mapped.

Previous Page - About Worldclimate.Com - Home

Monthly Report

Rendered in ENGLISH Units. April 1, 2012 - March 31, 2013 Printed on April 29, 2013 See the bottom of this report for a legend for all flag values.

North Coast Valleys - Oakville - #77

Month Year	Tot ETo (in)	Tot Precip (in)	Avg Sol Rad (Ly/Day)	Avg Vap Pres (mBars)	Avg Max Air Tmp (F)	0	Avg Air Tmp (F)	Avg Max Rel Hum I (%)	•	Avg Rel Hum (%)	Avg Dew Point (F)	Avg Wind Speed (mph)	Avg Soil Temp (F)
Apr 2012	4.53 K	0.92 K	497	10.8 K	70.9 K	43.5 K	56.3 K	93 K	41 K	68 K	45.6 K	4.1	59.6 K
May 2012	6.89	0.00 K	641	10.8 K	79.6	44.7	61.7 K	89 K	35 K	58 K	46.0 K	4.2 K	64.4 K
Jun 2012	7.33	0.00	685	11.9 K	81.9 K	46.7 K	65.2	89	35	57 K	48.6 K	4.5 K	67.4
Jul 2012	7.05	0.00	637	14.3	83.3 K	49.7 K	65.3	92	43	68	54.1	4.2 K	69.4
Aug 2012	6.35	0.00	573	14.1	85.6	49.1 K	65.6	92	39	66	53.7	3.7	70.0
Sep 2012	4.98	0.00	488	12.5	84.1	44.4 K	61.8	94	36	67	50.4	3.1	65.8
Oct 2012	3.46	0.90 K	339	11.9	77.1 K	45.0	59.5	93	42	70	48.7	3.0	62.5
Nov 2012	1.63 K	10.55 K	212 K	11.6 K	66.7 K	41.8 K	53.3 K	97 K	54 K	82	47.9	2.8 K	57.3 K
Dec 2012	1.15	11.39 K	160	9.4 K	57.2 K	37.5 K	46.7	96	62	84 K	42.0 K	3.3	51.3 K
Jan 2013	1.61	0.95 K	219	7.3	60.0 K	31.7 K	44.0	93	44	73	35.5	2.8	46.6
Feb 2013	2.57	0.36	329 K	7.6	64.9	33.8	48.1	92	37	67	36.9	3.5	49.7
Mar 2013	3.51	1.98 K	385 K	10.1 K	68.8	39.5	53.7	94	45	71 K	44.3 K	3.6 K	55.2
Totals/Avgs	51.06	27.05	430	11.0	73.3	42.3	56.8	93	43	69	46.2	3.6	59.9

San Francisco Bay - Carneros - #109

Month Year	Tot ETo	Tot	Avg Sol	Avg Vap	Avg Max	Avg Min	Avg Air	Avg Max	Avg Min	Avg Rel	Avg Dew	Avg Wind	Avg Soil
	(in)	Precip	Rad	Pres	Air Tmp	Air Tmp	Tmp	Rel Hum I	Rel Hum	Hum	Point	Speed	Temp
		(in)	(Ly/Day)	(mBars)	(F)	(F)	(F)	(%)	(%)	(%)	(F)	(mph)	(F)
Apr 2012	4.14 K	1.63 K	487	11.3 K	68.0 K	42.0 K	55.0 K	95 K	52 K	74 K	47.0 K	4.0 K	55.4
May 2012	5.95	0.06	594 K	11.3	74.2 K	42.6 K	58.2	94	45	69	47.7	4.1 K	61.9
Jun 2012	6.40	0.02	607	12.3 K	77.8	45.7 K	62.1 K	92 K	42 K	65 K	49.6 K	4.7 K	64.7
Jul 2012	6.05	0.15	576 K	14.1	77.5 K	49.1 K	62.2	94	50	74	53.7	4.8	66.5
Aug 2012	5.51	0.00	530 K	13.7 K	79.3	47.6 K	61.9	94	47	73 K	52.9 K	4.2	68.2
Sep 2012	4.38	0.03	455 K	12.4	78.6	43.2 K	59.1	95	44	73	50.3	3.4	64.2 K
Oct 2012	3.09 K	1.75 K	304 K	12.5 K	74.9 K	45.0 K	59.4 K	94 K	47 K	73	50.2	2.8 K	61.7 K
Nov 2012	1.66	3.19 K	218	11.5	65.8 K	40.6 K	52.6	96	59	83	47.6	3.1 K	56.1
Dec 2012	1.07	6.80 K	155	9.4 K	56.8 K	36.8 K	46.4	96	65	85 K	42.2 K	3.0	50.7 K
Jan 2013	1.63	0.64	236 K	7.3 K	57.6	30.7 K	42.7	95	52	77 K	35.8 K	2.6	43.9 K
Feb 2013	2.37	0.27	326	7.9	63.4 K	32.8	46.5	95	46	74	38.3	2.7	46.4 K
Mar 2013	3.30	0.66	380	10.3	67.1 K	38.6	52.1	96	52	77	44.9	3.2	51.8
Totals/Avgs	45.55	15.20	406	11.2	70.1	41.2	54.8	95	50	75	46.7	3.6	57.6

M - All Daily Values Missing

K - One or More Daily Values Flagged

J - One or More Daily Values Missing

L - Missing and Flagged Daily Values

W/sq.m = Ly/day/2.065	inches * 25.4	4 = mm	C = 5/9 * (F - 32)
m/s = mph * 0.44	7	k	Pa = mBars * 0.1

Napa County Department of Environmental Management

SITE EVALUATION REPORT

lease attach an 8.5" x 11" plot map showing the locations of all test pits riangulated from permanent landmarks or known property corners. The map must be drawn to scale and include a North arrow, surrounding geographic and topographic features, direction and % slope, distance to drainages, water bodies, potential areas for flooding, unstable landforms, existing or proposed roads, structures, utilities, domestic water supplies, wells, ponds, existing wastewater treatment systems and facilities.

PLEASE PRINT OR TYPE ALL INFORMATION

Permit #	E13-00257
$T \cup T \cap T \cap T$.	

APN: 030-120-016

(County Use Only) Reviewed by:

Date:

Property Owner		□ New Construction □ Addition □ Remodel □ Relocation
Frank Family Vineya	ds, LLC, c/o Richard Frank	⊠ Other: Winerv
Property Owner Mailing	Address	
1091 Larkmead Lane		□ Residential - # of Bedrooms: Design Flow : gpd
1091 Laikilleau Laile		
City	State Zip	
Calistoga	CA 94515	⊠ Commercial – Type:
Site Address/Location		Sanitary Waste: 580 gpd Process Waste: gpd
8895 Conn Creek Ro	ad, St. Helena, CA	□ Other:
		Sanitary Waste: gpd Process Waste: gpd

Evaluation Conducted By:		
Company Name	Evaluator's Name	Signature Civil Egginer, R.E.H.S. Geologist, Soil Scientist)
Bartelt Engineering	Paul N. Barteit, P.E.	al Illand
`ailing Address:		Telephone Number
1303 Jefferson Street, 200 B		(707) 258-1301
City	State Zip	Date Evaluation Conducted
Napa	CA 94559	June 5, 2013

Primary Area See below	Expansion Area See below
Acceptable Soil Depth: 42 in. Test pits #: 3 & 4 Soil Application Rate (gal. /sq. ft. /day): PTE 0.6	Acceptable Soil Depth: 42 in. Test pits #: 1, 2, 5 & 6 Soil Application Rate (gal. /sq. ft. /day): PTE 0.6
System Type(s) Recommended: Subsurface Drip	System Type(s) Recommended: Subsurface Drip
Slope: 0% to 2%. Distance to nearest water source: 100+ feet	Slope: 0% to 2%. Distance to nearest water source: 100+ feet
Hydrometer test performed? No \boxtimes Yes \Box (attach results)	Hydrometer test performed? No □ Yes ⊠ (attach results)
Bulk Density test performed? No ⊠ Yes □ (attach results)	Bulk Density test performed? No ⊠ Yes □ (attach results)
Groundwater Monitoring Performed? No \boxtimes Yes \Box (attach results)	Groundwater Monitoring Performed? No 🖾 Yes 🛛 (attach results)

Site constraints/Recommendations:

1

A site evaluation was conducted on June 5, 2013 by Paul Bartelt and Rich Paxton of Bartelt Engineering. Test pits were excavated by Harold Smith & Son, Inc. Peter Ex of Napa County Environmental Health visited the site to inspect soil conditions. Test pits #1 thru #7 showed suitable soil for the installation of a subsurface drip type dispersal field within the area tested.

Test Pit #

1

					(Consistence	Э			(
Horizon Depth (Inches)	Boundary	%Rock	Texture	Structure	Side Wall	Ped	Wet	Pores	Roots	Mottling
0-42		0-15	CL	SSB	VH	FRB/F	S	MVF/MF/ FM	MVF/CF/F M	None
42-64	G	0-15	SCL	SSB	Н	FRB	VS	MVF/MF/ CM	FVF/FF	FFFt
	% to 2%. Acc soil applicatio	n rate = ST ST PT	E Insufficien E Insufficier E Insufficier	it Soil Depth f	or a Conve or ASTS (or ASTS			ystem reatment Sys	tem)	
No refusa	l at 64 inches Iwater observ									

Test Pit # 2

* Hydrometer Test Performed

Horizon Depth (Inches) Boundary %Rock Texture Structure Side Wall Ped Wet Pores Roots Mottling 0-44* 0-15 CL SSB VH FRB/F S FM FM/FC None 44-64* G 0-15 SCL SSB H FRB VS CM FVF/FF FFft Slope = 0% to 2%. Acceptable soil depth observed: 44 inches. Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTS Standard System STE Insufficient Soil Depth for ASTS FTE Insufficient Soil Depth for ASTS	11					C	Consistence	Э	_		
(Inches) Wall Wall MVF/MF/ MVF/CF/ 0-44* 0-15 CL SSB VH FRB/F S FM FM/FC None 44-64* G 0-15 SCL SSB H FRB VS CM FVF/FF FFFt Slope = 0% to 2%. Acceptable soil depth observed: 44 inches. Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTS Standard System (1)		Boundary	%Rock	Texture	Structure	Side	Ped	Wet	Pores	Roots	Mottling
0-44* 0-15 CL SSB VH FRB/F S FM FM/FC None 44-64* G 0-15 SCL SSB H FRB VS CM FVF/FF FFFt Slope = 0% to 2%. Acceptable soil depth observed: 44 inches. Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTS Standard System (1)	•					Wall					
44-64* G 0-15 SCL SSB H FRB VS MVF/MF/ CM FVF/FF FFFt Slope = 0% to 2%. Acceptable soil depth observed: 44 inches. Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTS Standard System ()									MVF/MF/	MVF/CF/	
44-64*G0-15SCLSSBHFRBVSCMFVF/FFFFFtSlope = 0% to 2%. Acceptable soil depth observed: 44 inches. Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTSStandard System(0-44*		0-15	CL	SSB	VH	FRB/F	S	FM	FM/FC	None
Slope = 0% to 2%. Acceptable soil depth observed: 44 inches. Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTS									MVF/MF/		
Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTS	44-64*	G	0-15	SCL	SSB	Н	FRB	VS	CM	FVF/FF	FFFt
STE Insufficient Soil Depth for ASTS											
	Assigned s	soil applicatio	n rate = S	TE Insufficier	nt Soil Depth	for a Conv	entional – S	Standard S	System		(
PTE Insufficient Soil Depth for ASTS			S	TE Insufficier	nt Soil Depth	for ASTS					
Subsurface Drip = 0.6 gal/sf/day			S	ubsurface Dr	ip = 0.6 gal/s [.]	f/day					
No refusal at 64 inches deep.											
No Groundwater observed. *See attached Soil Texture Analysis by Bouyoucos Hydrometry Method prepared by RGH	No Ground	lwater observ	red. *See a	attached Soil	Texture Anal	lysis by Bo	uyoucos H	ydrometry	Method prep	ared by RG⊦	
Consultants, Inc. dated June 11, 2013.	Consultant	s, Inc. dated	June 11, 2	013.							

Test Pit # 3

						Consistence	Э			
Horizon Depth (Inches)	Boundary	%Rock	Texture	Structure	Side Wall	Ped	Wet	Pores	Roots	Mottling
0-42		0-15	CL	SSB	VH	FRB/F	S	MVF/MF/ FM	MVF/CF/ FM/FC	None
42-64	G	0-15	SCL	SSB	Н	FRB	VS	MVF/MF/ CM	FVF/FF	FFFt
	% to 2%. Acc soil applicatio	n rate = ST ST PT	E Insufficier E Insufficier E Insufficier		or a Conve for ASTS for ASTS	entional – S	tandard S	system		
	at 64 inches water observ					s				

Test Pit # 4

Horizon				_		Consistence	e			
Depth (Inches)	Boundary	%Rock	Texture	Structure	Side Wall	Ped	Wet	Pores	Roots	Mottling
0-42		0-15	CL	SSB	VH	FRB/F	S	MVF/MF/ FM	MVF/CF/ FM/FC	None
42-46	с	15-30	CL	SSB	Н	FRB/F	S	MVF/MF/ FM	MVF/CF/ FM	FFFt
46-64	G	0-15	SCL	SSB	Н	FRB	VS	MVF/MF/ CM	FVF/FF	FFFt
	5 to 2%. Acce oil application	rate = STE STE PTE	E Insufficien E Insufficien E Insufficien		or a Conve or ASTS for ASTS	entional – S	tandard S	ystem		
	at 64 inches d vater observe									

5 Test Pit # Consistence Horizon Boundary %Rock Texture Structure Pores Roots Mottling Side Ped Wet Depth Wall (Inches) MVF/MF/ MVF/CF/ 0-15 SSB 0-42 CL VH FRB/F S FΜ FΜ None MVF/MF/ 42-64 G 0-15 SCL SSB Н FRB VS СМ FVF/FF FFFt Slope = 0% to 2%. Acceptable soil depth observed: 42 inches. Assigned soil application rate = STE Insufficient Soil Depth for a Conventional – Standard System STE Insufficient Soil Depth for ASTS PTE Insufficient Soil Depth for ASTS Subsurface Drip = 0.6 gal/sf/dayNo refusal at 64 inches deep. No groundwater observed.

Test Pit # 6

Horizon			T ()		Consistence					
Depth (Inches)	Boundary	%Rock	Texture	Structure	Side Wall	Ped	Wet	Pores	Roots	Mottling
0-44		0-15	CL	SSB	VH	FRB/F	S	MVF/MF/ FM	MVF/CF/ FM	None
44-66	G	0-15	SCL	SSB	Н	FRB	VS	MVF/MF/ CM	FVF/FF	FFFt
Slope = 09 Assigned	% to 2%. Acc soil applicatio	n rate = ST ST PT	E Insufficien E Insufficier E Insufficier	rved: 44 inch t Soil Depth fo t Soil Depth f t Soil Depth f p = 0.6 gal/sf/	or a Conve or ASTS or ASTS	entional – S	tandard S	ystem		
	at 66 inches Iwater observ	•								

Test Pit # 7

					Consistence					
Horizon Depth (Inches)	Boundary	%Rock	Texture	Texture Structure		Ped	Wet	Pores	Roots	Mottling
0-36		0-15	CL	SSB	VH	FRB/F	S	MVF/MF/ FM	MVF/CF/ FM	None
								MVF/MF/		
36-65	G	0-15	SCL	SSB	Н	FRB	VS	CM	FVF	FFFt
Assigned	% to 2%. Acc soil applicatio	n rate = ST ST P1 รเ	E Insufficier E Insufficier E Insufficier	rved: 36 inch at Soil Depth - at Soil Depth f at Soil Depth f ip = 0.6 gal/sf	- Standarc for ASTS for ASTS	System				
	l at 65 inches									
No ground	dwater observ	ed.	A., 49.							

Table of Abbreviations

				Consistence		_	_	
Boundary	Texture	Structure	Side Wall	Ped	Wet	Pores	Roots	Mottling
A=Abrupt <1" C=Clear 1"-2.5" G=Gradual 2.5"-5" D=Difuse >5"	S=Sand LS=Loamy Sand SL=Sandy Loam SCL=Sandy Clay Clay Loam SC=Clay Loam L=Loam C=Clay SiC=Silty Clay SiCL=Silty Clay SiL=Silt Loam SiL=Silt	AB=Angular Blocky SB=Subangular Blocky	L=Loose S=Soft SH=Slighty Hard H=Hard VH=Very Hard ExH=Extremely Hard	L=Loose VFRB=Very Friable FRB=Friable F=Firm VF=Very Firm ExF=Extremely Firm	NS=NonSticky SS=Slightly Sticky S=Sticky VS=Very Sticky NP=NonPlastic SP=Slightly Plastic P=Plastic VP=Very Plastic	Quantity: F=Few C=Common M=Many Size: VF=Very Fine F=Fine M=Medium C=Coarse	Quantity: F=Few C=Common M=Many Size: VF=Very Fine F=Fine M=Medium C=Coarse VC=Very Course	Quantity: Quantity: F=Few C=Common M=Many Size: F=Fine M=Medium C=Coarse VC=Very Course ExC=Extremely Coarse Contrast: Ft=Faint D=Distinct P=Prominent

Alternative Sewage Treatment System Soil Application Rates

TEXTURE	ST	TRUCTURE	APPLICATION RATE (Gal/ft²/day)		
	Shape Grade		STE ¹	PTE ^{1,2}	
Coarse Sand, Sand, Loamy Coarse Sand	Single grain	Structureless	1.0	1.2	
Fine Sand, Loamy Fine Sand	Single grain	Structureless	0.6	1.0	
	Massive	Structureless	0.35	0.5	
	Platy	Weak	0.35	0.5	
Sandy Loam, Loamy Sand	Prismatic, blocky,	Weak	0.5	0.75	
	granular	Moderate, Strong	0.8	1.0	
	Massive	Structureless			
Loam, Silt Loam, Sandy Clay	Platy	Weak, moderate, strong			
Loam, Fine Sandy Loam	Prismatic, blocky,	Weak, moderate	0.5	0.75	
	granular	Strong	0.8	1.0	
	Massive	Structureless			
Sandy Clay, Silty Clay Loam,	Platy	Weak, moderate, strong	- Weldenver		
Clay Loam	Prismatic, blocky,	Weak, moderate	0.35	0.5	
	granular	Strong	0.6	0.75	
	Massive	Structureless			
Clay, Silty Clay	Platy	Weak, moderate, strong			
Sidy, Sity Sidy	Prismatic, blocky,	Weak			
	granular	Moderate, strong	0.2	0.25	

1.

See Table 1 in the Design, Construction and Installation of Alternative Sewage Treatment Systems. A higher application rate for pretreated effluent may only be used when pretreatment is not used for one foot of vertical separation credit. 2.

MININ	IUM SURFACE ARE		SPOSE OF 100 GF E DRIP DISPERS	PD OF SECONDARY TREAT AL SYSTEMS	ED EFFLUENT FOR	
		Soil Absorpt	Soil Absorption Rates			
Soil Class	Soil Type	Est. Soil Perc. Rate minutes/inch	Hydraulic Conductivity inches/hour	Design Application Rate (Gal/ft ² /day)	Total Area Required Sq. ft./100 gallons per day	
	Coarse sand	1 – 5	>2	1.400	71.5	
1	Fine sand	5 – 10	1.5 – 2	1.200	83.3	
!!	Sandy loam	10 – 20	1.0 – 1.5	1.000	100.0	
II	Loam	20 – 30	0.75 – 1.0	0.700	143.0	
Ш	Clay loam	30 – 45	0.5 – 0.75	0.600	167.0	
111	Silt - clay loam	45 – 60	0.3 - 0.5	0.400	250.0	
IV	Clay non-swell	60 – 90	0.2 - 0.3	0.200	500.0	
IV	Clay - swell	90 – 120	0.1 – 0.2	0.100	1000.0	

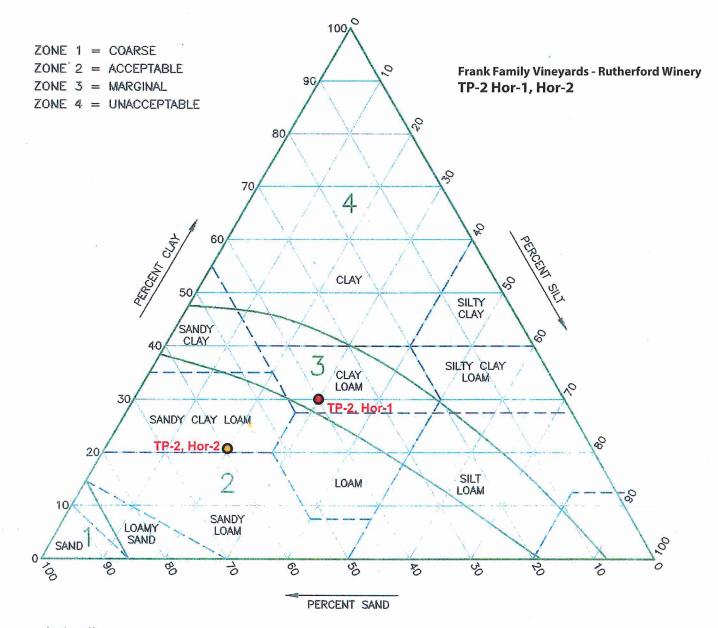
For design purpose, the "Soil Type" category to be used in the above table shall be based on the most restrictive soil type encountered within two feet 1. below the bottom of the drip line. Dispersal field area calculation: Total square feet area of dispersal field = Design flow divided by loading rate.

2.

Conventional Sewage Treatment System Soil Application Rates

TEXTURE	STRU	ICTURE	APPLICATION RATE (Gal/ft ² /day)
-	Shape	Grade	STE
Coarse Sand, Sand, Loamy Coarse Sand	Single grain	Structureless	Prohibited
	Massive	Structureless	Prohibited
	Platy	Weak, mod, strong	Prohibited
Sandy Loam, Loamy Sand	Prismatic,	Weak	0.33
	blocky, granular	Moderate, strong	0.5
	Massive	Structureless	Prohibited
Loam, Silt Loam, Sandy Clay Loam, Fine Sandy Loam	Platy	Weak, mod, strong	Prohibited
	Prismatic, blocky, granular	Weak	0.25
		Moderate, Strong	0.33
	Massive	Structureless	Prohibited
	Platy	Weak, moderate, strong	Prohibited
Clay Loam	Prismatic,	Weak, moderate	0.25
	blocky, granular	Strong	0.33
	Massive	Structureless	Prohibited
-	Platy	Weak, moderate, strong	Prohibited
Sandy Clay, Silty Clay Loam	Drianatia, blasky	Weak, moderate	Prohibited
	Prismatic, blocky, granular	Strong	0.25
	Massive	Structureless	Prohibited
	Platy	Weak, moderate, strong	Prohibited
Clay, Silty Clay	Prismatic, blocky,	Weak	Prohibited
	granular	Moderate, strong	Prohibited

Percolation Rate (mpi)	Application Rate (STE)
< 5 MPI	Prohibited
5 to 10 MPI	0.5
10-20 MPI	0.33
20-60 MPI	0.25
> 60 MPI	Prohibited


TABLE 1

DRIP LOADING RATES CONSIDERING SOIL STRUCTURE.

Table 1 is taken from the State of Wisconsin code and was prepared by Jerry Tyler. Provided for guidelines and budgeting purposes. Refer to your local regulations and qualified soil scientists to determine best loading rates.

Soil Textures	Soil Structure	Maximum Monthly Average BOD ₅ <30mg/L TSS<30mg/L	Maximum Monthly Average BOD ₅ >30mg/L TSS>30mg/L
		(gallons/ft²/day)	(gallons/ft²/day)
Course sand or coarser	N/A	1.6	0.4
Loamy coarse sand	N/A	1.4	0.3
Sand	N/A	1.2	0.3
Loamy sand	Weak to strong	1.2	0.3
Loamy sand	Massive	0.7	0.2
Fine sand	Moderate to strong	0.9	0.3
Fine sand	Massive or weak	0.6	0.2
Loamy fine sand .	Moderate to strong	0.9	0.3
Loamy fine sand	Massive or weak	0.6	0.2
Very fine sand	N/A	0.6	0.2
Loamy very fine sand	N/A	0.6	0.2
Sandy loam	Moderate to strong	0.9	0.2
Sandy loam	Weak, weak platy	0.6	0.2
Sandy loam	Massive	0.5	0.1
Loam	Moderate to strong	0.8	0.2
Loam	Weak, weak platy	0.6	0.2
Loam	Massive	0.5	0.1
Silt loam	Moderate to strong	0.8	0.2
Silt loam	Weak, weak platy	0.3	0.1
Silt loam	Massive	0.2	0.0
Sandy clay loam	Moderate to strong	0.6	0.2
Sandy clay loam	Weak, weak platy	0.3	0.1
Sandy clay loam	Massive	0.0	0.0
Clay loam	Moderate to strong	0.6	0.2
Clay loam	Weak, weak platy	0.3	0.1
Clay loam	Massive	0.0	0.0
Silty clay loam	Moderate to strong	0.6	0.2
Silty clay loam	Weak, weak platy	0.3	0.1
Silty clay loam	Massive	0.0	0.0
Sandy clay	Moderate to strong	0.3	0.1
Sandy clay	Massive to weak	0.0	0.0
Clay	Moderate to strong	0.3	0.1
Clay	Massive to weak	0.0	0.0
Silty clay	Moderate to strong	0.3	0.1
Silty clay	Massive to weak	0.0	0.0

SOIL PERCOLATION SUITABILITY CHART

Instructions:

- 1. Plot texture on triangle based on percent sand, silt, and clay as determined by hydrometer analysis.
- 2. Adjust for coarse fragments by moving the plotted point in the sand direction an additional 2% for each 10% (by volume) of fragments greater than 2mm in diameter.
- 3. Adjust for compactness of soil by moving the plotted point in the clay direction an additional 15% for soils having a bulk-density greater than 1.7 gm/cc.

Note:

For soils falling in sand, loamy sand or sandy loam classification bulk density analysis will generally not affect suitability and analysis not neccesary.

Experience is the difference

June 10, 2013 File: 9147.36

Bartelt Engineering 1303 Jefferson Street, Ste. 200B Napa, CA 94559

Subject: Laboratory Test Results Soil Texture Analysis by Bouyoucos Hydrometry Method Frank Family Vineyards, Rutherford Winery JOB# 12-17

Dear Mr. Bartelt:

This letter transmits the results of our laboratory testing performed for the subject project. We performed a Soil Texture Analysis by the Bouyoucos Hydrometery Method with the following results:

	TP-2
Size/Density	HORIZON-1
+ #10 Sieve	14.9 %
Sand	38.2 %
Clay	30.4 %
Silt	31.4 %
Db g/cc	

We trust this provides the information required at this time. Should you have further questions, please call.

Yours very truly,

RGH GEOTECHNICAL

George Fotou Laboratory Manager

Experience is the difference

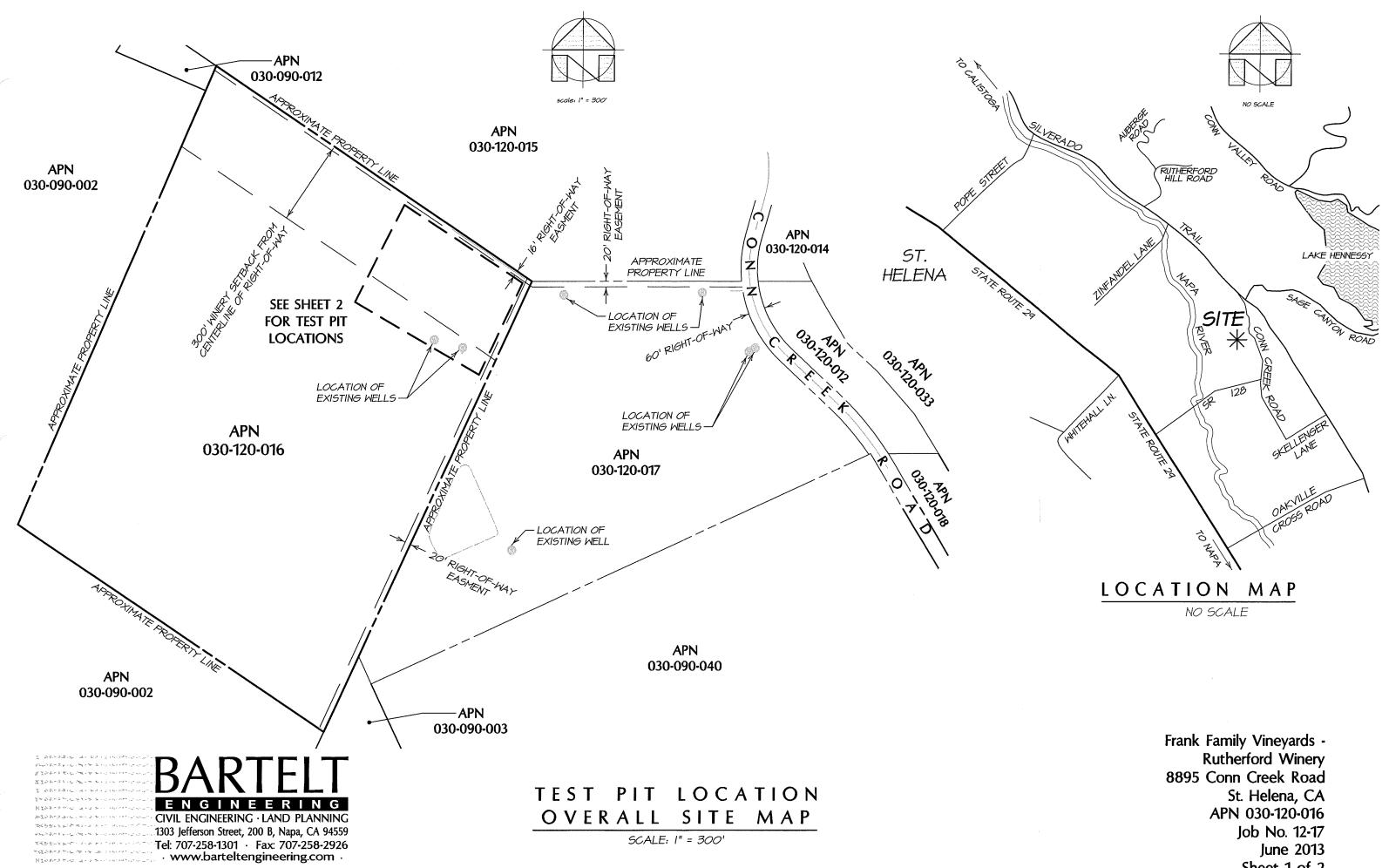
June 10, 2013 File: 9147.36

Bartelt Engineering 1303 Jefferson Street, Ste. 200B Napa, CA 94559

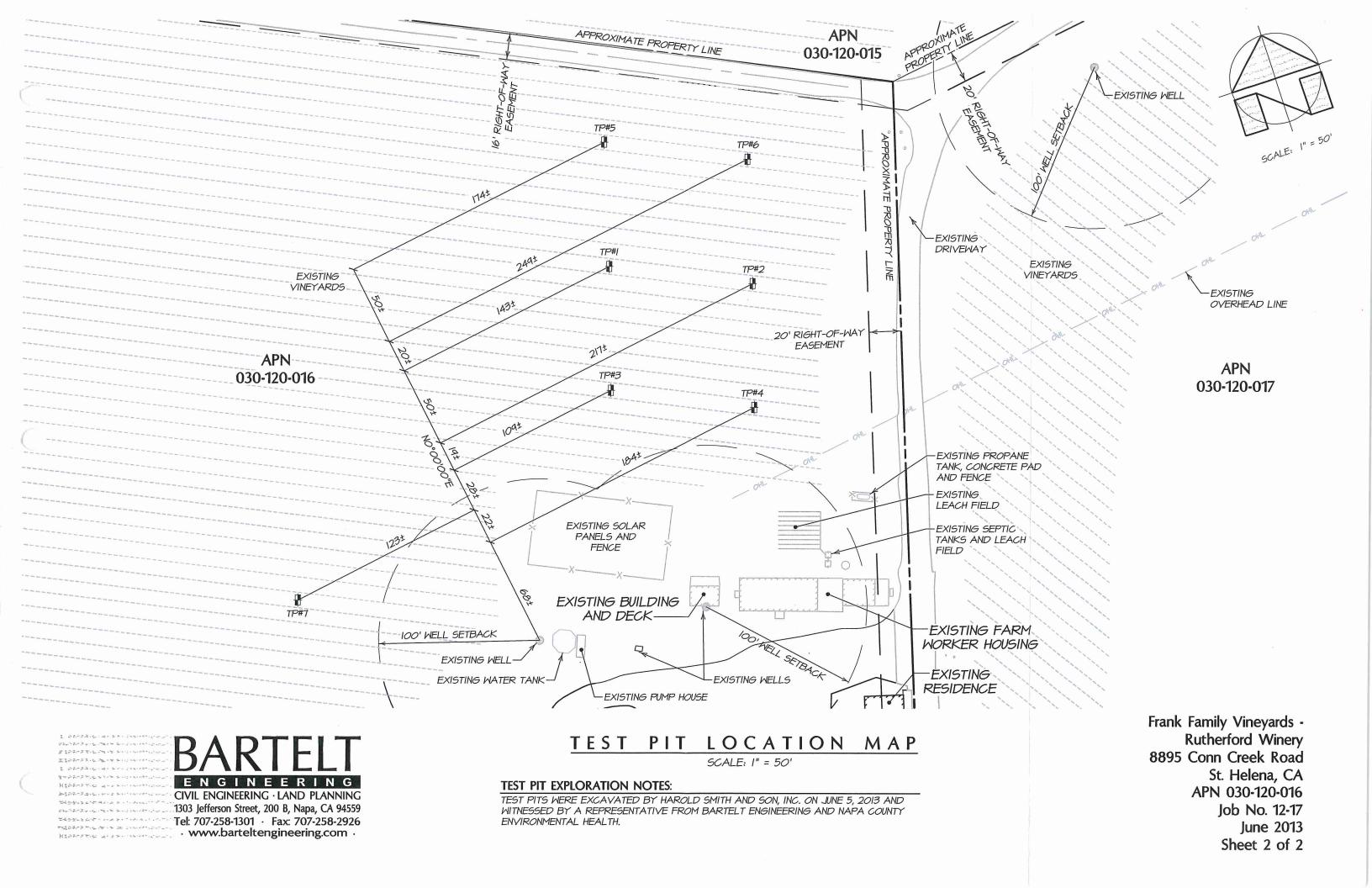
Subject: Laboratory Test Results Soil Texture Analysis by Bouyoucos Hydrometry Method Frank Family Vineyards, Rutherford Winery JOB# 12-17

Dear Mr. Bartelt:

This letter transmits the results of our laboratory testing performed for the subject project. We performed a Soil Texture Analysis by the Bouyoucos Hydrometery Method with the following results:


	TP-2
Size/Density	HORIZON-2
+ #10 Sieve	29.5 %
Sand	53.2 %
Clay	21.4 %
Silt	25.4 %
Db g/cc	

We trust this provides the information required at this time. Should you have further questions, please call.


Yours very truly,

RGH GEOTECHNICAL

George Fotou Laboratory Manager

Sheet 1 of 2

