

Traffic Impact Study Staglin Family Vineyards Major Modification P18-00253-MOD

Staglin Family Vineyards Major Modification, P18-00253-MOD Planning Commission Hearing – February 3, 2021

TRAFFIC IMPACT REPORT

THE STAGLIN FAMILY VINEYARD USE PERMIT MODIFICATION 2018

July 28, 2020

with Revisions January 7, 2021

Prepared for:	THE STAGLIN FAMILY VINEYARD
_	USE PERMIT MODIFICATION

Prepared by: Mark D. Crane, P.E., President California Registered Traffic Engineer (#1381) Carolyn Cole, AICP, Principal CRANE TRANSPORTATION GROUP 2621 E. Windrim Court Elk Grove, CA 95758 (916) 647-3406 (510) 684-1984

I. INTRODUCTION

This report has been prepared at the request of the Staglin Family Vineyard to determine whether the proposed visitors to the winery, as detailed in their 2018 use permit modification application, will result in any significant circulation impacts to the local roadway network. The project site is located on the north side of Bella Oaks Lane about ³/₄-mile west of State Route 29 (SR29) (see **Figure 1 Regional Map, Figure 2 Site Specific Air Photo** and **Figure 3 Site Plan**). The scope of analysis includes evaluation of SR29 north and south of Bella Oaks Lane as well as the Bella Oaks Lane intersections with SR29 and the vineyard driveway for harvest year 2019, Year 2025 and cumulative (year 2030) horizons. The scope of service for this traffic study was developed to provide analysis requested by both the Napa County Public Works and the Planning, Building & Environmental Sciences departments.

II. EXECUTIVE SUMMARY OF PROJECT IMPACTS AND RECOMMENDED IMPROVEMENTS

A. IMPACTS

1. PROPOSED PROJECT HARVEST FRIDAY & SATURDAY PM PEAK HOUR TRIP GENERATION

TWO-WAY PM PEAK HOUR TRIPS		
HARVEST FRIDAY	HARVEST SATURDAY	
7	10	

2. SIGNIFICANCE OF PROJECT IMPACTS

- a. Arterial Level of Service (State Route 29)
 - Less than significant
- b. Intersection Level of Service (State Route 29/Bella Oaks Lane and Project Driveway/Bella Oaks Lane) - Less than significant

c. Sight Line Adequacy at Project Driveway/Bella Oaks Lane Intersection

 Less than significant – Driveway sight lines extend over 600 feet in both directions.

d. Parking, Transportation Demand Management, Marketing Events

- Less than significant - There is abundant space available for parking onsite, and the existing designated parking areas can be expanded as needed, subject to Fire Department approval.¹ All parking demand will be accommodated on the site at all times for events of all sizes. A TDM coordinator will be appointed to reduce traffic generation potential for daily employee traffic, such as promoting and coordinating employee carpools and rideshares and promoting and making available use of shuttle bus and limousine service for medium and large size marketing events.

B. RECOMMENDED IMPROVEMENTS

• None required.

¹ Per telephone conversations with Mrs. Shari Staglin, CEO, Staglin Family Vineyard, January 7 and June 3, 2020.

III. SUMMARY OF "WITHOUT AND WITH PROJECT" OPERATING CONDITIONS

A. "WITHOUT PROJECT" OPERATING CONDITIONS -Friday & Saturday PM Peak Hours

1. ARTERIAL LEVEL OF SERVICE

a. SR29 North and South of Bella Oaks Lane

- Existing Acceptable
- Year 2025 & Cumulative (2030) Acceptable

2. INTERSECTION LEVEL OF SERVICE

a. SR29/Bella Oaks Lane - stop sign controlled approach

- Existing Acceptable
- Year 2025 & Cumulative Acceptable

3. INTERSECTIONS WITH VOLUMES MEETING RURAL PEAK HOUR SIGNAL WARRANT #3 CRITERIA

a. SR29/Bella Oaks Lane

• Existing, 2025 & Cumulative (2030) conditions **do not meet** rural signal Warrant #3 criteria.

B. PROJECT IMPACTS

1. OFF-SITE

a. ARTERIAL LEVEL OF SERVICE (SR29) - Less than Significant

1) State Route 29

- **Existing -** Operation would remain at acceptable levels.
- Year 2025 Project traffic would not increase 2-way volumes by 1% or greater along the segments of SR29 already operating unacceptably at LOS E during the Friday and Saturday PM peak hours.
- **Cumulative (2030)** Project traffic would not increase the growth in 2-way traffic from 2019 to 2030 by 5% or greater along

segments of SR29 that would already be operating unacceptably at LOS E during the Friday and Saturday PM peak hours.

b. INTERSECTION LEVEL OF SERVICE - Less than Significant

1) SR29/ Bella Oaks Lane

- **Existing -** Operation would remain at acceptable levels.
- Year 2025 or Cumulative Project traffic would not increase delay by more than 5 seconds or greater on the stop sign controlled Bella Oaks Lane approach to SR29, which would already be operating at an acceptable LOS D during both the Friday and Saturday PM peak hours.
- 2) Project Driveway/Bella Oaks Lane
 - Existing, Year 2025 or Cumulative Operation would remain at acceptable levels.
- c. PROJECT DRIVEWAY/BELLA OAKS LANE INTERSECTION -Less than Significant

Sight lines at the Project Driveway/Bella Oaks Lane intersection exceed minimum Caltrans stopping sight distance criteria.

d. MARKETING EVENTS - Less than Significant

The total of 32 marketing events per year with 12 attendees and the 16 events per year with 32 attendees will not exceed the 44 visitors by appointment limit being requested in the use permit modification.

The larger events (3 events per year with up to 100 attendees – restricted to evenings, 6:00 PM to 10:00 PM, 1 per year with up to 100 attendees – restricted to daytime, 10:00 AM to 4:00 PM, and one event per year with up to 250 attendees – restricted to scheduling sometime between 11:00 AM and 11:00 PM, will have limousine and shuttle bus service provided.

C. CONCLUSIONS & RECOMMENDATIONS

The project would result in no significant off-site circulation system operational impacts to SR29 at Bella Oaks Lane or the SR29/Bella Oaks Lane intersection. New traffic would occur on weekdays and weekends. Sight lines at the project driveway connection to Bella Oaks Lane would remain acceptable and continue to meet Caltrans stopping sight distance criteria, and there would continue to be no left turn lane warranted on Bella Oaks Lane at the Project Driveway. In addition, the SR 29/Bella Oaks Lane intersection would not have Friday or Saturday PM peak hour volumes meeting rural peak hour signal Warrant #3 criteria for existing or future conditions. Two-way volumes would increase on Bella Oaks Lane near SR 29; for example, during a Harvest Friday existing PM peak hour volumes would increase due to the project from 45 vehicles to 52 vehicles, and during a Harvest Saturday existing PM peak hour volumes would increase due to the project from 17 to 27 vehicles.

There would be 48 new small marketing events each year; 32 with 12 attendees (resulting in only 5 guest vehicles), and 16 with up to 32 attendees (resulting in only 13 guest vehicles). On days with small events, regular visitation would be limited so as not to exceed the daily 44 visitors by appointment limit being requested in the use permit modification. There would also be five new large marketing events (with 100 to 250 guests). Large events would make use of shuttle bus and limousine service:

- 3 with 100 guests would occur from 6:00 PM 10:00 PM
- 1 with 100 guests would occur from 10:00 AM 4:00 PM
- 1 with 250 guests would occur between 11:00 AM and 11:00 PM

There are no resulting recommended requirements or mitigation measures.

IV. PROJECT LOCATION & DESCRIPTION

The Staglin Family Vineyard is located at 1570 Bella Oaks Lane. The entrance driveway is located about three-quarters of a mile west of SR29 on the north side of Bella Oaks Lane.

The purpose of the project application is to amend Use Permit #98072 and subsequent use permit modifications for Staglin Family Vineyard to modify elements of the winery's marketing program. The existing use permit authorizes wine production, retail wine sales, tours and tastings, marketing events and other accessory activities within a +/-4,000 sf structure and within a portion of the +/-22,750 sf cave located on parcel 027-250-064. No changes are requested to production facilities, existing winery structures, or winery infrastructure at this time.

REQUESTED MODIFICATIONS & CLARIFICATIONS:

Staglin Family Vineyard requests the following revisions and clarifications to the approved use permit:

- **Daily Tours and Tasting Program** Modify the approved tours and tastings program to allow activities for up to 44 visitors per day, by appointment, weekday and weekend. Tours and tastings to take place between 10AM and 4PM.
- **Marketing Program** Modify the approved marketing program to increase the number of events per the list below. The tasting room will be closed to tasting appointments during marketing events of 40 persons or more. Events of 50 or larger attendees will be held outdoors. Food for all marketing events will be prepared by a licensed caterer with minimal preparation (heating and plating) on site. Portable toilets will be available for all events. The proposed events are as follows:
 - 32 events per year with 12 attendees maximum; between 11:00 AM and 11:00 PM
 - o 16 events per year with 32 attendees maximum; between 11:00AM and 11:00PM
 - 3 events per year with 100 attendees maximum; between 6:00PM and 11:00PM
 - 1 event per year with 100 attendees maximum; between 10:00AM and 4:00PM.
 - 1 event per year with 250 attendees maximum; between 1:00PM and 4:00PM
- **Parking** There is abundant space available for parking on-site, and the existing designated parking areas can be expanded as needed.² No specific changes in parking areas are proposed.
- Employees Increase number of employees to 11 full-time and 5 part-time.

V. EXISTING CIRCULATION SYSTEM EVALUATION PROCEDURES

A. ANALYSIS LOCATIONS

1. INTERSECTIONS

The following locations have been evaluated.

- a. SR29/Bella Oaks Lane intersection (The Bella Oaks Lane eastbound approach is stop sign controlled.)
- **b.** Bella Oaks Lane /Project Driveway intersection (The project driveway approach is assumed in this analysis to be stop sign controlled.)

Figure 4 presents a schematic of approach lane geometrics and control at the SR29/Bella Oaks intersection.

² Per telephone conversation with Mrs. Shari Staglin, CEO, Staglin Family Vineyard, January 7, 2020.

2. ARTERIAL ROADWAY SEGMENTS

The following locations have been evaluated.

a. State Route 29 Just North and South of the Bella Oaks Lane

B. VOLUMES

1. ANALYSIS SEASONS AND DAYS OF THE WEEK

Project traffic impacts have been evaluated during harvest conditions. Based upon more than four years of historical information from Caltrans PeMS (Performance Measurement System) count surveys along SR 29 in the Napa Valley, September has the highest daily volumes of the year (during harvest). Therefore, only September harvest conditions were selected for evaluation.

In regards to the peak traffic days of the week, the Napa County Travel Behavioral Study³ shows that the highest weekday volumes in Napa Valley occur on a Friday, with the highest weekend volumes occurring on a Saturday. In addition, historical count data from the City of Napa show that Friday has the highest volumes of any weekday, while Caltrans historical counts for SR 29 between St. Helena and Napa also show that weekday AM and PM peak hour volumes are higher on a Friday than on either a Wednesday or Thursday. Therefore, Friday and Saturday peak traffic conditions were evaluated in this study.

2. COUNT RESULTS

Friday 12:00 noon to 6:00 PM as well as Saturday 12:00 noon to 6:00 PM turn movement counts were conducted by Crane Transportation Group (CTG) on two Fridays and two Saturdays in October and November 2019 at the Bella Oaks Lane intersection with SR29 while four days of 24-hours hose counts were conducted at the project driveway. The October peak traffic hours for the SR 29/Bella Oaks Lane intersection were determined to be 3:00 to 4:00 PM on Friday and 2:15 to 3:15 PM on Saturday. The November peak traffic hours for the SR 29/Bella Oaks Lane intersection were determined to be 2:45 to 3:45 PM on Friday and Saturday. Based upon direction from County Public Works, results from the two Friday counts were averaged and the results are also shown in **Figure 5**. Peak hour counts from each count day are presented in **Appendix A**.

Overall, October harvest Friday PM peak hour two-way volumes along SR29 at Bella Oaks Lane are higher on Saturday than on Friday (about 1818 vehicles on Friday versus 1986 vehicles on Saturday). However, in November, Friday and Saturday volumes are very similar (about 1768 vehicles on Friday versus 1750 vehicles on Saturday).

³ Fehr & Peers, December 8, 2014.

Daily (24-hour) directional volumes were also conducted for two Fridays and two Saturdays in October and November on Bella Oaks Lane at the project driveway. Count results are presented in **Appendix A**.

C. ROADWAYS

Roadway descriptions are based upon the designation that SR 29 runs in a general north-south direction through the project area, while Bella Oaks Lane runs in an east-west direction. The project site is located along the north side of Bella Oaks. **Figure 4** presents existing intersection geometrics and control.

State Route 29 (SR 29) provides the only major regional access to the west side of the Napa Valley and a connection to Bella Oaks Lane. In the vicinity of the Bella Oaks Lane intersection it has two well-paved 12-foot travel lanes and eight-foot-wide paved shoulders. The posted speed limit is 50 miles per hour and the roadway is level and straight. SR 29 is not controlled on its approaches to the Bella Oaks Lane tee intersection, but a left turn lane is provided on the northbound intersection approach and a median refuge area is provided north of the intersection to facilitate left turns from Bella Oaks Lane. There are Class II (signed and striped) bicycle lanes on both sides of the state highway.

Bella Oaks Lane is a two-lane, paved rural collector County road extending westerly from its tee intersection with SR 29. It is stop sign controlled on its single lane approach to the state highway. It also crosses the single track of the Napa Wine Train just west of SR 29. Flashing gates and lights protect the crossing. There is never more than one train crossing an hour during the afternoon and early evening, currently the only times of train activity. Bella Oaks Lane is stop sign controlled on its eastbound approach to the railroad crossing. The roadway has no centerline or sideline stripes.

Bella Oaks Lane is straight and level from SR 29 to the project driveway, located about ³/₄-mile west of SR 29. West of the railroad crossing there is a posted speed limit of 25 mph when pedestrians are crossing; otherwise, there is no posted speed limit. Bella Oaks Lane is generally 20-feet wide with no shoulders. There is no left turn lane on the Bella Oaks Lane eastbound approach to the project driveway.

D. INTERSECTION LEVEL OF SERVICE

1. ANALYSIS METHODOLOGY

Transportation engineers and planners commonly use a grading system called level of service (LOS) to measure and describe the operational status of the local roadway network. LOS is a description of the quality of a roadway facility's operation, ranging from LOS A (indicating free-flow traffic conditions with little or no delay) to LOS F (representing oversaturated conditions where traffic flows exceed design capacity, resulting in long queues and delays).

Intersections, rather than roadway segments between intersections, are almost always the capacity controlling locations for any circulation system.

Unsignalized Intersections. For unsignalized (all-way stop-controlled and side-street stopcontrolled) intersections, the 2017 *Highway Capacity Manual Version 6* (Transportation Research Board, National Research Council) methodology for unsignalized intersections was utilized. For side-street stop-controlled intersections, operations are defined by the level of service and average control delay per vehicle (measured in seconds), with delay reported for the stop sign controlled approaches or turn movements. For all-way stop-controlled intersections, operations are defined by the average control delay for the entire intersection (measured in seconds per vehicle). The delay at an unsignalized intersection incorporates delay associated with deceleration, acceleration, stopping, and moving up in the queue. **Table 1** summarizes the relationship between delay and LOS for unsignalized intersections.

2. MINIMUM ACCEPTABLE OPERATION

Napa County's currently minimum acceptable operating standard for unsignalized intersections is Level of Service D (LOS D) for side street stop sign controlled approaches at two-way stop intersections and for overall operation at all-way-stop intersections. It should be noted, however, that the recently approved General Plan Update Circulation element shows that LOS F is now acceptable for SR 29 in the project area. However, to provide a conservative analysis the LOS D criterion as minimum acceptable has been used.

E. ARTERIAL LEVEL OF SERVICE

1. ANALYSIS METHODOLOGY

The 2017 Highway Capacity Manual Version 6 arterial analysis methodology has been utilized for analysis of State Route 29. Analysis results are presented as a level of service, volume to capacity ratio and percent time following. Input includes directional volumes, road and shoulder widths, percent trucks and RVs, terrain characteristics, percent available passing distance, etc.

2. MINIMUM ACCEPTABLE OPERATION

Napa County's currently minimum acceptable operating standard for unsignalized arterial is Level of Service D (LOS D).

F. INTERSECTION SIGNAL WARRANTS

1. ANALYSIS METHODOLOGY

Traffic signals are used to provide an orderly flow of traffic through an intersection. Many times they are needed to offer side street traffic an opportunity to access a major road where high volumes and/or high vehicle speeds block crossing or turn movements. They do not, however, increase the capacity of an intersection (i.e., increase the overall intersection's ability to accommodate additional vehicles) and, in fact, often slightly reduce the number of total vehicles that can pass through an intersection in a given period of time. Signals can also cause an increase in traffic accidents if installed at inappropriate locations.

There are 10 possible tests for determining whether a traffic signal should be considered for installation. These tests, called "warrants", consider criteria such as actual traffic volume, pedestrian volume, presence of school children, and accident history. The intersection volume data together with the available collision histories were compared to warrants contained in the *California Manual on Uniform Traffic Control Devices, 2014, Revision 3 (2014 CMUTCD Rev. 3)*. Section 4C of the 2014 CMUTCD Rev. 3 provides guidelines, or warrants, which may indicate need for a traffic signal at an unsignalized intersection. As indicated in the 2014 CMUTCD Rev. 3, satisfaction of one or more warrants does not necessarily require immediate installation of a traffic signal. It is merely an indication that the local jurisdiction should begin monitoring conditions at that location and that a signal may ultimately be required.

2. MINIMAL ACCEPTABLE OPERATION

Warrant 3, the peak hour volume warrant, is often used as an initial check of signalization needs since peak hour volume data is typically available and this warrant is usually the first one to be met. Warrant 3 is based on a logarithmic curve and takes only the hour with the highest volume of the day into account. For intersections in rural locations (with local area population less than 10,000 people or where the posted speed limit or 85th percentile speed on the uncontrolled intersection approaches is greater than 40 miles per hour) a 70 percent warrant is applied. The regular and 70 percent warrants are typically referred to as the urban and rural peak hour warrants. Rural warrant criteria have been used for evaluation of the SR29/Bella Oaks Lane intersection. Please see **Appendix B** for the existing condition warrant charts.

G. PLANNED IMPROVEMENTS

There are no planned and funded improvements at any location evaluated in this study.⁴

⁴ Ms. Charlene Gallina, Supervising Planner, Napa County Planning Department, September 2018.

H. EXISTING PEDESTRIAN AND BICYCE FACILITIES NEAR THE PROJECT

There are no pedestrian walkways along Bella Oaks Lane and none are planned by the project. Likewise, there are no existing or planned Class I to IV Bicycle facilities along Bella Oaks Lane and none are planned by the project. There are Class II (signed and striped) bike lanes on SSR 29.

VI. FUTURE HORIZON TRAFFIC VOLUME PROJECTIONS

Traffic analysis has been conducted for harvest existing (2019), year 2025 and cumulative (year 2030) horizons at County request. The 2030 cumulative horizon reflects the County General Plan Buildout year. Traffic modeling for the General Plan shows the following growths in two-way traffic between 2019 and 2030 for the following roadways.

Route	2019 to 2030 Projected Growth in 2-Way PM Peak Hour Traffic
SR29	PM peak hour = 15.3%
Bella Oaks Lane	PM peak hour = 22%

Projecting straight line traffic growth for analysis purposes, this translates into the following growths in two-way traffic between 2019 and 2025 for the same roadways.

Route	2019 to 2025 Projected Growth in 2-Way PM Peak Hour Traffic
SR29	PM peak hour = 8.4%
Bella Oaks Lane	PM peak hour = 12.1%

Since traffic modeling projections were only available for weekday PM peak hour conditions and not for the Saturday PM peak hour, Saturday two-way PM peak hour volumes were increased by the percentages found for the weekday PM peak hour.

Resultant year 2025 harvest "Without Project" Friday and Saturday PM peak hour volumes and cumulative (year 2030) harvest "Without Project" Friday and Saturday PM peak hour volumes are presented in **Figure 5**.

VII. OFF-SITE HARVEST CIRCULATION SYSTEM OPERATION – WITHOUT PROJECT

A. YEAR 2019 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

1. EXISTING INTERSECTION LEVEL OF SERVICE - see Table 2; Appendix C provides capacity worksheets.

a. SR29/BELLA OAKS LANE

• Friday & Saturday PM Peak Hours Acceptable Bella Oaks Lane stop sign controlled eastbound approach: LOS C

b. PROJECT DRIVEWAY/ BELLA OAKS LANE

• Friday & Saturday PM Peak Hours

Acceptable Project Driveway stop sign controlled southbound approach: LOS A

2. EXISTING ARTERIAL SEGMENT LEVEL OF SERVICE – see Table 3

- a) SR29 JUST NORTH & SOUTH OF BELLA OAKS LANE
 - Friday PM Peak Hour
 - Northbound LOS D
 - Southbound LOS E
 - Saturday PM Peak Hour
 - Northbound LOS E Southbound – LOS E

3. EXISTING SIGNAL WARRANT EVALUATION – see Table 4 and Appendix B

a) SR29/BELLA OAKS LANE

• Friday & Saturday PM Peak Hours

Volumes do not meet rural peak hour signal Warrant #3 criteria.

B. YEAR 2025 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

1. 2025 INTERSECTION LEVEL OF SERVICE – see Table 2

a) SR29/BELLA OAKS LANE

• Friday & Saturday PM Peak Hours

Acceptable Bella Oaks Lane stop sign controlled eastbound approach: LOS D

b) PROJECT DRIVEWAY/BELLA OAKS LANE

• Friday & Saturday PM Peak Hours

Acceptable Project Driveway stop sign controlled southbound approach: LOS A

2. 2025 ARTERIAL SEGMENT LEVEL OF SERVICE – see Table 3

a) SR29 JUST NORTH & SOUTH OF BELLA OAKS LANE

• Friday & Saturday PM Peak Hours Northbound – LOS E Southbound – LOS E

3. 2025 SIGNAL WARRANT EVALUATION – see Table 4

a) SR29/BELLA OAKS LANE

Friday & Saturday PM Peak Hours

Volumes **would not meet** rural peak hour signal Warrant #3 criteria.

C. CUMULATIVE (YEAR 2030) HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

1. 2030 INTERSECTION LEVEL OF SERVICE – see Table 2

a) SR29/BELLA OAKS LANE

• Friday & Saturday PM Peak Hours

Acceptable Bella Oaks Lane stop sign controlled eastbound approach: LOS D

b) PROJECT DRIVEWAY/BELLA OAKS LANE

• Friday & Saturday PM Peak Hours

Acceptable Project Driveway southbound approach: LOS A

2. 2030 ARTERIAL SEGMENT LEVEL OF SERVICE – see Table 3

a) SR29 JUST NORTH & SOUTH OF BELLA OAKS LANE Friday & Saturday PM Peak Hours Northbound – LOS E Southbound – LOS E

3. 2030 SIGNAL WARRANT EVALUATION – see Table 4

a) SR29/BELLA OAKS LANE

• Friday & Saturday PM Peak Hours

Volumes **would not meet** rural peak hour signal Warrant #3 criteria.

VIII. SIGNIFICANCE CRITERIA

A. COUNTY OF NAPA

The following criteria have recently been developed for traffic impact analyses in Napa County.

EXISTING + PROJECT CONDITIONS

A. ARTERIAL SEGMENTS

A project would cause a significant impact requiring mitigation if:

- 1. An arterial segment operates at LOS A, B, C or D during the selected peak hours without project trips, and deteriorates to LOS E or F with the addition of project trips, or
- 2. An arterial segment operates at LOS E or F during the selected peak hours without project trips, and the addition of project trips increases the total segment volume by one percent or more.

For the second criterion, the following equation should be used if the arterial operates at LOS E or F without the project:

Project Contribution % = Project Trips ÷ Existing Volumes

B. SIGNALIZED INTERSECTIONS

A project would cause a significant impact requiring mitigation if:

- 1. A signalized intersection operates at LOS A, B, C or D during the selected peak hours without project trips, and deteriorates to LOS E or F with the addition of project trips, or
- 2. A signalized intersection operates at LOS E or F during the selected peak hours without project trips, and the addition of project trips increases the total entering volume by one percent or more.

For the second criteria, the following equation should be used if the signalized intersection operates at LOS E or F without the project:

Project Contribution % = Project Trips ÷ Existing Volumes

Maintaining LOS D or better at all signalized intersections would sometimes require expanding the physical footprint of an intersection. In some locations around the County, expanding physical transportation infrastructure could be in direct conflict with the County's goals of preserving the area's rural character, improving safety, and sustaining the agricultural industry, making these potential improvements infeasible. The County's Circulation Element lists intersections that are slated for improvement or expansion in unincorporated Napa County.⁵

Transportation studies should individually consider the feasibility of potential mitigation measures with respect to right-of-way acquisition, regardless of the intersection's place in the Circulation Element's identified improvement lists, and present potential alternative mitigation measures that do not require right-of-way acquisition. County staff would then review that information and make the decision about the feasibility of the identified potential mitigations.

For intersections that cannot be improved without substantial additional right-of-way according to both the Circulation Element and the individual transportation impact study, and where other mitigations such as updating signal timing, signal phasing and operations, and/or signing and striping improvements do not improve the LOS, LOS E or F will be considered acceptable and the one percent threshold would not apply. Analysis of signalized intersection LOS should still be presented for informational purposes, and there should still be an evaluation of effects on safety and local access, per Policy CIR-18.

C. UNSIGNALIZED INTERSECTIONS (ALL WAY STOP AND SIDE STREET STOP SIGN CONTROLLED)

LOS for all way stop controlled intersections is defined as an average of the delay at all approaches. LOS for side street stop controlled intersections is defined by the delay and LOS for

⁵ According to the Circulation Element dated June 8, 2008, the following intersections can be altered or expanded as a mitigation measure: SR-12/Airport Boulevard/SR-29, SR-221/SR-12/Highway 29, and several intersections along SR-29 and SR-128 north of Napa. The significance criteria shown above should apply to facilities where appropriate based upon the most recent Circulation Element chapter of the General Plan.

the worst case approach. The recommended interpretation of Policy CIR-16 regarding unsignalized intersection significance criteria is as follows:

- 1. An unsignalized intersection operates at LOS A, B, C or D during the selected peak hours without project trips, the LOS deteriorates to LOS E or F with the addition of project traffic, and the peak hour traffic signal warrant criteria should also be evaluated and presented for information purposes, or
- 2. An unsignalized intersection operates at LOS E or F during the selected peak hours without project trips and the project increases stop sign controlled delay by 5 seconds or greater. The peak hour traffic signal warrant criteria should also be evaluated and presented for informational purposes.

Project Contribution % = Project Trips ÷ Existing Volumes

CUMULATIVE+ PROJECT CONDITIONS

A. ARTERIAL SEGMENTS, SIGNALIZED INTERSECTIONS AND UNSIGNALIZED INTERSECTIONS

A project would cause a significant cumulative impact requiring mitigation if:

- 1. The overall amount of expected traffic growth causes conditions to deteriorate such that any of the significance criteria described above for existing conditions are met, and
- 2. The project's contribution to a significant cumulative impact for arterials or signalized intersections would be equal to or greater than five percent of the growth in traffic from existing to cumulative conditions.
- 3. The project's contribution to a cumulative significant impact at an unsignalized intersection would result with an increase in stop sign controlled delay of 5 seconds or greater.

A project's contribution to a cumulative condition would be calculated as the project's percentage contribution to the total growth in traffic from existing conditions.

Project Contribution % = Project Trips ÷ (Cumulative Volumes - Existing Volumes)

- If projected daily volumes on the project driveway in combination with volumes on the roadway providing access to the project driveway meet County warrant criteria for provision of a left turn lane on the approach to the project entrance.
- If sight lines at project access driveways do not meet Caltrans stopping sight distance criteria based upon prevailing vehicle speeds.

IX. PROJECT IMPACT EVALUATION

A. TRIP GENERATION

1. METHODOLOGY

Project trip generation was determined using one of the three possible methodologies recently approved by Napa County Public Works for transportation impact study analysis. Method "c" has been used in this analysis. As detailed by Public Works, perform a site-specific analysis by first conducting actual daily trip counts at the driveway of the project on two Fridays and two Saturdays (for winery use permit modifications). Next, determine the increment of net new daily traffic due to the use permit modification proposed project using trip rates from the use permit Winery Traffic Information/Trip Generation sheets (**Appendix E**). Based upon the two Friday and two Saturday 24-hour winery driveway counts, determine which hour on each day had the highest combined inbound + outbound traffic and determine the percent of total traffic occurring during those hours in relation to the daily counts. Apply these percentages to the net new Friday and Saturday daily traffic increments for the project to determine the amount of project traffic that would be expected to occur during the winery's peak traffic hour. Finally, assume that the winery's peak hourly traffic will occur at the same time as the ambient peak traffic on the adjacent roadway system.

B. TRIP DISTRIBUTION

Project trip distribution on a harvest Friday and Saturday PM peak hour is expected to be predominantly to and from the south on SR29. See **Figure 6**.

C. OFF-SITE IMPACTS

1. EXISTING (2019) HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts along SR29 or Bella Oaks Lane or at the Bella Oaks Lane intersections with SR29 or the Project Driveway during the Friday or Saturday PM peak traffic hours. *Less than significant.*

b. 2019 INTERSECTION LEVEL OF SERVICE IMPACTS – see Table 2

- SR29/Bella Oaks Lane
 - Friday PM Peak Hour

Operation of the stop sign controlled Bella Oaks Lane intersection approach would remain an acceptable LOS C with the addition of project traffic. *Less than significant.*

 Saturday PM Peak Hour
 Operation of the stop sign controlled Bella Oaks Lane intersection approach would remain an acceptable LOS C with the addition of project traffic. *Less than significant.*

• Project Driveway/Bella Oaks Lane

- Friday PM Peak Hour
 Operation of the Project Driveway approach to Bella Oaks Lane would remain an acceptable LOS A with the addition of project traffic. *Less than significant*.
- Saturday PM Peak Hour
 Operation of the Project Driveway approach to Bella Oaks Lane would remain an acceptable LOS A with the addition of project traffic. *Less than significant.*

c. 2019 ARTERIAL SEGMENT IMPACTS – see Table 3

• SR29 North of Bella Oaks Lane

• Friday PM Peak Hour

Operation would remain LOS D northbound and LOS E southbound. The project would not increase total segment volumes by 1 percent or more (0.1%). *Less than significant.*

o Saturday PM Peak Hour

Operation would remain LOS E northbound and LOS E southbound. The project would not increase total segment volumes by 1 percent or more (0.2%). *Less than significant.*

• SR29 South of Bella Oaks Lane

• Friday PM Peak Hour

Operation would remain LOS D northbound and LOS E southbound. The project would not increase total segment volumes by 1 percent or more (0.3%). *Less than significant.*

Saturday PM Peak Hour
 Operation would remain LOS E northbound and LOS E southbound. The project would not increase total segment volumes by 1 percent or more (0.3%). *Less than significant.*

d. 2019 SIGNAL WARRANT EVALUATION – see Table 4

Signal warrant information is provided for informational purposes only per County significance criteria.

- SR29/ Bella Oaks Lane
 - Friday PM Peak Hour
 Volumes would not meet rural peak hour signal Warrant #3 criteria with or without project traffic. *Less than significant*.
 - Saturday PM Peak Hour
 Volumes would not meet rural peak hour signal Warrant #3 criteria with or without project traffic. *Less than significant*.

2. YEAR 2025 HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts along SR29 or at the Bella Oaks Lane intersections with SR29 or the Project Driveway during the Friday or Saturday PM peak traffic hours.

Less than significant.

b. 2025 INTERSECTION LEVEL OF SERVICE IMPACTS – see Table 2

• SR29/ Bella Oaks Lane

o Friday PM Peak Hour

Operation of the stop sign controlled Bella Oaks Lane intersection approach would remain an acceptable LOS D with the addition of project traffic. *Less than significant.*

o Saturday PM Peak Hour

Operation of the stop sign controlled Bella Oaks Lane intersection approach would remain an acceptable LOS D with the addition of project traffic. *Less than significant.*

• Project Driveway/Bella Oaks Lane

• Friday PM Peak Hour

Operation of the Project Driveway approach to Bella Oaks Lane would remain an acceptable LOS A with the addition of project traffic. *Less than significant.*

Saturday PM Peak Hour
 Operation of the Project Driveway approach to Bella Oaks Lane would remain an acceptable LOS A with the addition of project traffic. *Less than significant.*

c. 2025 ARTERIAL SEGMENT IMPACTS – see Table 3

• SR29 North of Bella Oaks Lane

• Friday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.1%). *Less than significant*

Saturday PM Peak Hour
 Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.2%). *Less than significant.*

• SR29 South of Bella Oaks Lane

- Friday PM Peak Hour
 Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.2%). *Less than significant.*
- Saturday PM Peak Hour
 Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.3%). *Less than significant.*

d. 2025 SIGNAL WARRANT EVALUATION – see Table 4

Signal warrant information is provided for informational purposes only per County significance criteria.

• SR29/ Bella Oaks Lane

- Friday PM Peak Hour
 Volumes would not meet rural peak hour signal Warrant #3 criteria with or without project traffic.
- Saturday PM Peak Hour
 Volumes would not meet rural peak hour signal Warrant #3 criteria with or without project traffic.

3. CUMULATIVE (YEAR 2030) HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts along SR29 or at the Bella Oaks Lane intersections with SR29 or the Project Driveway during the Friday or Saturday PM peak traffic hours. *Less than significant.*

b. 2030 INTERSECTION LEVEL OI

b. 2030 INTERSECTION LEVEL OF SERVICE IMPACTS – see Table 2

• SR29/ Bella Oaks Lane

Friday PM Peak Hour

Operation of the stop sign controlled Bella Oaks Lane intersection approach would remain an acceptable LOS D with the addition of project traffic. *Less than significant.*

• Saturday PM Peak Hour

Operation of the stop sign controlled Bella Oaks Lane intersection approach would remain an acceptable LOS D with the addition of project traffic. *Less than significant.*

• Project Driveway/ Bella Oaks Lane

• Friday PM Peak Hour

Operation of the Project Driveway approach to Bella Oaks Lane would remain an acceptable LOS A with the addition of project traffic. *Less than significant.*

Saturday PM Peak Hour
 Operation of the Project Driveway approach to Bella Oaks Lane would remain an acceptable LOS A with the addition of project traffic. *Less than significant.*

c. 2030 ARTERIAL SEGMENT IMPACTS – see Table 3

- SR29 North of Bella Oaks Lane
 - Friday PM Peak Hour
 - Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2019 and 2030 by 5 percent or more (0.7%). *Less than significant.*
 - Saturday PM Peak Hour
 Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2019 and 2030 by 5 percent or more (1.3%). *Less than significant.*

• SR29 South of Bella Oaks Lane

- Friday PM Peak Hour
 - Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2019 and 2030 by 5 percent or more (1.7%). *Less than significant.*

Saturday PM Peak Hour
 Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2019 and 2030 by 5 percent or more (2.0%). *Less than significant.*

d. 2030 SIGNAL WARRANT EVALUATION – see Table 4

Signal warrant information is provided for informational purposes only per County significance criteria.

- SR29/Bella Oaks Lane
 - Friday PM Peak Hour

Volumes **would not meet** rural peak hour signal Warrant #3 criteria with or without project traffic.

• Saturday PM Peak Hour

Volumes **would not meet** rural peak hour signal Warrant #3 criteria with or without project traffic.

X. OTHER POTENTIAL PROJECT IMPACTS

A. SIGHT LINES AT THE PROJECT DRIVEWAY/BELLA OAKS LANE INTERSECTIONS – see Figure 8.

The Caltrans Highway Design Manual (2019) states that stopping sight distance is the corner sight distance criteria to be utilized at private road connections to arterial roadways. The minimum required stopping sight distances based upon various vehicle speeds are as follows.

SPEED	MINIMUM REQUIRED STOPPING SIGHT DISTANCE
30 mph	200 feet
35 mph	250 feet
40 mph	300 feet

• Sight lines at the Project Driveway/Bella Oaks Lane intersection are currently acceptable to the east and west along Bella Oaks Lane.

Sight line to the east along Bella Oaks Lane (to see westbound vehicles): 600+ feet Sight line to the west along Bella Oaks Lane (to see eastbound vehicles): 600+ feet

There is no posted speed limit on Bella Oaks Lane at or near the project entrance. Vehicles were observed traveling at speeds from 25 to 40 mph during field surveys by Crane Transportation Group. Based upon the 40 mile per hour criterion, resultant sight lines to the east and west along Bella Oaks Lane from the Project Driveway would be acceptable. *Less than significant*.

B. MARKETING EVENTS

The project proposes to increase the number of events per the bulleted list below. The tasting room will be closed to tasting by appointment during marketing events that would result in exceeding the 44 visitor maximum. Food for all marketing events will be prepared by a licensed

caterer with minimal preparation (heating and plating) on site. Portable toilets will be available for all events. The proposed events are as follows:

- 32 events per year with 12 attendees maximum; between 11:00 AM and 11:00 PM
- o 16 events per year with 32 attendees maximum; between 11:00AM and 11:00PM
- 3 events per year with 100 attendees maximum; between 6:00PM and 11:00PM.*
- $\circ~$ 1 event per year with 100 attendees maximum; between 10:00AM and 3:00PM.*
- \circ 1 event per year with 250 attendees maximum; between 1:00PM and 4:00PM.*
- Shuttle bus and limousine service is proposed for larger events. *Less than significant.*

C. ON-SITE PARKING AND INTERNAL CIRCULATION

Consistent with the applicant's recent discussions with County staff, twelve (12) striped parking spaces are proposed for typical day use.⁶ As shown on the Site Plan, two of the twelve spaces will be designed and designated for ADA.

The larger marketing events will usually involve use of shuttle buses, vans and limousines. As occurs today for large events, vans and limousines may drop off, then return later to pick up passengers. These larger vehicles can be directed to appropriate onsite parking locations as needed (see Site Plan), such as an area near the caves entry, as well as south of the caves area (i.e., immediately south of the residence access road and west of the primary two-way access road, there is an asphalt parking area available for overflow parking. This 70-foot by 15-foot parking pad is referred to as the "westernmost overflow parking area".)

If employee plus visitor parking requires additional spaces, vehicles can also be accommodated along one side of the winery access roads, subject to Fire Department approval. For example, for the 450-person annual Music Festival for Brain Health held on the property, the county approved the use of the winery access roads for parking; the approval for this event involved onsite inspection by Fire Department personnel.

For a maximum 250-guest event, if 50 percent (125 attendees) arrived via shuttle, van or limousine at an average of eight attendees per vehicle, sixteen parking spaces could be required for the large vehicles. These could be accommodated within the Event Parking and/or westernmost overflow parking area.

If the remainder of guests (125) all arrived by passenger vehicle, at the County's weekday visitor rate of 2.6 per vehicle, an additional 48 spaces would be required. Thus, a total of 16 + 48 spaces (64) spaces could be required for guest parking.

⁶ Per telephone discussions between Trevor Hawkes, County of Napa, and Shari Staglin, Staglin Family Vineyard CEO, July, 2020.

Employee parking might require another 10 or 20 spaces. Thus, for the largest event, a total of 84 spaces might be required. With the existing 12 striped spaces in use, 72 overflow spaces could be required. An Event Parking area and the westernmost overflow parking area (described above) could accommodate about 1/2 half of the needed overflow (36 spaces), resulting in the additional 36 spaces required for temporary, event-related parking along one side of the one-way access road. At 25 feet per vehicle, this would result in 900 feet of roadway shoulder being occupied by event parking for visitors on a maximum event day, assuming approval by the Fire Department for the temporary roadside parking.

Note: the winery will have the option of utilizing valet parking for very large events in addition to the services of shuttle buses, vans and limousines for some groups of visitors.

Internal circulation design (roadway & parking dimensions/parking spaces, turnaround areas and radii for emergency vehicle and large truck movements) has been provided to meet all County and CAL FIRE design criteria.

Conclusion: There is abundant space available for parking on-site, and the existing designated parking areas can be expanded as needed.⁷ All parking demand will be accommodated on the site at all times for events of all sizes.

Less than significant.

D. VEHICLE MILES TRAVELED (VMT) REDUCTIONS

It is an upcoming requirement of all jurisdictions in the state to reduce the Vehicle Miles Traveled (VMT) of traffic associated with new developments to lower levels than would have resulted with comparable projects in the past (per State Senate Bill 743, which will take effect in July 2020). This will help reduce greenhouse gas emissions and vehicle congestion. SB 743 changes the focus of transportation impact analysis in CEQA from measuring impacts to drivers, to measuring the impact of driving. The change is being made by replacing level of service (LOS) with vehicle miles of travel (VMT) and providing analysis of land use and transportation projects that will help reduce future growth in VMT. This shift in transportation impact focus is expected to better align transportation impact analysis and mitigation outcomes with the State's goals to reduce greenhouse gas (GHG) emissions.

The approach to analysis of VMT is generally developed through computer modeling of land use activities. For wineries this may require projections of the length of employee and visitor trips. VMT calculations model individual land uses, and are intended to consider all vehicle miles travelled associated with an individual land use. The calculations can then be used to determine the change in total miles travelled due to a project that would alter the land use.

Quantitative reduction guidelines have not yet been set for modeling the vehicle activity of wineries in Napa County, but all wineries are expected to develop ongoing programs that will

⁷ Per telephone conversations with Mrs. Shari Staglin, CEO, Staglin Family Vineyard, January 7 and June 3, 2020.

provide incentives to reduce daily and commute period employee traffic as well as implement measures to entice guests to use travel modes other than the automobile or to travel at times other than peak congestion periods.

E. TRANSPORTATION DEMAND MANAGEMENT (TDM)

Staglin Family Vineyard has developed a Transportation Demand Management (TDM) plan for the purpose of accomplishing VMT reduction goals.

Staglin Family Vineyard Transportation Demand Management (TDM) Plan

The applicant will appoint a TDM coordinator to carry out the proposed plan. Measures may include the following:

- 1. Electric car charging for employees and guests $\begin{bmatrix} I \\ SFP \end{bmatrix}$
- 2. Bike racks and storage areas for employees and guests $\begin{bmatrix} I \\ SEP \end{bmatrix}$
- 3. High occupancy vehicle use (vans and shuttle buses) will be encouraged for large marketing events; shuttle buses will be provided for all large events with 100 or more guests
- 4. Employee work hours will be staggered to the greatest extent possible to avoid congestion during the peak traffic hours along S.R. 29
- 5. Work at home or at remote location opportunities (telecommuting) will be offered when possible [1]
- 6. Guest appointments will be scheduled, to the extent possible, to avoid travel during the peak traffic hours along S.R. $29_{\text{sep}}^{\text{cl}}$
- 7. Staglin Family Vineyard will enroll in "Napa Valley Forward", a program aimed at reducing traffic along major roads in the Napa Valley by promoting carpooling, vanpooling, bike riding, and use of transit [step]
- 8. Staglin Family Vineyard will enroll in the "Bay Area Commuter Benefits Program" whereby employees report their carpooling activities and may receive company paid subsidies

F. YEARLY TRIPS

Based upon the County formula, the Staglin Family Winery is currently generating 9,124 yearly trips, while with the use permit modification yearly trip generation would be 24,783 trips, resulting in an increase of 15,659 yearly trips. The basis for these volumes is provided in **Appendix E**.

XI. RECOMMENDED MEASURES

• None required.

XII. CONCLUSIONS & RECOMMENDATIONS

The project would result in no significant off-site circulation system operational impacts to SR29 at Bella Oaks Lane or the SR29/Bella Oaks Lane intersection. New traffic would occur on weekdays and weekends. Sight lines at the project driveway connection to Bella Oaks Lane would remain acceptable and continue to meet Caltrans stopping sight distance criteria, and there would continue to be no left turn lane warranted on Bella Oaks Lane at the Project Driveway. In addition, the SR 29/Bella Oaks Lane intersection would not have Friday or Saturday PM peak hour volumes meeting rural peak hour signal Warrant #3 criteria for existing or future conditions. Two-way volumes would increase on Bella Oaks Lane near SR 29; for example, during a Harvest Friday existing PM peak hour volumes would increase due to the project from 45 vehicles to 52 vehicles; during a Harvest Saturday existing PM peak hour volumes would increase due to the project from 17 to 27 vehicles.

There would be 48 new small marketing events each year; 32 with 12 attendees (resulting in only 5 guest vehicles), and 16 with up to 32 attendees (resulting in only 13 guest vehicles). On days with small events, regular visitation would be limited so as not to exceed the daily 44 visitors by appointment limit being requested in the use permit modification. There would also be five new large marketing events (with 100 to 250 guests). Large events would make use of shuttle bus and limousine service:

- 3 with 100 guests would occur from 6:00 PM 10:00 PM
- 1 with 100 guests would occur from 10:00 AM 4:00 PM
- 1 with 250 guests would occur between 11:00 AM and 11:00 PM

There are no resulting recommended requirements or mitigation measures.

This Report is intended for presentation and use in its entirety, together with all of its supporting exhibits, schedules, and appendices. Crane Transportation Group will have no liability for any use of the Report other than in its entirety, such as providing an excerpt to a third party or quoting a portion of the Report. If you provide a portion of the Report to a third party, you agree to hold CTG harmless against any liability to such third parties based upon their use of or reliance upon a less than complete version of the Report. FIGURES

Area Map

TABLES

TABLE 1

UNSIGNALIZED INTERSECTION LOS CRITERIA

Level of Service	Description	Average Control Delay (Seconds Per Vehicle)
А	Little or no delays	≤ 10.0
В	Short traffic delays	10.0 to 15.0
С	Average traffic delays	15.0 to 25.0
D	Long traffic delays	25.0 to 35.0
Е	Very long traffic delays	35.0 to 50.0
F	Extreme traffic delays with intersection capacity exceeded (for an all-way stop), or with approach/turn movement capacity exceeded (for a side street stop controlled intersection)	> 50.0

Source: Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board)

Table 2

INTERSECTION LEVEL OF SERVICE

	FRIDAY PM	PEAK HOUR	SATURDAY PN	M PEAK HOUR
LOCATION	W/O PROJECT	WITH PROJECT	W/O PROJECT	WITH PROJECT
SR29/Bella Oaks Ln	C-24.4 ⁽¹⁾	C-24.9	C-22.2	C-22.8
Project Driveway/Bella Oaks Ln	A-8.7 (2)	A-8.8	A-8.6	A-8.6

YEAR 2019 HARVEST

YEAR 2025 HARVEST

	FRIDAY PM	PEAK HOUR	SATURDAY PN	M PEAK HOUR
LOCATION	W/O PROJECT	WITH PROJECT	W/O PROJECT	WITH PROJECT
SR29/Bella Oaks Ln	D-28.2 ⁽¹⁾	D-28.8	D-25.0	D-25.8
Project Driveway/Bella Oaks Ln	A-8.8 (2)	A-8.8	A-8.6	A-8.7

YEAR 2030 (CUMULATIVE) HARVEST

	FRIDAY PM	PEAK HOUR	SATURDAY PN	M PEAK HOUR
LOCATION	W/O PROJECT	WITH PROJECT	W/O PROJECT	WITH PROJECT
SR29/Bella Oaks Ln	D-32.5 ⁽¹⁾	D-33.3	D-27.2	D-28.4
Project Driveway/Bella Oaks Ln	A-8.8 (2)	A-8.8	A-8.6	A-8.7

⁽¹⁾ Unsignalized level of service – control delay in seconds: Bella Oaks Ln. stop sign controlled approach to SR29-128.

(2) Unsignalized level of service - control delay in seconds: Project Driveway approach to Bella Oaks Ln.

6th Edition Highway Capacity Manual (HCM) Analysis Methodology for unsignalized intersections (2017) Source: Crane Transportation Group

Table 3 ARTERIAL LEVEL OF SERVICE YEAR 2019 HARVEST

		FRI	DAY PM I	РЕАК НО	UR		SATU	RDAY PN	1 PEAK H	IOUR
LOCATION	W PRO	/O JECT	WI PRO	ТН ЈЕСТ	% Increase in 2-Way Volume due to Project	W PRO	//O JECT	WI PRO	TH JECT	% Increase in 2-Way Volume due to Project
	NB	SB	NB	SB	Ū	NB	SB	NB	SB	NB SB
SR29 north of Bella Oaks Ln	D53	E67	D53 E68		0.1%	E60	E66	E60	E66	0.2%
SR29 south of Bella Oaks Ln	D53	E .68	D53	E .69	0.3%	E60	E66	E60	E66	0.3%

YEAR 2025 HARVEST

		FRII	DAY PM I	РЕАК НО	UR		SATU	RDAY PN	I PEAK H	IOUR
	W PRO.	/O IECT	WI PRO.	TH JECT	% Increase in 2-Way Volume	W PRO.	7/O JECT	WI PRO.	TH JECT	% Increase in 2-Way Volume
LOCATION	NB	SB	NB	SB	due to Project	NB	SB	NB	SB	due to Project NB SB
SR29 north of Bella Oaks Ln	E58	E73	E58	E73	0.1%	E65	E71	E65	E71	0.2%
SR29 south of Bella Oaks Ln	E58 ⁽¹⁾	E74	E58	E74	0.2%	E65	E-72	E65	E72	0.3%

YEAR 2030 (CUMULATIVE) HARVEST

		FR	IDAY PN	M PEAK	HOUR		SATU	URDAY	PM PEA	AK HOUR
	W PRO	/O JECT	WI PRO	TH JECT	% Increase in 2-Way	W PRO.	/O JECT	WI PROJ	TH JECT	% Increase in 2-Way
LOCATION	NB	SB	NB	SB	Increment of Growth 2019-30	NB	SB	NB	SB	Increment of Growth 2019-30
SR29 north of Bella Oaks Ln	E61	E78	E61	E78	0.7%	E69	E76	E69	E76	1.3%
SR29 south of Bella Oaks Ln	E61	E79	E62	E79	1.7%	E69	E76	E69	E76	2.0%

(1) Level of service – demand/capacity

Highway Capacity Manual, 6th Edition (2017) analysis methodology.

Compiled by: Crane Transportation Group

Table 4

RURAL SIGNAL WARRANT EVALUATION

SR29/Bella Oaks Lane

Do Volumes meet Caltrans Rural Warrant #3 Volume Criteria?

FRIDAY PM P	EAK HOUR	SATURDAY P	M PEAK HOUR
WITHOUT PROJECT	WITH PROJECT	WITHOUT PROJECT	WITH PROJECT
No	No	No	No

EXISTING

YEAR 2024

FRIDAY PM P	EAK HOUR	SATURDAY P	M PEAK HOUR
WITHOUT PROJECT	WITH PROJECT	WITHOUT PROJECT	WITH PROJECT
No	No	No	No

YEAR 2030 (CUMULATIVE)

FRIDAY PM P	EAK HOUR	SATURDAY P	M PEAK HOUR
WITHOUT PROJECT	WITH PROJECT	WITHOUT PROJECT	WITH PROJECT
No	No	No	No

Compiled by: Crane Transportation Group

APPENDIX A

5:15 PM

5:30 PM

5:45 PM

Count Total

Peak Hour

Three	-Hour	Cour	nt Sum	mari	es														
Inte			Bella O	aks Li	n		DRIV	EWAY			SR	-29			SF	₹-29			
Inter St	val		Eastb	ound			West	bound		í	North	bound			South	bound		15-min Total	Rolling
010	<i></i>	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	TULAT	
3:00) PM	0	3	0	4	0	0	0	0	0	0	206	0	0	0	255	2	470	0
3:1	5 PM	0	2	0	4	0	0	0	0	0	2	216	0	0	0	263	1	488	0
3:30) PM	0	1	0	1	0	0	0	0	0	3	182	0	1	0	247	2	437	0
3:4	5 PM	0	1	0	5	0	0	0	0	0	5	198	0	0	0	237	2	448	1,843
4:00) PM	0	1	0	1	0	0	0	0	0	0	190	0	0	0	248	0	440	1,813
4:15	5 PM	0	7	0	5	0	0	0	0	0	0	195	0	0	0	250	1	458	1,783
4:30) PM	0	3	0	5	0	0	0	0	0	0	197	0	0	0	199	2	406	1,752
4:4!	5 PM	0	0	0	2	0	0	0	0	0	0	160	0	0	0	272	1	435	1,739
5:00) PM	0	1	0	3	0	0	0	0	0	1	138	0	0	0	190	2	335	1,634
5:1	5 PM	0	1	0	6	0	0	0	0	0	0	150	0	0	0	246	2	405	1,581
5:30) PM	0	4	0	6	0	0	0	0	0	2	201	0	0	0	221	0	434	1,609
5:4	5 PM	0	0	0	3	0	0	0	0	0	2	160	0	0	0	246	3	414	1,588
Count	Total	0	24	0	45	0	0	0	0	0	15	2,193	0	1	0	2,874	18	5,170	0
Deals	All	0	7	0	14	0	0	0	0	0	10	802	0	1	0	1,002	7	1,843	0
Реак	HV	0	1	0	0	0	0	0	0	0	1	25	0	0	0	39	1	67	0
nou.	HV%	-	14%	-	0%	•	-	-	-	<u> </u>	10%	3%	-	0%	-	4%	14%	4%	0
Note: T	hree-ho	ur cour	nt summ	ary vo	lumes ir	าclude l	heavy v	ehicles	but exc	lude b	icycles	in overa	ill coun	ıt.					
Inte	rval		Hea	vy Vel	nicle Tr	otals				Bic	ycles				P	edestria	ins (Cr	ossing Leç	1)
Sta	art	EB	WB	١	√B	SB	Total	EB	WB	١	√B	SB	Total	East	:	West	Nort	h Sout	h Total
3:0) PM	0	0		5	12	17	0	0		1	0	1	0		0	0	0	0
3:1	5 PM	0	0	1	11	11	22	0	0		0	0	0	0		0	0	0	0
3:30) PM	0	0		6	7	13	0	0		0	0	0	0		0	0	0	0
3:4	5 PM	1	0		4	10	15	0	0		0	1	1	0		0	0	0	0
4:00) PM	0	0	4	11	6	17	0	0		0	0	0	0		0	0	0	0
4:15	5 PM	0	0		4	8	12	0	0		0	0	0	0		0	0	0	0
4:30) PM	0	0		2	12	14	0	0		0	0	0	0		0	0	0	0
4:4!	5 PM	1	0		5	9	15	0	0		0	1	1	0		0	0	0	0
5:0/	ЭРМ	0	0		6	3	9	0	0		0	0	0	0		0	0	0	0

		Bella O	aks Ln	1		DRIV	EWAY			SR	-29			SR	-29			
Start		Eastb	ound			West	bound			North	bound			South	bound		15-min Total	One Hour
otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	ene neu
3:00 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	12	0	17	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	11	0	0	0	10	1	22	0
3:30 PM	0	0	0	0	0	0	0	0	0	0	6	0	0	0	7	0	13	0
3:45 PM	0	1	0	0	0	0	0	0	0	1	3	0	0	0	10	0	15	67
4:00 PM	0	0	0	0	0	0	0	0	0	0	11	0	0	0	6	0	17	67
4:15 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	8	0	12	57
4:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	10	2	14	58
4:45 PM	0	0	0	1	0	0	0	0	0	0	5	0	0	0	8	1	15	58
5:00 PM	0	0	0	0	0	0	0	0	0	0	6	0	0	0	3	0	9	50
5:15 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	8	0	10	48
5:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	5	0	9	43
5:45 PM	0	0	0	1	0	0	0	0	0	0	3	0	0	0	5	1	10	38
ount Total	0	1	0	2	0	0	0	0	0	1	62	0	0	0	92	5	163	0
eak Hour	0	1	0	0	0	0	0	0	0	1	25	0	0	0	39	1	67	0

Three-Hour Count Summaries - Bikes

Interval	Be	lla Oaks	Ln	С	RIVEWA	١Y		SR-29			SR-29		15 min	Delling
Start	E	Eastbound	d	V	Vestboun	ıd	N	Jorthbour	nd	S	outhbour	nd	Total	One Hour
out	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		011011.01.
3:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	1	2
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	1	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	1	1
Count Total	0	0	0	0	0	0	0	1	0	0	3	0	4	0
Peak Hour	0	0	0	0	0	0	0	1	0	0	1	0	2	0
Note: U-Turn vo	olumes for	[,] bikes are	e includec	l in Left-Τι	ırn, if any	<i>i.</i>								

Five-Hour Count Summaries

Into	n al		Bella O	aks Lr	۱ ١		DRIV	EWAY			SF	R-29			SF	R-29		1E min	Polling
Inter Sta	vai		Eastb	ound			West	bound			North	bound			South	nbound		Total	One Hour
04		UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
2:15	5 PM	0	1	0	0	0	0	0	0	0	1	265	0	0	0	225	0	492	0
2:30	PM	0	0	0	1	0	2	0	0	0	1	268	0	0	0	262	0	534	0
2:45	5 PM	0	1	0	3	0	0	0	0	1	0	231	0	0	0	262	0	498	0
3:00	PM	0	4	0	4	0	0	0	0	0	0	211	0	0	0	256	0	475	1,999
	All	0	6	0	8	0	2	0	0	1	2	975	0	0	0	1,005	0	1,999	0
Peak	HV	0	0	0	0	0	0	0	0	0	0	11	0	0	0	10	0	21	0
Hour	HV%	-	0%	-	0%	-	0%	-	-	0%	0%	1%	-	-	-	1%	-	1%	0
Note: Fe	or all thi	ree-hou	ır count	summa	ary, see	e next p	oage.												
Inter	rval		Hea	vy Veł	nicle To	otals				Bic	ycles				Р	edestria	ns (Cr	ossing Le	g)
Sta	art	EB	WB	i N	IB	SB	Total	EB	WB	5 N	۱B	SB	Total	Eas	st	West	Nort	h Sou	th Total
2:15	5 PM	0	0		1	5	6	0	0		0	2	2	0		0	0	0	0
2:30	PM	0	0	;	3	3	6	0	0		0	2	2	0		0	0	0	0
2:45	5 PM	0	0	:	5	0	5	0	0		0	2	2	0		0	0	0	0
3:00	PM	0	0	:	2	2	4	0	0		0	0	0	0		0	0	0	0
Peak	Hour	0	0	1	1	10	21	0	0		0	6	6	0		0	0	0	0

Five-Hou	ır Co	unt :	Summ	naries	5														
Intorval			Bella O	aks Lr	n		DRIV	EWAY			SF	₹-29			SF	₹-29		45 min	Balling
Start			Eastb	ound		Γ	West	bound		<u> </u>	North	bound		Γ	South	bound		Total	One Hour
1:00 DN	_	UT		TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	140	<u> </u>
	1	0	1	0	ა ი	0	U	0	0	2	3	256	0	U	0	184	1	449	0
1:15 Pivi	1	0	U	U	3	U	0	U	0	0	0	244	0	U	U	192	1	440	U
1:30 Pivi	л	0	2	0	3	U	U	U	U I	1	2	251	0	U	U	244	3	506	0
1:45 Pivi	1	0	1	U	4	U	ï	U	0	3	2	242	0	U	U	238	3	494	1,889
2:00 Pivi	/	0	0	0	0	0	0	0	0	0	1	241	0	0	0	215	0	463	1,903
2:15 PW	<i>n</i>	0	1	0	0	0	0	0	0	0	1	265	0	0	0	225	0	492	1,955
2:30 PW		0	0	0	1	0	2	0	0	0	1	268	0	0	0	262	0	534	1,983
2:45 Pivi	^	0	1	0	3	0	0	0	0		0	231	0	0	0	262	0	498	1,987
3:00 Pivi	1	0	4	0	4	0	0	0	0	0	0	211	0	U	0	250	0	4/5	1,999
3:15 PIV	1	0	0	U	4	U	0	U	0	0	0	222	0	U	U	239	2	467	1,974
3:30 PIV	1	0	1	U	3	U	0	U	0	0	ĩ	200	0	U	U	231	3	439	1,879
3:45 PIV	1	0	U	U	3	U	0	U	0	0	2	204	0	U	U	268	1	478	1,859
4:00 Pivi	л	0	2	U	10	U	U	U	U	0	Ż	186	0	U	U	227	2	429	1,813
4:15 PIV	Л	0	U	U	3	U	U	U	0	0	1	190	0	U	U	245	1	440	1,786
4:30 PM	л	0	0	U	2	U	0	U	0	0	U	216	0	0	U	238	2	458	1,805
4:45 PM	л	0	1	U	1	U	0	U	0	0	3	206	0	0	U	244	0	455	1,782
5:00 PM	<u>л</u>	0	0	0	1	0	0	0	0	0	0	174	0	0	0	223	0	398	1,751
5:15 PM	Λ	0	0	0	2	0	0	0	0	0	0	123	0	0	0	231	0	356	1,667
5:30 PM	Λ	0	0	0	1	0	0	0	0	0	0	153	0	0	0	235	0	389	1,598
5:45 PM	Λ	0	0	0	0	0	0	0	0	0	0	162	0	0	0	220	0	382	1,525
Count Tota	al	0	14	0	57	0	3	0	0	7	19	4,245	0	0	0	4,679	18	9,042	0
Peak	di	0	6	0	8	0	2	0	0	1	2	975	0	0	0	1,005	0	1,999	0
Hour	V	0	0	0	0	0	0	0	0	0	0	11	0	0	0	10	0	21	0
HV	/%	-	0%		0%	-	0%	-	-	0%	0%	1%	-	-	-	1%	-	1%	0
Note: Hive-n	hour c	count :	summar	y volu	mes inc	lude he	evy ver	nicles b	ut excil	ide bicy	/cles in) overall	count.						
Interval			Hea	vy Vel	hicle T	otals				Bicy	/cles			Г	P	edestria	uns (Cr	ossing Le	a)
Start		EB	WB	1	NB	SB	Total	EB	WB	s N	IB	SB	Total	Eas	t	West	North	h Sou	th Total
1:00 PN	N	0	0		5	4	9	0	0	(0	0	0	0		0	0	0	0
1:15 PN	N	0	0		8	2	10	0	0	(0	0	0	0		0	0	0	0
1:30 PN	N	0	0		2	7	9	0	0	(0	4	4	0		0	0	0	0
1:45 PN	N	0	0		3	4	7	0	0	(0	2	2	0		0	0	0	0
2:00 PN	N	0	0		5	3	8	0	0		1	0	1	0		0	0	0	0
2:15 PN	N	0	0		1	5	6	0	0	(0	2	2	0		0	0	0	0
2:30 PM	N	0	0		3	3	6	0	0		0	2	2	0		0	0	0	0
2:45 PN	N	0	0		5	0	5	0	0	(0	2	2	0		0	0	0	0
3:00 PN	N	0	0		2	2	4	0	0	(0	0	0	0		0	0	0	0
3:15 PN	N	0	0		3	2	5	0	0	(0	1	1	0		0	0	0	0
3:30 PN	N	0	0		3	2	5	0	0	(0	0	0	0		0	0	0	0
3:45 PN	N	0	0		3	4	7	0	0	(0	0	0	0		0	0	0	0
4:00 PN	N	0	0		4	3	7	0	0	(0	5	5	0		0	0	0	0
4:15 PN	J	1	0		4	3	8	0	0	,	n n	0	0	0		0	0	0	0
4:30 PN	J	0	0		4	3	7	0	0	,	1	2	3	0		ů 0	0	0	0
4:45 PN	J	1	0		6	6	13	0	0	,	n n	0	0	0		ů 0	0	0	0
5:00 PN	л	0	0		2	6	8	0	0	,	n n	ů 0	0	0		0	0	0	0
5.15 PN	л —	0 0	0		0	n	0	0	0		n	ñ	0	0 0		0 0	0	0	0
00		•	•		•	•			•	•	-	•	· ·	~		•	•	•	0

5:30 PM

5:45 PM

Count Total

Peak Hour

laste av sel		Bella C	aks Ln	1		DRIVI	EWAY			SR	-29			SR	-29		45	Dellin
Interval		Eastb	ound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	rotar	one neu
1:00 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	4	0	9	0
1:15 PM	0	0	0	0	0	0	0	0	0	0	8	0	0	0	2	0	10	0
1:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	7	0	9	0
1:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0	7	35
2:00 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	3	0	8	34
2:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	5	0	6	30
2:30 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0	6	27
2:45 PM	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	5	25
3:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	4	21
3:15 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	0	5	20
3:30 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	2	0	5	19
3:45 PM	0	0	0	0	0	0	0	0	0	1	2	0	0	0	4	0	7	21
4:00 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0	7	24
4:15 PM	0	0	0	1	0	0	0	0	0	0	4	0	0	0	3	0	8	27
4:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0	7	29
4:45 PM	0	0	0	1	0	0	0	0	0	1	5	0	0	0	6	0	13	35
5:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	6	0	8	36
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	28
5:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	4	0	5	26
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	5	0	8	21
Count Total	0	0	0	2	0	0	0	0	0	2	65	0	0	0	68	0	137	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	11	0	0	0	10	0	21	0

Five-Hour Count Summaries - Bikes

Internel	Be	lla Oaks	Ln	D	RIVEWA	۱ Y		SR-29			SR-29		45	Delline
Start	E	Eastboun	d	V	Vestboun	ıd	N	lorthbour	nd	s	outhboun	d	Total	One Hour
0.0.1	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		••
1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	4	0
1:45 PM	0	0	0	0	0	0	0	0	0	0	2	0	2	6
2:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	7
2:15 PM	0	0	0	0	0	0	0	0	0	0	2	0	2	9
2:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	2	7
2:45 PM	0	0	0	0	0	0	0	0	0	0	2	0	2	7
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	6
3:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	1	5
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	3
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:00 PM	0	0	0	0	0	0	0	0	0	0	5	0	5	6
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	5
4:30 PM	0	0	0	0	0	0	0	1	0	0	2	0	3	8
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	8
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	3
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	3
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	2	0	0	20	0	22	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	6	0	6	0
Note: U-Turn ve	olumes for	r bikes ar	e includec	l in Left-Tı	ırn, if any	<i>.</i>								

		Friday		;	Saturda	ıy		Sunda	у		Monda	у		Tuesda	ıy	w	ednesc	lay	1	Thursda	ay			
	1	0/18/20 ⁻	19	1	0/19/20	19	1	0/20/20	19	1	0/21/20	19	1	0/22/20	19	1	0/23/20	19	1	0/24/20	19	Mid-V	Neek Av	/erage
Time	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total
12:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
1:00 AM	0	0	0	0	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
2:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
3:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
4:00 AM	0	0	0	4	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
5:00 AM	2	0	2	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
6:00 AM	12	2	14	3	0	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
7:00 AM	7	2	9	3	5	8	-	-	-	-	_	_	-	-	-	_	-	_	-	_	-	#####	#####	#####
8:00 AM	5	5	10	0	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
9:00 AM	5	3	8	0	2	2	_	-	_	_	_	_	_	-	_	_	-	-	_	_	_	#####	#####	#####
10:00 AM	2	4	6	0	0	0	-	-	-	-	-	_	-	-	-	_	-	-	-	_	-	#####	#####	#####
11:00 AM	2	9	11	0	0	0	-	-	-	-	-	_	-	_	-	_	-	_	-	_	-	#####	#####	#####
12:00 PM	4	10	14	0	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
1:00 PM	1	1	2	0	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
2:00 PM	2	9	11	1	5	6	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	#####	#####	#####
3:00 PM	1	6	7	0	16	16	_	-	-	_	_	_	_	_	_	_	-	_	_	_	_	#####	#####	#####
4:00 PM	3	17	20	0	7	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
5:00 PM	1	19	20	0	3	3	_	-	-	_	_	_	_	_	_	_	-	_	_	_	-	#####	#####	#####
6:00 PM	1	4	5	0	0	0	-	-		-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
7:00 PM	0	0	0	0	5	5	-	-		-	_	_	-	_	-	-	_	-	-	_	-	#####	#####	#####
8:00 PM	1	9	10	1	5	6						-		-		-				-		#####	#####	#####
9:00 PM	0	0	0	0	0	0	-	-	-	-	-	_	-	_	-	-	-	-	-	_	-	#####	#####	#####
10.00 PM	0	1	1	0	2	2	-					_	-	-		-		-		_		######	######	######
11.00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	######	#####	#####
Total	49	101	150	12	59	71	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
Percent	33%	67%	-	17%	83%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM Peak	06:00	11:00	06:00	04:00	07:00	07:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
Vol.	12	9	14	4	5	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
PM Peak	12:00	17:00	16:00	14:00	15:00	15:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####
Vol.	4	19	20	1	16	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	#####	#####	#####

1. Mid-week average includes data between Tuesday and Thursday.

Intersection: Date: Count Period:

SR-29 / Bella Oaks Ln Sat, Nov 23, 2019 12:00 PM to 12:00 AM

Twelve-Hour Count Summaries

Internel		Bella C	Daks Ln			n	/a			SI	R-29			SF	R-29		45 min	Delling
Start		East	bound			West	bound			North	nbound			South	nbound		Total	
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	
12:00 PM	0	1	0	1	0	0	0	0	0	0	254	0	0	1	137	0	394	0
12:15 PM	0	0	0	0	0	1	0	0	0	3	201	0	0	0	153	1	359	0
12:30 PM	0	3	0	1	0	0	0	0	0	0	259	0	0	0	152	0	415	0
12:45 PM	0	0	0	2	0	0	0	0	0	1	259	0	0	0	171	2	435	1,603
1:00 PM	0	1	0	0	0	0	0	1	0	0	242	0	0	0	160	2	406	1,615
1:15 PM	0	2	0	1	0	0	0	0	0	0	236	0	0	0	185	2	426	1,682
1:30 PM	0	0	0	3	0	0	0	0	0	0	232	0	0	0	178	1	414	1,681
1:45 PM	0	0	0	1	0	0	0	0	0	0	253	0	0	0	181	0	435	1,681
2:00 PM	0	0	0	2	0	0	0	0	0	3	222	0	0	0	163	0	390	1,665
2:15 PM	0	0	0	3	0	0	0	0	0	2	208	0	0	0	167	0	380	1,619
2:30 PM	0	0	0	0	0	0	0	0	0	0	214	0	0	0	220	0	434	1,639
2:45 PM	0	0	0	2	0	0	0	0	0	3	225	0	0	0	233	0	463	1,667
3:00 PM	0	1	0	0	0	0	0	0	0	0	217	0	0	0	218	0	436	1,713
3:15 PM	0	1	0	1	0	0	0	0	0	0	168	0	0	0	248	1	419	1,752
3:30 PM	0	0	0	4	0	0	0	0	0	0	191	0	0	0	247	0	442	1,760
3:45 PM	0	0	0	2	0	0	0	0	0	1	182	0	0	0	252	1	438	1,735
4:00 PM	0	1	0	6	0	0	0	0	0	2	159	0	0	0	272	1	441	1,740
4:15 PM	0	0	0	1	0	0	0	0	0	1	144	0	0	0	247	0	393	1,714
4:30 PM	0	0	0	0	0	0	0	0	0	0	181	0	0	0	259	0	440	1,712
4:45 PM	0	0	0	0	0	0	0	0	0	0	157	0	0	0	268	1	426	1,700
5:00 PM	0	0	0	0	0	0	0	0	0	0	120	0	0	0	203	0	323	1,582
5:15 PM	0	0	0	0	0	0	0	0	0	0	138	0	0	0	219	0	357	1,546
5:30 PM	0	0	0	1	0	0	0	0	0	0	125	0	0	0	226	0	352	1,458
5:45 PM	0	1	0	1	0	0	0	0	0	0	149	0	0	0	229	0	380	1,412

Intersection: Date: Count Period:

SR-29 / Bella Oaks Ln Fri, Nov 22, 2019 12:00 PM to 12:00 AM

Twelve-Hour Count Summaries

later col		Bella (Daks Ln			n	ı/a			SI	R-29			SF	R-29		45 min	Delling
Interval		East	bound			West	bound			North	hbound			South	nbound		Total	
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riour
12:00 PM	0	1	0	2	0	0	0	0	0	0	197	0	0	0	165	2	367	0
12:15 PM	0	3	0	2	0	0	0	0	0	2	227	0	0	0	158	1	393	0
12:30 PM	0	3	0	3	0	0	0	0	0	5	201	0	0	0	174	3	389	0
12:45 PM	0	1	0	2	0	0	0	0	0	4	178	0	0	0	173	1	359	1,508
1:00 PM	0	2	0	0	0	0	0	0	0	2	158	0	0	0	208	0	370	1,511
1:15 PM	0	1	0	3	0	0	0	0	0	0	197	0	0	0	186	3	390	1,508
1:30 PM	0	3	0	2	0	0	0	0	0	0	186	0	0	0	200	2	393	1,512
1:45 PM	0	1	0	1	0	0	0	0	0	2	173	0	0	0	235	2	414	1,567
2:00 PM	0	0	0	3	0	0	0	0	0	2	177	0	0	0	231	1	414	1,611
2:15 PM	0	1	0	0	0	0	0	1	0	1	168	0	0	1	195	2	369	1,590
2:30 PM	0	0	0	1	0	1	0	0	0	2	207	0	0	0	234	0	445	1,642
2:45 PM	0	0	0	3	0	0	0	0	0	4	172	0	0	0	228	2	409	1,637
3:00 PM	0	2	0	2	0	0	0	0	0	3	216	0	0	0	256	0	479	1,702
3:15 PM	0	3	0	11	0	0	0	0	0	1	180	0	0	0	220	0	415	1,748
3:30 PM	0	2	0	8	0	0	0	0	0	1	197	0	0	0	289	1	498	1,801
3:45 PM	0	0	0	2	0	0	0	0	0	0	154	0	1	0	227	1	385	1,777
4:00 PM	0	0	0	4	0	0	0	0	0	0	141	0	0	0	229	0	374	1,672
4:15 PM	0	0	0	0	0	0	0	0	0	1	157	0	0	0	205	0	363	1,620
4:30 PM	0	1	0	2	0	0	0	0	0	1	160	0	0	0	250	0	414	1,536
4:45 PM	0	2	0	5	0	0	0	0	0	2	138	0	0	0	212	0	359	1,510
5:00 PM	0	2	0	1	0	0	0	0	0	0	153	0	0	0	194	0	350	1,486
5:15 PM	0	2	0	0	0	0	0	0	0	1	167	0	0	0	227	0	397	1,520
5:30 PM	0	2	0	3	0	0	0	0	0	2	135	0	0	0	251	0	393	1,499
5:45 PM	0	0	0	3	0	0	0	0	0	1	160	0	0	0	265	1	430	1,570

іф

Location: Staglin Winery Dwy N/O Bella Oaks Ln Date Range: 11/15/2019 - 11/21/2019 Site Code: 01

		Friday		S	aturday		Ō	unday		Mon	day		Tuesd	ay	We	dnesda	y.	Ļ	ursday				
	1	/15/201	6	11	/16/201	6	11/	17/2019		11/18	/2019		11/19/20	019	11	/20/201	6	11/2	21/2019	-	Aid-Week	Avera	ge
Time	NB	SB	Total	NB	SB	Total	NB	SB .	Total	NB S	B Tota	I NB	SB	Total	NB	SB	Total	NB	SB T	otal	NB SI	з Tc	otal
2:00 AM	0	0	0	0	0	0						1								#	#######	## ##	###
1:00 AM	0	0	0	0	0	0	I.	I.	1		1	I	1	ı	ı	ı.		I.		#	###	## ##	##
2:00 AM	0	0	0	0	0	0						1	1							+	###	## ##	#
3:00 AM	0	0	0	0	0	0	1	1	1		1	1	1	I	1	ı.		I.		+	##	##	###
4:00 AM	0	0	0	0	0	0		ī				1	1							#	### ####	## ##	##
5:00 AM	0	~	-	0	0	0	ı	ī	1		1	I	1	ı	I	ı		I		#	###	## ##	##
6:00 AM	0	0	0	0	0	0	ı.	ī			1	T	1	ı.				ī		#	## ###	## ##	#
7:00 AM	4	7	7	0	0	0				1	1	1	1	I	ı	1				#	###	## ##	#
8:00 AM	-	ъ	4	0	2	2	i.					1	1							#	##	## ##	###
9:00 AM	2	~	e	0	0	0	I.	I.	1		1	I	1	I	I.	I.		I.		#	## ###	## ##	##
10:00 AM	-	4	5	0	e	e	,	ī				T	1	ı.	ī	,		ī		#	## ###	## ##	##
11:00 AM	2	7	6	0	-	-		,				1	1	ı	ŀ	ı		,		#	## ###	## ##	#
12:00 PM	0	ю	ъ	2	.	e	ı.	ī				T	1	ī	ī	ı.		ī		#	## ###	## ##	##
1:00 PM	2	5	7	e	2	S	I.	I.	1		1	I	1	I	I	I		I		#	## ###	## ##	##
2:00 PM	S	œ	13	-	-	2					1	1	1							+	##	##	##
3:00 PM	2	5	7	-	-	2	1	1	1		1	1	1	I	1	i.		ı.		+	##	## ##	##
4:00 PM	-	e	4	-	2	З	,	,				1	1	,	÷	÷				#	## ###	## ##	##
5:00 PM	0	6	6	0	4	4	I.	I.	1		1	1	1	I	I.	I.		I.		#	## ###	##	###
6:00 PM	0	5	5	0	-	-						1	1	ī						#	##	##	###
7:00 PM	-	~	2	0	-	~		1	1		1	1	1		ı	1		1		+	###	## ##	##
8:00 PM	-	0	-	0	0	0					1	1	1	ī						+	###	## ##	#
9:00 PM	0	0	0	0	0	0	ı	ı	1		1	I	1	I	ı	ı		ı		+	###	## ##	##
10:00 PM	0	-	-	0	0	0						1	1	1						+	##	## ##	#
11:00 PM	0	0	0	0	0	0			1		1	1	1	1	I		I			+	### ###	## ##	###
Total	22	63	85	8	19	27			I.	1	I	I	T	I	I	I	I	I	ı	+	+#########	## ##	###
Percent	26%	74%	1	30%	%02	1	1	1	1	1	1	1	1	1	1	1	1	1					
AM Peak	07:00	01:00	01:00	,	10:00	10:00		I	1	1	1	l	1	1	ł	1	i.	I	ı.	+	### ####	# #	#
Vol.	4	2	11		e	e			1			1	1	1	1	I.	1	1		+	### ####	##	##
PM Peak	14:00	17:00	14:00	13:00	17:00	13:00	I	I	1	1	1	1	1	I	ł	1	1	I		#	###	# #	#
Vol.	5	6	13	e	4	5	1	1	1	-	1	1	1	1	1	1	1	I.		- #	### ####	## ##	###

1. Mid-week average includes data between Tuesday and Thursday.

Project Manager: (415) 310-6469 project.manager.ca@idaxdata.com **APPENDIX B**

(Rural Area) Bella Oaks Lane/SR29

CRANE TRANSPORTATION GROUP

APPENDIX C

Note that the Arterial Worksheets (Two-Lane Highway Report) included in this appendix are labeled Bella Oaks Winery, but they address the Staglin Family Vineyard project on Bella Oaks Lane.

Intersection	
Int Delay s/veh	04

in Dolay, Siven	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	et i		Y	
Traffic Vol, veh/h	0	27	10	6	2	0
Future Vol, veh/h	0	27	10	6	2	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	25	80	80	92	80	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	34	13	7	3	0

Major/Minor	Major1	Ν	/lajor2	1	Minor2	
Conflicting Flow All	20	0	-	0	51	17
Stage 1	-	-	-	-	17	-
Stage 2	-	-	-	-	34	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1609	-	-	-	963	1068
Stage 1	-	-	-	-	1011	-
Stage 2	-	-	-	-	994	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1609	-	-	-	963	1068
Mov Cap-2 Maneuver	-	-	-	-	963	-
Stage 1	-	-	-	-	1011	-
Stage 2	-	-	-	-	994	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		8.7	
HCM LOS					А	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1609	-	-	-	963
HCM Lane V/C Ratio		-	-	-	-	0.003
HCM Control Delay (s)	0	-	-	-	8.7
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(veh	1)	0	-	-	-	0

Intersection						
Int Delay, s/veh	0.4					
Movement	FBI	FBR	NBI	NBT	SBT	SBR
Long Configurations					•	
Lane Configurations	T.		า	т	•	
Traffic Vol, veh/h	8	21	10	841	1072	6
Future Vol, veh/h	8	21	10	841	1072	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	3	3	3	3
Mvmt Flow	9	22	11	895	1140	6

Major/Minor	Minor2		Major1	Мај	or2		
Conflicting Flow All	2060	1143	1146	0	-	0	
Stage 1	1143	-	-	-	-	-	
Stage 2	917	-	-	-	-	-	
Critical Hdwy	6.48	6.28	4.13	-	-	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.372	2.227	-	-	-	
Pot Cap-1 Maneuver	58	237	606	-	-	-	
Stage 1	296	-	-	-	-	-	
Stage 2	380	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	57	237	606	-	-	-	
Mov Cap-2 Maneuver	176	-	-	-	-	-	
Stage 1	291	-	-	-	-	-	
Stage 2	380	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	24.4		0.1		0		

HCM LOS C

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	606	- 216	-	-
HCM Lane V/C Ratio	0.018	- 0.143	-	-
HCM Control Delay (s)	11	- 24.4	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0.1	- 0.5	-	-

Intersection						
	0.0					
Int Delay, s/veh	2.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		د	f,		Y	
Traffic Vol, veh/h	0	9	4	1	5	0
Future Vol, veh/h	0	9	4	1	5	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	. # -	0	0	-	0	-
Grade. %	-	0	0	-	0	-
Peak Hour Factor	25	80	80	92	80	92
Heavy Vehicles %	0	0	0	0	0	0
Mymt Flow	0	11	5	1	6	0

Major/Minor	Major1	Ν	/lajor2	1	Minor2		 _	
Conflicting Flow All	6	0	-	0	17	6		
Stage 1	-	-	-	-	6	-		
Stage 2	-	-	-	-	11	-		
Critical Hdwy	4.1	-	-	-	6.4	6.2		
Critical Hdwy Stg 1	-	-	-	-	5.4	-		
Critical Hdwy Stg 2	-	-	-	-	5.4	-		
Follow-up Hdwy	2.2	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	1628	-	-	-	1006	1083		
Stage 1	-	-	-	-	1022	-		
Stage 2	-	-	-	-	1017	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuve	r 1628	-	-	-	1006	1083		
Mov Cap-2 Maneuve	r -	-	-	-	1006	-		
Stage 1	-	-	-	-	1022	-		
Stage 2	-	-	-	-	1017	-		
Approach	EB		WB		SB		 	
HCM Control Delay,	s 0		0		8.6			
HCM LOS					А			
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)		1628	-	-	-	1006		
HCM Lane V/C Ratio		-	-	-	-	0.006		
HCM Control Delay (s)	0	-	-	-	8.6		
HCM Lane LOS		А	-	-	-	А		
HCM 95th %tile Q(ve	h)	0	-	-	-	0		

01-1	6-2020
------	--------

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		٦	•	Þ	
Traffic Vol, veh/h	4	8	4	949	1047	1
Future Vol, veh/h	4	8	4	949	1047	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	, # 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	1	1	0
Mymt Flow	4	9	4	1010	1114	1

Major/Minor	Minor2	N	Major1	Ma	ajor2	
Conflicting Flow All	2133	1115	1115	0	-	0
Stage 1	1115	-	-	-	-	-
Stage 2	1018	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	55	255	634	-	-	-
Stage 1	316	-	-	-	-	-
Stage 2	352	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	55	255	634	-	-	-
Mov Cap-2 Maneuver	176	-	-	-	-	-
Stage 1	314	-	-	-	-	-
Stage 2	352	-	-	-	-	-
Annroach	FR		NR		SB	

Approach	EB	NB	SB	
HCM Control Delay, s	22.2	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	634	- 222	-	-
HCM Lane V/C Ratio	0.007	- 0.058	-	-
HCM Control Delay (s)	10.7	- 22.2	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.2	-	-

01-18-2020

0.4					
EBL	EBT	WBT	WBR	SBL	SBR
	÷.	Þ		Y	
0	31	12	6	2	0
0	31	12	6	2	0
0	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-	None	-	None
-	-	-	-	0	-
э, # -	0	0	-	0	-
-	0	0	-	0	-
25	80	80	92	80	92
0	0	0	0	0	0
-			-	•	•
	0.4 EBL 0 0 Free - e, # - 25 0	0.4 EBL EBT	0.4 EBL EBT WBT	0.4 EBL EBT WBT WBR	0.4 EBL EBT WBT WBR SBL

Major/Minor	Major1	Ν	/lajor2		Minor2				
Conflicting Flow All	22	0	-	0	58	19			
Stage 1	-	-	-	-	19	-			
Stage 2	-	-	-	-	39	-			
Critical Hdwy	4.1	-	-	-	6.4	6.2			
Critical Hdwy Stg 1	-	-	-	-	5.4	-			
Critical Hdwy Stg 2	-	-	-	-	5.4	-			
Follow-up Hdwy	2.2	-	-	-	3.5	3.3			
Pot Cap-1 Maneuver	1607	-	-	-	954	1065			
Stage 1	-	-	-	-	1009	-			
Stage 2	-	-	-	-	989	-			
Platoon blocked, %		-	-	-					
Mov Cap-1 Maneuver	1607	-	-	-	954	1065			
Mov Cap-2 Maneuver	• -	-	-	-	954	-			
Stage 1	-	-	-	-	1009	-			
Stage 2	-	-	-	-	989	-			
Approach	EB		WB		SB				
HCM Control Delay, s	s 0		0		8.8				
HCM LOS					А				
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1			
Capacity (veh/h)		1607	-	-	-	954			
HCM Lane V/C Ratio		-	-	-	-	0.003			
HCM Control Delay (s	6)	0	-	-	-	8.8			
HCM Lane LOS		А	-	-	-	А			
HCM 95th %tile Q(vel	h)	0	-	-	-	0			

01-1	6-2020
------	--------

Intersection						
Int Delay, s/veh	0.5					
Movement	EDI	EDD	NDI	NDT	CDT	CDD
wovernent	EDL	EDK	INDL	INDI	SDI	SDK
Lane Configurations	Y		7	†	T.	
Traffic Vol, veh/h	9	24	11	911	1162	7
Future Vol, veh/h	9	24	11	911	1162	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	3	3	3	3
Mvmt Flow	10	26	12	969	1236	7

Major/Minor	Minor2	l	Major1	Ma	ajor2	
Conflicting Flow All	2233	1240	1243	0	-	0
Stage 1	1240	-	-	-	-	-
Stage 2	993	-	-	-	-	-
Critical Hdwy	6.48	6.28	4.13	-	-	-
Critical Hdwy Stg 1	5.48	-	-	-	-	-
Critical Hdwy Stg 2	5.48	-	-	-	-	-
Follow-up Hdwy	3.572	3.372	2.227	-	-	-
Pot Cap-1 Maneuver	45	208	557	-	-	-
Stage 1	265	-	-	-	-	-
Stage 2	350	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	44	208	557	-	-	-
Mov Cap-2 Maneuver	155	-	-	-	-	-
Stage 1	259	-	-	-	-	-
Stage 2	350	-	-	-	-	-
Ammanah					00	

Approach	EB	NB	SB	
HCM Control Delay, s	28.2	0.1	0	
HCM LOS	D			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	557	- 190	-	-
HCM Lane V/C Ratio	0.021	- 0.185	-	-
HCM Control Delay (s)	11.6	- 28.2	-	-
HCM Lane LOS	В	- D	-	-
HCM 95th %tile Q(veh)	0.1	- 0.7	-	-

Intersection						
Int Delay, s/veh	2.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR

Movement	LDL	LDI	VVD1	WDIX	ODL	JUIC	
Lane Configurations		ŧ	et i		Y		
Traffic Vol, veh/h	0	9	6	1	5	0	
Future Vol, veh/h	0	9	6	1	5	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage,	# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	25	80	80	92	80	92	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	0	11	8	1	6	0	

Major/Minor	Major1	Ν	/lajor2	1	Minor2	
Conflicting Flow All	9	0	-	0	20	9
Stage 1	-	-	-	-	9	-
Stage 2	-	-	-	-	11	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1624	-	-	-	1002	1079
Stage 1	-	-	-	-	1019	-
Stage 2	-	-	-	-	1017	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1624	-	-	-	1002	1079
Mov Cap-2 Maneuver	· -	-	-	-	1002	-
Stage 1	-	-	-	-	1019	-
Stage 2	-	-	-	-	1017	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		8.6	
HCM LOS					А	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1624	-	-	-	1002
HCM Lane V/C Ratio		-	-	-	-	0.006
HCM Control Delay (s	5)	0	-	-	-	8.6
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(vel	า)	0	-	-	-	0

01-16-202	0
-----------	---

Intersection						
Int Delay, s/veh	0.2					
Movement	EDI	EDD	NDI	NDT	орт	CDD
wovernent	EDL	EDK	INDL	INDI	201	SDK
Lane Configurations	Y		1	•	T.	
Traffic Vol, veh/h	5	9	5	1029	1134	2
Future Vol, veh/h	5	9	5	1029	1134	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	1	1	0
Mvmt Flow	5	10	5	1095	1206	2

Major/Minor	Minor2	ľ	Major1	Maj	or2	
Conflicting Flow All	2312	1207	1208	0	-	0
Stage 1	1207	-	-	-	-	-
Stage 2	1105	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	42	226	585	-	-	-
Stage 1	286	-	-	-	-	-
Stage 2	320	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	42	226	585	-	-	-
Mov Cap-2 Maneuver	156	-	-	-	-	-
Stage 1	283	-	-	-	-	-
Stage 2	320	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	25	0.1	0
HCM LOS	D		

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR
Capacity (veh/h)	585	-	195	-	-
HCM Lane V/C Ratio	0.009	- (0.076	-	-
HCM Control Delay (s)	11.2	-	25	-	-
HCM Lane LOS	В	-	D	-	-
HCM 95th %tile Q(veh)	0	-	0.2	-	-

Intersection							
Int Delay, s/veh	0.3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	

MOVEINEN	LDL	LDI	VVDT	VVDIN	SDL	SDIV	
Lane Configurations		ŧ	et i		Y		
Traffic Vol, veh/h	0	34	13	6	2	0	
Future Vol, veh/h	0	34	13	6	2	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage,	# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	25	80	80	92	80	92	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	0	43	16	7	3	0	

Major/Minor	Major1	Ν	/lajor2	1	Minor2	
Conflicting Flow All	23	0	-	0	63	20
Stage 1	-	-	-	-	20	-
Stage 2	-	-	-	-	43	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1605	-	-	-	948	1064
Stage 1	-	-	-	-	1008	-
Stage 2	-	-	-	-	985	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1605	-	-	-	948	1064
Mov Cap-2 Maneuver	· -	-	-	-	948	-
Stage 1	-	-	-	-	1008	-
Stage 2	-	-	-	-	985	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		8.8	
HCM LOS	-				A	
Minor Lano/Major Mu	mt	EDI	EDT			
	m		EDI	VDI	VDR	
Capacity (ven/n)		1605	-	-	-	948
HCIVI Lane V/C Ratio		-	-	-	-	0.003
HCM Control Delay (s	5)	0	-	-	-	0.0
HCM 05th % tile O(vol	_)	A	-	-	-	A
ncivi yotn %tile Q(ver	1)	U	-	-	-	U

01-1	6-2020
------	--------

Intersection						
Int Delay, s/veh	0.6					
Movement	EDI	EDD	NDI	NDT	CDT	CDD
wovement	EDL	EDR	INDL	INDI	SDI	JDR
Lane Configurations	Y		7	†	T.	
Traffic Vol, veh/h	10	29	12	969	1236	9
Future Vol, veh/h	10	29	12	969	1236	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	3	3	3	3
Mvmt Flow	11	31	13	1031	1315	10

Major/Minor	Minor2		Major1	Ма	jor2		
Conflicting Flow All	2377	1320	1325	0	-	0	
Stage 1	1320	-	-	-	-	-	
Stage 2	1057	-	-	-	-	-	
Critical Hdwy	6.48	6.28	4.13	-	-	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.372	2.227	-	-	-	
Pot Cap-1 Maneuver	36	186	518	-	-	-	
Stage 1	242	-	-	-	-	-	
Stage 2	326	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	35	186	518	-	-	-	
Mov Cap-2 Maneuver	140	-	-	-	-	-	
Stage 1	236	-	-	-	-	-	
Stage 2	326	-	-	-	-	-	
Approach	EB		NB		SB		
					_		

Approach	EB	NB	SB	
HCM Control Delay, s	32.5	0.1	0	
HCM LOS	D			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	518	- 172	-	-
HCM Lane V/C Ratio	0.025	- 0.241	-	-
HCM Control Delay (s)	12.1	- 32.5	-	-
HCM Lane LOS	В	- D	-	-
HCM 95th %tile Q(veh)	0.1	- 0.9	-	-

		Intersection
--	--	--------------

Movement EBL EBT WBT WBR SBL SBR Lane Configurations Image: Configuration of the system Image: Configuratinge Image: C	Int Delay, s/veh	2							
Lane Configurations Image: Configuration in the image: Configuration	Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Traffic Vol, veh/h 0 10 6 1 5 0 Future Vol, veh/h 0 10 6 1 5 0 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Free Free Stop Stop RT Channelized - None - None Storage Length - - - 0 - Veh in Median Storage, # - 0 0 - - Grade, % - 0 0 - 0 - Peak Hour Factor 25 80 80 92 80 92 Heavy Vehicles, % 0 0 0 0 0 0 Mvmt Flow 0 13 8 1 6 0	Lane Configurations		÷	ħ		Y			
Future Vol, veh/h 0 10 6 1 5 0 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Free Free Stop Stop RT Channelized - None - None - Storage Length - - - 0 - Veh in Median Storage, # 0 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 25 80 80 92 80 92 Heavy Vehicles, % 0 0 0 0 0 0	Traffic Vol, veh/h	0	10	6	1	5	0		
Conflicting Peds, #/hr 0	Future Vol, veh/h	0	10	6	1	5	0		
Sign ControlFreeFreeFreeFreeStopStopRT Channelized-None-None-NoneStorage Length0-Veh in Median Storage, #00-0-Grade, %-00-0-Peak Hour Factor258080928092Heavy Vehicles, %00000Mvmt Flow0138160	Conflicting Peds, #/hr	0	0	0	0	0	0		
RT Channelized - None - None Storage Length - - - 0 - Veh in Median Storage, # - 0 0 - 0 - Grade, % - 0 0 - 0 - - Peak Hour Factor 25 80 80 92 80 92 Heavy Vehicles, % 0 0 0 0 0 0 Mvmt Flow 0 13 8 1 6 0	Sign Control	Free	Free	Free	Free	Stop	Stop		
Storage Length - - - 0 - Veh in Median Storage, # - 0 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 25 80 80 92 80 92 Heavy Vehicles, % 0 0 0 0 0 0 Mvmt Flow 0 13 8 1 6 0	RT Channelized	-	None	-	None	-	None		
Veh in Median Storage, # - 0 - 0 - Grade, % - 0 0 - 0 - Peak Hour Factor 25 80 80 92 80 92 Heavy Vehicles, % 0 0 0 0 0 0 Mvmt Flow 0 13 8 1 6 0	Storage Length	-	-	-	-	0	-		
Grade, % - 0 0 - 0 - Peak Hour Factor 25 80 80 92 80 92 Heavy Vehicles, % 0 0 0 0 0 0 Mvmt Flow 0 13 8 1 6 0	Veh in Median Storage,	# -	0	0	-	0	-		
Peak Hour Factor 25 80 80 92 80 92 Heavy Vehicles, % 0 0 0 0 0 0 Mvmt Flow 0 13 8 1 6 0	Grade, %	-	0	0	-	0	-		
Heavy Vehicles, % 0 0 0 0 0 0 Mvmt Flow 0 13 8 1 6 0	Peak Hour Factor	25	80	80	92	80	92		
Mvmt Flow 0 13 8 1 6 0	Heavy Vehicles, %	0	0	0	0	0	0		
	Mvmt Flow	0	13	8	1	6	0		

Major/Minor	Major1	Ν	/lajor2	ľ	Minor2	
Conflicting Flow All	9	0	-	0	22	9
Stage 1	-	-	-	-	9	-
Stage 2	-	-	-	-	13	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1624	-	-	-	1000	1079
Stage 1	-	-	-	-	1019	-
Stage 2	-	-	-	-	1015	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1624	-	-	-	1000	1079
Mov Cap-2 Maneuver	· -	-	-	-	1000	-
Stage 1	-	-	-	-	1019	-
Stage 2	-	-	-	-	1015	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		8.6	
HCM LOS					А	
Minor Lane/Maior My	mt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1624	-	-	-	1000
HCM Lane V/C Ratio		-	-	-	-	0.006
HCM Control Delay (s	;)	0	-	-	-	8.6
HCM Lane LOS	,	A	-	-	-	A
HCM 95th %tile Q(veh	ר)	0	-	-	-	0

Intersection

Int Delay, s/veh	0.2									
Movement	EBL	EBR	NBL	NBT	SBT	SBR	l			
Lane Configurations	Y		1	•	1.					
Traffic Vol, veh/h	5	10	5	1095	1205	2	2			
Future Vol, veh/h	5	10	5	1095	1205	2				
Conflicting Peds, #/hr	0	0	0	0	0	0)			
Sign Control	Stop	Stop	Free	Free	Free	Free	9			
RT Channelized	-	None	-	None	-	None	:			
Storage Length	0	-	0	-	-	-	•			
Veh in Median Storage	, # 1	-	-	0	0	-	-			
Grade, %	0	-	-	0	0	-	•			
Peak Hour Factor	94	94	94	94	94	94				
Heavy Vehicles, %	0	0	0	1	1	0				
Mvmt Flow	5	11	5	1165	1282	2	2			

Major/Minor	Minor2	1	Major1	Maj	or2	
Conflicting Flow All	2458	1283	1284	0	-	0
Stage 1	1283	-	-	-	-	-
Stage 2	1175	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	34	204	547	-	-	-
Stage 1	263	-	-	-	-	-
Stage 2	296	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	· 34	204	547	-	-	-
Mov Cap-2 Maneuver	· 142	-	-	-	-	-
Stage 1	261	-	-	-	-	-
Stage 2	296	-	-	-	-	-

Approach	EB	NB	SB	
HCM Control Delay, s	27.2	0.1	0	
HCM LOS	D			

Minor Lane/Major Mvmt	NBL	NBT EBLr	1 SBT	SBR
Capacity (veh/h)	547	- 17	8 -	-
HCM Lane V/C Ratio	0.01	- 0.0	9-	-
HCM Control Delay (s)	11.6	- 27	2 -	-
HCM Lane LOS	В	-) -	-
HCM 95th %tile Q(veh)	0	- 0	3-	-

1

Intersection

Int Delay, s/veh

-						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		÷.	Þ		Y	
Traffic Vol, veh/h	0	27	10	9	6	0
Future Vol, veh/h	0	27	10	9	6	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	25	80	80	92	80	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	34	13	10	8	0

01-1	6-2020
------	--------

Intersection						
Int Delay, s/veh	0.5					
Movement	EDI	EDD	NDI	NDT	CDT	CDD
wovernent	EDL	EDK	INDL	INDI	SDI	SDK
Lane Configurations	Y		7	†	T.	
Traffic Vol, veh/h	9	24	12	841	1072	7
Future Vol, veh/h	9	24	12	841	1072	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	3	3	3	3
Mvmt Flow	10	26	13	895	1140	7

Major/Minor	Minor2		Major1	Мај	or2		
Conflicting Flow All	2065	1144	1147	0	-	0	
Stage 1	1144	-	-	-	-	-	
Stage 2	921	-	-	-	-	-	
Critical Hdwy	6.48	6.28	4.13	-	-	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.372	2.227	-	-	-	
Pot Cap-1 Maneuver	58	236	605	-	-	-	
Stage 1	295	-	-	-	-	-	
Stage 2	378	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	57	236	605	-	-	-	
Mov Cap-2 Maneuver	175	-	-	-	-	-	
Stage 1	289	-	-	-	-	-	
Stage 2	378	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay	24.9		0.2		0		

HCM LOS C

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	605	- 216	-	-
HCM Lane V/C Ratio	0.021	- 0.163	-	-
HCM Control Delay (s)	11.1	- 24.9	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0.1	- 0.6	-	-
Intersection

Int Delay, s/veh	3							
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ŧ	et.		Y			
Traffic Vol, veh/h	0	7	6	6	10	0		
Future Vol, veh/h	0	7	6	6	10	0		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	-	-	-	0	-		
Veh in Median Storage,	# -	0	0	-	0	-		
Grade, %	-	0	0	-	0	-		
Peak Hour Factor	25	80	80	92	80	92		
Heavy Vehicles, %	0	0	0	0	0	0		
Mvmt Flow	0	9	8	7	13	0		

Major1	N	/lajor2	ľ	Minor2	
15	0	-	0	21	12
-	-	-	-	12	-
-	-	-	-	9	-
4.1	-	-	-	6.4	6.2
-	-	-	-	5.4	-
-	-	-	-	5.4	-
2.2	-	-	-	3.5	3.3
1616	-	-	-	1001	1074
-	-	-	-	1016	-
-	-	-	-	1019	-
	-	-	-		
1616	-	-	-	1001	1074
-	-	-	-	1001	-
-	-	-	-	1016	-
-	-	-	-	1019	-
EB		WB		SB	
. 0		0		8.6	
				А	
mt	FBI	FRT	WBT	WBR 9	SBI n1
	1616		-	-	1001
		_	_	_	0.012
.)	0	-	-	-	8.6
	Ă	_	-	_	A
	Major1 15 - 4.1 - 2.2 1616 - 1616 - 1616 0 Mathematical Structures of the second structure of the second structures of the second stru	Major1 N 15 0 - - 4.1 - - - 2.2 - 1616 - - - 1616 - - - 1616 - - - 1616 - - - 1616 - - - - - 1616 - - - 1616 - - - - - - - - - - - - - 0 - - - - - - - - - - - 0 - - - 0 -	Major1 Major2 15 0 - - - - - - - 4.1 - - - - - 2.2 - - 1616 - - - - - 1616 - - - - - 1616 - - - - - 1616 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <tr tr=""> 0 0</tr>	Major1 Major2 N 15 0 - 0 - - - - - - - - 4.1 - - - - - - - 2.2 - - - 1616 - - - - - - - 1616 - - - - - - - 1616 - - - - - - - 0 0 0 - 1616 - - - - - - - 0 0 0 - 1616 - - - - - - - 0 0 - - - - - - - <t< td=""><td>Major1 Major2 Minor2 15 0 - 0 21 - - - 12 - - - 9 4.1 - - 6.4 - - 5.4 - - 5.4 2.2 - - 5.4 2.2 - - 3.5 1616 - - 1001 - - 1016 - - 1019 - - 1001 - - 1001 - - 1001 - - 1001 - - 1019 - - 1019 - - 1019 - - - 0 0 8.6 - - - - - - 1616 - - <</td></t<>	Major1 Major2 Minor2 15 0 - 0 21 - - - 12 - - - 9 4.1 - - 6.4 - - 5.4 - - 5.4 2.2 - - 5.4 2.2 - - 3.5 1616 - - 1001 - - 1016 - - 1019 - - 1001 - - 1001 - - 1001 - - 1001 - - 1019 - - 1019 - - 1019 - - - 0 0 8.6 - - - - - - 1616 - - <

01-06-2021

Intersection						
Int Delay, s/veh	0.2					
Movement	ERI	ERD	MRI	NRT	CBT	CRD
wovement	EDL	EDR	INDL	INDI	SDI	JDN
Lane Configurations	Y		1	†	T.	
Traffic Vol, veh/h	6	11	7	949	1047	3
Future Vol, veh/h	6	11	7	949	1047	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	1	1	0
Mvmt Flow	6	12	7	1010	1114	3

Major/Minor	Minor2	N	Major1	Maj	jor2		
Conflicting Flow All	2140	1116	1117	0	-	0	
Stage 1	1116	-	-	-	-	-	
Stage 2	1024	-	-	-	-	-	
Critical Hdwy	6.4	6.2	4.1	-	-	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	54	255	633	-	-	-	
Stage 1	316	-	-	-	-	-	
Stage 2	350	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	- 53	255	633	-	-	-	
Mov Cap-2 Maneuver	· 175	-	-	-	-	-	
Stage 1	313	-	-	-	-	-	
Stage 2	350	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	22.8	0.1	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	633	- 220	-	-
HCM Lane V/C Ratio	0.012	- 0.082	-	-
HCM Control Delay (s)	10.8	- 22.8	-	-
HCM Lane LOS	В	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.3	-	-

01-18-202	0
-----------	---

L. L						
Intersection						
Int Delay, s/veh	0.9					
Movement	EDI	EDT	\//DT		CDI	CDD
wovernent	EDL	EDI	VVDI	VVDR	SDL	JDK
Lane Configurations		र्स	F		Y	
Traffic Vol, veh/h	0	31	12	9	6	0
Future Vol, veh/h	0	31	12	9	6	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	25	80	80	92	80	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	39	15	10	8	0

Major/Minor	Major1	Ν	/lajor2	I	Minor2		
Conflicting Flow All	25	0	-	0	59	20	
Stage 1	-	-	-	-	20	-	
Stage 2	-	-	-	-	39	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	1603	-	-	-	953	1064	
Stage 1	-	-	-	-	1008	-	
Stage 2	-	-	-	-	989	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1603	-	-	-	953	1064	
Mov Cap-2 Maneuver	· -	-	-	-	953	-	
Stage 1	-	-	-	-	1008	-	
Stage 2	-	-	-	-	989	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		8.8		
HCM LOS					А		
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)		1603	-	-	-	953	
HCM Lane V/C Ratio		-	-	-	-	0.008	
HCM Control Delay (s	5)	0	-	-	-	8.8	
HCM Lane LOS	,	А	-	-	-	А	
HCM 95th %tile Q(vel	ר)	0	-	-	-	0	

01-16-20	20
----------	----

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		7	1	Þ	
Traffic Vol, veh/h	10	27	13	911	1162	8
Future Vol, veh/h	10	27	13	911	1162	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	3	3	3	3
Mvmt Flow	11	29	14	969	1236	9

Major/Minor	Minor2	l	Major1	Ma	ijor2		
Conflicting Flow All	2238	1241	1245	0	-	0	
Stage 1	1241	-	-	-	-	-	
Stage 2	997	-	-	-	-	-	
Critical Hdwy	6.48	6.28	4.13	-	-	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.372	2.227	-	-	-	
Pot Cap-1 Maneuver	45	207	556	-	-	-	
Stage 1	265	-	-	-	-	-	
Stage 2	348	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	44	207	556	-	-	-	
Mov Cap-2 Maneuver	155	-	-	-	-	-	
Stage 1	258	-	-	-	-	-	
Stage 2	348	-	-	-	-	-	
Annroach	FB		NB		SB		

Approach	EB	NB	SB	
HCM Control Delay, s	28.8	0.2	0	
HCM LOS	D			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	556	- 190	-	-
HCM Lane V/C Ratio	0.025	- 0.207	-	-
HCM Control Delay (s)	11.6	- 28.8	-	-
HCM Lane LOS	В	- D	-	-
HCM 95th %tile Q(veh)	0.1	- 0.8	-	-

2.9

EBL

0

Intersection Int Delay, s/veh

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Future Vol, veh/h

Movement

.9					
<u>s</u> i	FBT	WRT	WBR	SBL	SBR
-		1101		UDL	
		· •		1.1	
	ર્ન	- î÷		Y	
0	ର୍କ ୨	₽ 6	6	10	0
0 0	4 9 9	1 ⊶ 6 6	6 6	10 10	0 0
0 0 0	4 9 9 0	₽ 6 6 0	6 6 0	10 10 10	0 0 0
0 0 0	€ 9 9 0 Free	6 6 0 Free	6 6 0 Free	10 10 0 Stop	0 0 0 Stop

Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage,	# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	25	80	80	92	80	92	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	0	11	8	7	13	0	

Major/Minor	Major1	Ν	/lajor2	[Minor2		
Conflicting Flow All	15	0	-	0	23	12	
Stage 1	-	-	-	-	12	-	
Stage 2	-	-	-	-	11	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	1616	-	-	-	998	1074	
Stage 1	-	-	-	-	1016	-	
Stage 2	-	-	-	-	1017	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1616	-	-	-	998	1074	
Mov Cap-2 Maneuver	-	-	-	-	998	-	
Stage 1	-	-	-	-	1016	-	
Stage 2	-	-	-	-	1017	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		8.7		
HCM LOS					А		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)		1616	-	-	-	998	
HCM Lane V/C Ratio		-	-	-	-	0.013	
HCM Control Delay (s	;)	0	-	-	-	8.7	
HCM Lane LOS		А	-	-	-	А	
HCM 95th %tile Q(ver	ו)	0	-	-	-	0	

01-06-2021

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		٦	†	ţ,	
Traffic Vol, veh/h	7	12	8	1029	1134	4
Future Vol, veh/h	7	12	8	1029	1134	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	1	1	0
Mvmt Flow	7	13	9	1095	1206	4
Peak Hour Factor Heavy Vehicles, % Mvmt Flow	94 0 7	94 0 13	94 0 9	94 1 1095	94 1 1206	94 0 4

Major/Minor	Minor2	ľ	Major1	Maj	jor2		
Conflicting Flow All	2321	1208	1210	0	-	0	
Stage 1	1208	-	-	-	-	-	
Stage 2	1113	-	-	-	-	-	
Critical Hdwy	6.4	6.2	4.1	-	-	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	42	225	584	-	-	-	
Stage 1	286	-	-	-	-	-	
Stage 2	317	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	• 41	225	584	-	-	-	
Mov Cap-2 Maneuver	155	-	-	-	-	-	
Stage 1	282	-	-	-	-	-	
Stage 2	317	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	25.8	0.1	0	
HCM LOS	D			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	584	- 193	-	-
HCM Lane V/C Ratio	0.015	- 0.105	-	-
HCM Control Delay (s)	11.3	- 25.8	-	-
HCM Lane LOS	В	- D	-	-
HCM 95th %tile Q(veh)	0	- 0.3	-	-

01-1	8-2020
------	--------

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		÷.	Þ		Y	
Traffic Vol, veh/h	0	34	13	9	6	0
Future Vol, veh/h	0	34	13	9	6	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	25	80	80	92	80	92
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	0	43	16	10	8	0

Major/Minor	Major1	Ν	/lajor2	I	Minor2			
Conflicting Flow All	26	0	-	0	64	21		
Stage 1	-	-	-	-	21	-		
Stage 2	-	-	-	-	43	-		
Critical Hdwy	4.1	-	-	-	6.4	6.2		
Critical Hdwy Stg 1	-	-	-	-	5.4	-		
Critical Hdwy Stg 2	-	-	-	-	5.4	-		
Follow-up Hdwy	2.2	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	1601	-	-	-	947	1062		
Stage 1	-	-	-	-	1007	-		
Stage 2	-	-	-	-	985	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	1601	-	-	-	947	1062		
Mov Cap-2 Maneuver		-	-	-	947	-		
Stage 1	-	-	-	-	1007	-		
Stage 2	-	-	-	-	985	-		
Approach	EB		WB		SB			
HCM Control Delay, s	s 0		0		8.8			
HCM LOS					А			
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)		1601	-	-	-	947		
HCM Lane V/C Ratio		-	-	-	-	0.008		
HCM Control Delay (s	6)	0	-	-	-	8.8		
HCM Lane LOS		А	-	-	-	A		
HCM 95th %tile Q(vel	h)	0	-	-	-	0		

01-16-202	0
-----------	---

Intersection						
Int Delay, s/veh	0.7					
••						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		٦	•	Þ	
Traffic Vol, veh/h	11	32	14	969	1236	10
Future Vol, veh/h	11	32	14	969	1236	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage	, # 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles. %	8	8	3	3	3	3
Mymt Flow	12	34	15	1031	1315	11

Major/Minor	Minor2		Major1	Maj	or2		
Conflicting Flow All	2382	1321	1326	0	-	0	
Stage 1	1321	-	-	-	-	-	
Stage 2	1061	-	-	-	-	-	
Critical Hdwy	6.48	6.28	4.13	-	-	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.372	2.227	-	-	-	
Pot Cap-1 Maneuver	36	186	518	-	-	-	
Stage 1	242	-	-	-	-	-	
Stage 2	324	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	35	186	518	-	-	-	
Mov Cap-2 Maneuver	140	-	-	-	-	-	
Stage 1	235	-	-	-	-	-	
Stage 2	324	-	-	-	-	-	
Approach	EB		NB		SB		

Approach	EB	NB	SB	
HCM Control Delay, s	33.3	0.2	0	
HCM LOS	D			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	518	- 172	-	-
HCM Lane V/C Ratio	0.029	- 0.266	i -	-
HCM Control Delay (s)	12.2	- 33.3	- 1	-
HCM Lane LOS	В	- [-	-
HCM 95th %tile Q(veh)	0.1	- ′	-	-

l						
Intersection						
Int Delay, s/veh	2.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્સ	ţ,		Y	
Traffic Vol, veh/h	0	10	6	6	10	0
Future Vol, veh/h	0	10	6	6	10	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	25	80	80	92	80	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	13	8	7	13	0

Major/Minor	Major1	Ν	/lajor2	I	Minor2		
Conflicting Flow All	15	0	-	0	25	12	
Stage 1	-	-	-	-	12	-	
Stage 2	-	-	-	-	13	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	1616	-	-	-	996	1074	
Stage 1	-	-	-	-	1016	-	
Stage 2	-	-	-	-	1015	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1616	-	-	-	996	1074	
Mov Cap-2 Maneuver	-	-	-	-	996	-	
Stage 1	-	-	-	-	1016	-	
Stage 2	-	-	-	-	1015	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0		0		8.7		
HCM LOS					А		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)		1616	-	-	-	996	
HCM Lane V/C Ratio		-	-	-	-	0.013	
HCM Control Delay (s	5)	0	-	-	-	8.7	
HCM Lane LOS		A	-	-	-	А	
HCM 95th %tile Q(ver	ו)	0	-	-	-	0	

01-06-2021

Intersection						
Int Delay, s/veh	0.3					
Mayamant				NDT	ODT	000
wovement	EBL	EBK	INBL	INRI	SBI	SBR
Lane Configurations	Y		1	+	T.	
Traffic Vol, veh/h	7	13	8	1095	1205	4
Future Vol, veh/h	7	13	8	1095	1205	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	1	1	0
Mvmt Flow	7	14	9	1165	1282	4

Major/Minor	Minor2	1	Major1	Ma	ijor2	
Conflicting Flow All	2467	1284	1286	0	-	0
Stage 1	1284	-	-	-	-	-
Stage 2	1183	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	34	203	546	-	-	-
Stage 1	262	-	-	-	-	-
Stage 2	294	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	· 33	203	546	-	-	-
Mov Cap-2 Maneuver	· 140	-	-	-	-	-
Stage 1	258	-	-	-	-	-
Stage 2	294	-	-	-	-	-
A			ND		00	

Approach	EB	NB	SB	
HCM Control Delay, s	28.4	0.1	0	
HCM LOS	D			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	546	- 175	-	-
HCM Lane V/C Ratio	0.016	- 0.122	-	-
HCM Control Delay (s)	11.7	- 28.4	-	-
HCM Lane LOS	В	- D	-	-
HCM 95th %tile Q(veh)	0	- 0.4	-	-

Project Information

Pro	Project mormation								
Analy	yst	DRR		Date		1/16/2020			
Ager	су	CTG		Analysis Year		2019 without Project NB			
Juriso	diction	Napa Co		Time Period Analy	zed	Friday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary			
Segment 1									
Vehicle Inputs									
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	t	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Der	mand and Capacity								
Direc	tional Demand Flow Rate, veh/h	905		Opposing Demand	d Flow Rate, veh/h	-			
Peak	Hour Factor	0.94		Total Trucks, %		3.00			
Segment Capacity, veh/h		1700		Demand/Capacity	(D/C)	0.53			
Inte	Intermediate Results								
Segment Vertical Class		1		Free-Flow Speed,	mi/h	54.4			
Spee	d Slope Coefficient	3.50866		Speed Power Coef	fficient	0.41674			
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580			
In Pa	ssing Lane Effective Length?	No		Total Segment Der	nsity, veh/mi/ln	12.6			
%lm	proved % Followers	0.0		% Improved Avg Speed 0.0					
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	51.2			
Veh	icle Results								
Avera	age Speed, mi/h	51.2		Percent Followers,	%	71.2			
Segn	nent Travel Time, minutes	1.17		Followers Density,	followers/mi/ln	12.6			
Vehio	cle LOS	D							
Bicy	ycle Results	·							
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4			
Flow	Rate Outside Lane, veh/h	905		Bicycle Effective W	/idth, ft	24			
Bicyc	le LOS Score	3.36		Bicycle Effective S	peed Factor	4.62			
Bicyc	le LOS	С							

Copyright © 2020 University of Florida. All Rights Reserved.

HCS T Two-Lane Version 7.8.5 2019 Friday 29 NB w-o Project.xuf Generated: 01/16/2020 20:42:17

Project Information

Pro	Ject mormation							
Analy	/st	DRR		Date		1/16/2020		
Agen	ю	CTG		Analysis Year		2019 without Project SB		
Juriso	diction	Napa Co		Time Period Analy	zed	Friday PM Peak Hour		
Proje	ct Description	Bella Oaks Winery		Unit		United States Customary		
	Segment 1							
Veh	Vehicle Inputs							
Segn	nent Type	Passing Constrained		Length, ft		5280		
Lane	Width, ft	12		Shoulder Width, ft	:	6		
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0		
Der	nand and Capacity							
Direc	tional Demand Flow Rate, veh/h	1163		Opposing Demand	d Flow Rate, veh/h	-		
Peak	Hour Factor	0.94		Total Trucks, %		3.00		
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.68		
Inte	Intermediate Results							
Segn	nent Vertical Class	1		Free-Flow Speed, I	mi/h	54.4		
Spee	d Slope Coefficient	3.50866		Speed Power Coef	ficient	0.41674		
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580		
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		17.8		
%lmp	proved % Followers	0.0		% Improved Avg Speed 0.0				
Sub	segment Data							
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	5280	-		-	50.8		
Veh	icle Results							
Avera	age Speed, mi/h	50.8		Percent Followers,	%	77.7		
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	17.8		
Vehic	le LOS	E						
Bicy	cle Results			-				
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4		
Flow	Rate Outside Lane, veh/h	1163		Bicycle Effective Width, ft		24		
Bicyc	le LOS Score	3.49		Bicycle Effective Speed Factor		4.62		
Bicyc	le LOS	С						

Copyright © 2020 University of Florida. All Rights Reserved.

HCS T Two-Lane Version 7.8.5 2019 Friday 29 NB w-o Project.xuf Generated: 01/16/2020 19:50:20

Project Information

Pro	Ject mormation							
Anal	yst	DRR		Date		1/16/2020		
Ager	псу	CTG		Analysis Year		Existing w-o Project NB		
Juris	diction	Napa Co		Time Period Analy	zed	Saturday PM Peak Hour		
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary		
	Segment 1							
Vehicle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280		
Lane	Width, ft	12		Shoulder Width, ft	t	6		
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0		
Der	mand and Capacity							
Direc	ctional Demand Flow Rate, veh/h	1014		Opposing Demand	d Flow Rate, veh/h	-		
Peak	Hour Factor	0.94	0.94			1.00		
Segment Capacity, veh/h 1700		1700		Demand/Capacity	(D/C)	0.60		
Inte	Intermediate Results							
Segment Vertical Class		1		Free-Flow Speed,	mi/h	54.5		
Spee	d Slope Coefficient	3.51227		Speed Power Coef	fficient	0.41674		
PF SI	ope Coefficient	-1.34015		PF Power Coefficie	ent	0.74570		
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.7		
%lm	proved % Followers	0.0		% Improved Avg Speed 0.0				
Sub	osegment Data							
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	5280	-		-	51.1		
Veh	icle Results							
Aver	age Speed, mi/h	51.1		Percent Followers,	%	74.2		
Segn	nent Travel Time, minutes	1.17		Followers Density,	followers/mi/ln	14.7		
Vehi	cle LOS	D						
Bic	ycle Results							
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4		
Flow	Rate Outside Lane, veh/h	1014		Bicycle Effective Width, ft		24		
Bicyc	le LOS Score	2.96		Bicycle Effective Speed Factor		4.62		
Bicyc	le LOS	С						

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2019 Saturday 29 NB w-o Project.xuf Generated: 01/16/2020 20:58:29

Project Information

Pro	Project Information								
Analy	yst	DRR		Date		1/16/2020			
Ager	псу	CTG		Analysis Year		Existing without Project SB			
Juriso	diction	Nара Со	Nара Со		zed	Saturday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary			
		Se	egn	nent 1					
Veh	icle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	:	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Der	mand and Capacity								
Direc	tional Demand Flow Rate, veh/h	1122		Opposing Demand	d Flow Rate, veh/h	-			
Peak	Hour Factor	0.94		Total Trucks, %		1.00			
Segment Capacity, veh/h 1700		1700		Demand/Capacity	(D/C)	0.66			
Inte	ermediate Results								
Segment Vertical Class		1		Free-Flow Speed,	mi/h	54.5			
Spee	d Slope Coefficient	3.51227		Speed Power Coef	ficient	0.41674			
PF SI	ope Coefficient	-1.34015		PF Power Coefficie	ent	0.74570			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		16.9			
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0			
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	50.9			
Veh	icle Results								
Avera	age Speed, mi/h	50.9		Percent Followers,	%	76.8			
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	16.9			
Vehio	cle LOS	E							
Bicy	ycle Results			-					
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4			
Flow	Rate Outside Lane, veh/h	1122		Bicycle Effective W	/idth, ft	24			
Bicyc	le LOS Score	3.01		Bicycle Effective S	peed Factor	4.62			
Bicyc	le LOS	С							

Copyright © 2020 University of Florida. All Rights Reserved.

HCSTM Two-Lane Version 7.8.5 2019 Saturday 29 SB w-o Project.xuf Generated: 01/16/2020 21:00:42

Project Information

FIQ									
Analy	/st	DRR		Date		1/16/2020			
Agen	ю	CTG		Analysis Year		2025 without Project NB			
Juriso	diction	Napa Co		Time Period Analy	zed	Friday PM Peak Hour			
Proje	ct Description	Bella Oaks Winery		Unit		United States Customary			
	Segment 1								
Vehicle Inputs									
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	:	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Der	nand and Capacity								
Direc	tional Demand Flow Rate, veh/h	981		Opposing Demand	d Flow Rate, veh/h	-			
Peak	Hour Factor	0.94		Total Trucks, %		3.00			
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.58			
Inte	ermediate Results								
Segn	nent Vertical Class	1		Free-Flow Speed, I	mi/h	54.4			
Spee	d Slope Coefficient	3.50866		Speed Power Coef	ficient	0.41674			
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.1			
%lm	proved % Followers	0.0		% Improved Avg Speed 0.0					
Sub	segment Data								
#	Segment Type	Length, ft	Rad	ius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	51.1			
Veh	icle Results	-			-				
Avera	age Speed, mi/h	51.1		Percent Followers,	%	73.3			
Segn	nent Travel Time, minutes	1.17		Followers Density,	followers/mi/ln	14.1			
Vehic	le LOS	D							
Bicy	cle Results			-					
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4			
Flow	Rate Outside Lane, veh/h	981		Bicycle Effective W	/idth, ft	24			
Bicyc	le LOS Score	3.40		Bicycle Effective Speed Factor		4.62			
Bicyc	le LOS	С							

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2025 Friday 29 NB with Project.xuf Generated: 01/16/2020 20:44:50

Project Information

Pro	ject information						
Analy	yst	DRR		Date		1/16/2020	
Ager	псу	CTG		Analysis Year		2025 without Project SB	
Juriso	diction	Nара Со		Time Period Analy	zed	Friday PM Peak Hour	
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary	
	Segment 1						
Veh	icle Inputs						
Segn	nent Type	Passing Constrained		Length, ft		5280	
Lane	Width, ft	12		Shoulder Width, ft	:	6	
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0	
Der	mand and Capacity						
Direc	tional Demand Flow Rate, veh/h	1262		Opposing Demand	d Flow Rate, veh/h	-	
Peak	Hour Factor	0.94		Total Trucks, %		3.00	
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.74	
Inte	Intermediate Results						
Segment Vertical Class		1		Free-Flow Speed,	mi/h	54.4	
Spee	d Slope Coefficient	3.50866		Speed Power Coef	ficient	0.41674	
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580	
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		19.8	
%lm	proved % Followers	0.0		% Improved Avg Speed 0.0		0.0	
Sub	osegment Data						
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	5280	-		-	50.7	
Veh	icle Results						
Avera	age Speed, mi/h	50.7		Percent Followers,	%	79.7	
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	19.8	
Vehio	cle LOS	E					
Bicy	ycle Results			-			
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4	
Flow	Rate Outside Lane, veh/h	1262		Bicycle Effective W	/idth, ft	24	
Bicyc	le LOS Score	3.53		Bicycle Effective S	peed Factor	4.62	
Bicyc	le LOS	D					

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2025 Friday 29 SB w-o Project.xuf Generated: 01/16/2020 20:47:57

Project Information

Pro	Ject mormation							
Analy	/st	DRR		Date		1/16/2020		
Agen	су	CTG		Analysis Year		2025 without Project NB		
Juriso	diction	Napa Co		Time Period Analy	zed	Saturday PM Peak Hour		
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary		
	Segment 1							
Veh	Vehicle Inputs							
Segn	nent Type	Passing Constrained		Length, ft		5280		
Lane	Width, ft	12		Shoulder Width, ft	:	6		
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0		
Der	nand and Capacity							
Direc	tional Demand Flow Rate, veh/h	1100		Opposing Demand	d Flow Rate, veh/h	-		
Peak	Hour Factor	0.94		Total Trucks, %		1.00		
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.65		
Inte	Intermediate Results							
Segment Vertical Class		1		Free-Flow Speed, I	mi/h	54.5		
Spee	d Slope Coefficient	3.51227		Speed Power Coef	ficient	0.41674		
PF SI	ope Coefficient	-1.34015		PF Power Coefficie	ent	0.74570		
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		16.5		
%lm	proved % Followers	0.0		% Improved Avg Speed 0.0				
Sub	segment Data							
#	Segment Type	Length, ft	Rad	ius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	5280	-		-	51.0		
Veh	icle Results							
Avera	age Speed, mi/h	51.0		Percent Followers,	%	76.3		
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	16.5		
Vehic	cle LOS	E						
Bicy	vcle Results							
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4		
Flow	Rate Outside Lane, veh/h	1100		Bicycle Effective Width, ft		24		
Bicyc	le LOS Score	3.00		Bicycle Effective Speed Factor		4.62		
Bicyc	le LOS	С						

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TW Two-Lane Version 7.8.5 2025 Saturday 29 NB w-o Project.xuf Generated: 01/16/2020 21:03:15

Project Information

Pro	Ject mormation						
Analy	/st	DRR		Date		1/16/2020	
Agen	су	CTG		Analysis Year		2025 without Project SB	
Juriso	diction	Napa Co		Time Period Analyzed		Saturday PM Peak Hour	
Proje	Project Description Bella Oaks Winery			Unit		United States Customary	
	Segment 1						
Vehicle Inputs							
Segn	nent Type	Passing Constrained		Length, ft		5280	
Lane	Width, ft	12		Shoulder Width, ft	:	6	
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0	
Der	nand and Capacity						
Direc	tional Demand Flow Rate, veh/h	1216		Opposing Demand	d Flow Rate, veh/h	-	
Peak	Hour Factor	0.94		Total Trucks, %		1.00	
Segment Capacity, veh/h 1700		Demand/Capacity	(D/C)	0.72			
Inte	ermediate Results						
Segment Vertical Class		1		Free-Flow Speed, I	mi/h	54.5	
Spee	d Slope Coefficient	3.51227		Speed Power Coef	ficient	0.41674	
PF SI	ope Coefficient	-1.34015		PF Power Coefficie	ent	0.74570	
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		18.9	
%lmp	proved % Followers	0.0		% Improved Avg Speed 0.0			
Sub	segment Data						
#	Segment Type	Length, ft	Rad	ius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	5280	-		-	50.8	
Veh	icle Results						
Avera	age Speed, mi/h	50.8		Percent Followers,	%	78.8	
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	18.9	
Vehic	cle LOS	E					
Bicy	vcle Results						
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4	
Flow	Rate Outside Lane, veh/h	1216		Bicycle Effective W	/idth, ft	24	
Bicyc	le LOS Score	3.05		Bicycle Effective Speed Factor		4.62	
Bicycle LOS		С					

Copyright © 2020 University of Florida. All Rights Reserved.

HCSTM Two-Lane Version 7.8.5 2025 Saturday 29 SB w-o Project.xuf Generated: 01/16/2020 21:05:28

Project Information

Pro	Project Information								
Analy	/st	DRR		Date		1/16/2020			
Agen	су	CTG		Analysis Year		2030 w-o Project NB			
Juriso	diction	Napa Co		Time Period Analy	zed	Friday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary			
	Segment 1								
Veh	icle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	:	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Der	nand and Capacity								
Direc	tional Demand Flow Rate, veh/h	1044		Opposing Demand	d Flow Rate, veh/h	-			
Peak	Hour Factor	0.94		Total Trucks, %		3.00			
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.61			
Inte	ermediate Results								
Segment Vertical Class 1		1		Free-Flow Speed,	mi/h	54.4			
Spee	d Slope Coefficient	3.50866		Speed Power Coef	ficient	0.41674			
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		15.3			
%lm	proved % Followers	0.0		% Improved Avg Speed 0.0					
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	51.0			
Veh	icle Results								
Avera	age Speed, mi/h	51.0		Percent Followers, %		74.9			
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	15.3			
Vehic	cle LOS	E							
Bicy	vcle Results								
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4			
Flow	Rate Outside Lane, veh/h	1044	1044		/idth, ft	24			
Bicyc	le LOS Score	3.43		Bicycle Effective Speed Factor		4.62			
Bicyc	le LOS	С	С						

Copyright © 2020 University of Florida. All Rights Reserved.

HCS T Two-Lane Version 7.8.5 2030 Friday 29 NB w-o Project.xuf Generated: 01/16/2020 20:54:41

Project Information

Pro	Project mormation									
Analy	yst	DRR		Date		1/16/2020				
Ager	су	CTG		Analysis Year		2030 without Project SB				
Juriso	diction	Napa Co		Time Period Analy	zed	Friday PM Peak Hour				
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary				
	Segment 1									
Veh	Vehicle Inputs									
Segn	nent Type	Passing Constrained		Length, ft		5280				
Lane	Width, ft	12		Shoulder Width, ft	:	6				
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0				
Der	Demand and Capacity									
Direc	tional Demand Flow Rate, veh/h	1343		Opposing Demand	d Flow Rate, veh/h	-				
Peak	Hour Factor	0.94		Total Trucks, %		3.00				
Segment Capacity, veh/h 1700 Demand/Capacit			(D/C)	0.79						
Inte	Intermediate Results									
Segment Vertical Class 1		1		Free-Flow Speed,	mi/h	54.4				
Spee	d Slope Coefficient	3.50866		Speed Power Coef	ficient	0.41674				
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580				
In Pa	ssing Lane Effective Length?	No		Total Segment Der	nsity, veh/mi/ln	21.6				
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0				
Sub	osegment Data									
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h				
1	Tangent	5280	-		-	50.6				
Veh	icle Results									
Avera	age Speed, mi/h	50.6		Percent Followers,	%	81.2				
Segn	nent Travel Time, minutes	1.19		Followers Density,	followers/mi/ln	21.6				
Vehio	cle LOS	E								
Bicy	ycle Results	·								
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4				
Flow	Rate Outside Lane, veh/h	1343		Bicycle Effective W	/idth, ft	24				
Bicyc	le LOS Score	3.56		Bicycle Effective S	peed Factor	4.62				
Bicyc	le LOS	D								

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2030 Friday 29 SB w-o Project.xuf Generated: 01/16/2020 20:51:02

Project Information

	,,							
Anal	yst	DRR		Date		1/16/2020		
Ager	псу	CTG		Analysis Year		2030 without Project SB		
Juris	diction	Nара Со		Time Period Analy	zed	Saturday PM Peak Hour		
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary		
		Se	egn	nent 1				
Veh	Vehicle Inputs							
Segn	nent Type	Passing Constrained		Length, ft		5280		
Lane	Width, ft	12		Shoulder Width, ft		6		
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0		
Der	Demand and Capacity							
Directional Demand Flow Rate, veh/h 1293			Opposing Demand	d Flow Rate, veh/h	-			
Peak Hour Factor		0.94		Total Trucks, %		1.00		
Segment Capacity, veh/h 17		1700		Demand/Capacity	(D/C)	0.76		
Inte	ermediate Results							
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	54.5		
Spee	d Slope Coefficient	3.51227		Speed Power Coefficient		0.41674		
PF SI	ope Coefficient	-1.34015	-1.34015		ent	0.74570		
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		20.5		
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0		
Sub	osegment Data							
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	5280	-		-	50.7		
Veh	icle Results							
Aver	age Speed, mi/h	50.7		Percent Followers,	%	80.3		
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	20.5		
Vehi	cle LOS	E						

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2030 Saturday 29 SB w-o Project.xuf Generated: 01/16/2020 21:11:05

Project Information

Anal	/st	DRR		Date		1/16/2020			
Ager	су	CTG		Analysis Year		2030 without Project NB			
Juris	diction	Napa Co		Time Period Analy	zed	Saturday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary			
	Segment 1								
Veh	icle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	:	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Der	Demand and Capacity								
Directional Demand Flow Rate, veh/h 1170		1170	Opposing Demand		d Flow Rate, veh/h	-			
Peak Hour Factor		0.94	0.94			1.00			
Segment Capacity, veh/h		1700		Demand/Capacity	(D/C)	0.69			
Inte	ermediate Results								
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	54.5			
Spee	d Slope Coefficient	3.51227		Speed Power Coefficient		0.41674			
PF SI	ope Coefficient	-1.34015		PF Power Coefficient		0.74570			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		17.9			
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0			
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	50.9			
Veh	icle Results								
Aver	age Speed, mi/h	50.9	.9 P		%	77.8			
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	17.9			
Vehio	cle LOS	E							
~ ·		D I II.CO							

Copyright © 2020 University of Florida. All Rights Reserved.

HCSTM Two-Lane Version 7.8.5 2030 Saturday 29 NB w-o Project.xuf Generated: 01/17/2020 15:17:12

Project Information

Pro	Project Information									
Analy	yst	DRR		Date		1/16/2020				
Ager	су	CTG		Analysis Year		2019 with Project NB				
Juriso	diction	Nара Со		Time Period Analy	zed	Friday PM Peak Hour				
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary				
	Segment 1									
Veh	Vehicle Inputs									
Segn	nent Type	Passing Constrained		Length, ft		5280				
Lane	Width, ft	12		Shoulder Width, ft	t	6				
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0				
Der	Demand and Capacity									
Direc	tional Demand Flow Rate, veh/h	907		Opposing Demand	d Flow Rate, veh/h	-				
Peak	Hour Factor	0.94		Total Trucks, %		3.00				
Segn	Segment Capacity, veh/h 1700 Demand/Capacity (D/C)			(D/C)	0.53					
Intermediate Results										
Segment Vertical Class 1		1		Free-Flow Speed,	mi/h	54.4				
Spee	Speed Slope Coefficient 3.50866		Speed Power Coef	fficient	0.41674					
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580				
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	12.6				
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0				
Sub	osegment Data									
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h				
1	Tangent	5280	-		-	51.2				
Veh	icle Results									
Avera	age Speed, mi/h	51.2		Percent Followers,	%	71.3				
Segn	nent Travel Time, minutes	1.17		Followers Density,	followers/mi/ln	12.6				
Vehio	cle LOS	D								
Bicy	ycle Results			-						
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4				
Flow	Rate Outside Lane, veh/h	907		Bicycle Effective W	/idth, ft	24				
Bicyc	le LOS Score	3.36		Bicycle Effective S	peed Factor	4.62				
Bicyc	le LOS	С								

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2019 Friday 29 NB with Project.xuf Generated: 01/16/2020 20:43:21

Project Information

Pro	Project Information									
Analy	yst	DRR		Date		1/16/2020				
Ager	су	CTG		Analysis Year		2019 with Project SB				
Juriso	diction	Nара Со		Time Period Analy	zed	Friday PM Peak Hour				
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary				
	Segment 1									
Veh	Vehicle Inputs									
Segn	nent Type	Passing Constrained		Length, ft		5280				
Lane	Width, ft	12		Shoulder Width, ft	:	6				
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0				
Der	Demand and Capacity									
Direc	tional Demand Flow Rate, veh/h	1166		Opposing Demand	d Flow Rate, veh/h	-				
Peak	Hour Factor	0.94		Total Trucks, %		3.00				
Segment Capacity, veh/h 1700 Demand		Demand/Capacity (D/C)		0.69						
Intermediate Results										
Segment Vertical Class 1			Free-Flow Speed,	mi/h	54.4					
Spee	Speed Slope Coefficient 3.50866		Speed Power Coef	ficient	0.41674					
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580				
In Pa	ssing Lane Effective Length?	No		Total Segment Der	nsity, veh/mi/ln	17.8				
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0				
Sub	osegment Data									
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h				
1	Tangent	5280	-		-	50.8				
Veh	icle Results									
Avera	age Speed, mi/h	50.8		Percent Followers,	%	77.8				
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	17.8				
Vehio	cle LOS	E								
Bicy	ycle Results			-						
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4				
Flow	Rate Outside Lane, veh/h	1166		Bicycle Effective W	/idth, ft	24				
Bicyc	le LOS Score	3.49		Bicycle Effective S	peed Factor	4.62				
Bicyc	le LOS	С								

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2019 Friday 29 SB with Project.xuf Generated: 01/16/2020 20:37:12

sight Information

Pro	Project mormation								
Anal	yst	DRR		Date		1-6-2021			
Ager	су	CTG		Analysis Year		Existing with Project NB			
Juris	diction	Napa Co		Time Period Analy	zed	Saturday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery SR29 north of BOL	9	Unit		United States Customary			
	Segment 1								
Veh	icle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	:	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Demand and Capacity									
Directional Demand Flow Rate, veh/h		1016		Opposing Demand Flow Rate, veh/h		-			
Peak Hour Factor		0.94		Total Trucks, %		1.00			
Segment Capacity, veh/h 17		1700		Demand/Capacity	(D/C)	0.60			
Inte	ermediate Results								
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	54.5			
Spee	d Slope Coefficient	3.51227	Speed Power Co		ficient	0.41674			
PF SI	ope Coefficient	-1.34015		PF Power Coefficient		0.74570			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.8			
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0			
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	51.1			
Veh	icle Results								
Aver	age Speed, mi/h	51.1		Percent Followers,	%	74.2			
Segn	nent Travel Time, minutes	1.17		Followers Density,	followers/mi/ln	14.8			
Vehio	cle LOS	D							
~ ·									

Copyright © 2021 University of Florida. All Rights Reserved.

HCS T Two-Lane Version 7.8.5 0-2019 Saturday 29 NB with Project.xuf Generated: 01/06/2021 17:49:14

Project Information

Anal	yst	DRR		Date		1-6-21			
Ager	су	CTG		Analysis Year		Existing with Project SB			
Juris	diction	Napa Co		Time Period Analyzed		Saturday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary			
	Segment 1								
Veh	Vehicle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	:	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Der	Demand and Capacity								
Directional Demand Flow Rate, veh/h 1126			Opposing Deman	d Flow Rate, veh/h	-				
Peak Hour Factor 0.9		0.94	0.94			1.00			
Segment Capacity, veh/h 1700		1700		Demand/Capacity	(D/C)	0.66			
Inte	ermediate Results								
Segn	nent Vertical Class	1	1		mi/h	54.5			
Spee	d Slope Coefficient	3.51227		Speed Power Coefficient		0.41674			
PF SI	ope Coefficient	-1.34015		PF Power Coefficient		0.74570			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		17.0			
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0			
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	50.9			
Veh	icle Results								
Aver	age Speed, mi/h	50.9		Percent Followers,	%	76.9			
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	17.0			
Vehio	cle LOS	E							
~ ·									

Copyright © 2021 University of Florida. All Rights Reserved.

HCSTM Two-Lane Version 7.8.5

Generated: 01/06/2021 17:50:26

2019 Saturday 29 SB with Project.xuf

Project Information

Pro	Project Information									
Analy	yst	DRR		Date		1/16/2020				
Ager	су	CTG		Analysis Year		2025 with Project NB				
Juriso	diction	n Napa Co		Time Period Analy	zed	Friday PM Peak Hour				
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary				
	Segment 1									
Veh	Vehicle Inputs									
Segn	nent Type	Passing Constrained		Length, ft		5280				
Lane	Width, ft	12		Shoulder Width, ft	:	6				
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0				
Der	Demand and Capacity									
Direc	tional Demand Flow Rate, veh/h	983		Opposing Demand	d Flow Rate, veh/h	-				
Peak	Hour Factor	0.94		Total Trucks, %		3.00				
Segment Capacity, veh/h 1700 Demand/Capa		Demand/Capacity	(D/C)	0.58						
Intermediate Results										
Segment Vertical Class 1		1		Free-Flow Speed,	mi/h	54.4				
Spee	Speed Slope Coefficient 3.50866		Speed Power Coef	ficient	0.41674					
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580				
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		14.1				
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0				
Sub	osegment Data									
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h				
1	Tangent	5280	-		-	51.1				
Veh	icle Results									
Avera	age Speed, mi/h	51.1		Percent Followers,	%	73.4				
Segn	nent Travel Time, minutes	1.17		Followers Density,	followers/mi/ln	14.1				
Vehio	cle LOS	D								
Bicy	ycle Results									
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4				
Flow	Rate Outside Lane, veh/h	983		Bicycle Effective W	/idth, ft	24				
Bicyc	le LOS Score	3.40		Bicycle Effective S	peed Factor	4.62				
Bicyc	le LOS	С								

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2025 Friday 29 NB with Project.xuf Generated: 01/16/2020 20:46:19

Project Information

Pro	Project Information									
Analy	/st	DRR		Date		1/16/2020				
Agen	су	CTG		Analysis Year		2025 with Project SB				
Juriso	diction	Nара Со		Time Period Analy	zed	Friday PM Peak Hour				
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary				
	Segment 1									
Veh	Vehicle Inputs									
Segn	nent Type	Passing Constrained		Length, ft		5280				
Lane	Width, ft	12		Shoulder Width, ft	t	6				
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0				
Der	Demand and Capacity									
Direc	tional Demand Flow Rate, veh/h	1265		Opposing Demand	d Flow Rate, veh/h	-				
Peak	Hour Factor	0.94		Total Trucks, %		3.00				
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.74				
Intermediate Results										
Segment Vertical Class 1		Free-Flow Speed,	mi/h	54.4						
Spee	d Slope Coefficient	nt 3.50866		Speed Power Coef	fficient	0.41674				
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580				
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	19.9				
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0				
Sub	osegment Data									
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h				
1	Tangent	5280	-		-	50.7				
Veh	icle Results									
Avera	age Speed, mi/h	50.7		Percent Followers,	%	79.8				
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	19.9				
Vehic	cle LOS	E								
Bicy	vcle Results	·		•						
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4				
Flow	Rate Outside Lane, veh/h	1265		Bicycle Effective W	/idth, ft	24				
Bicyc	le LOS Score	3.53		Bicycle Effective S	peed Factor	4.62				
Bicyc	le LOS	D								

Copyright © 2020 University of Florida. All Rights Reserved.

HCSTM Two-Lane Version 7.8.5 2025 Friday 29 SB with Project.xuf Generated: 01/16/2020 20:49:06

Project Information

110									
Anal	yst	DRR		Date		1-6-21			
Ager	псу	СТБ		Analysis Year		2025 without Project NB			
Juris	diction	Napa Co		Time Period Analy	zed	Saturday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary			
	Segment 1								
Veh	Vehicle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft		6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Demand and Capacity									
Directional Demand Flow Rate, veh/h 11		1102		Opposing Demand Flow Rate, veh/h		-			
Peak Hour Factor 0		0.94		Total Trucks, %		1.00			
Segment Capacity, veh/h 1700		1700		Demand/Capacity	(D/C)	0.65			
Inte	Intermediate Results								
Segn	nent Vertical Class	1		Free-Flow Speed, r	mi/h	54.5			
Spee	d Slope Coefficient	3.51227		Speed Power Coefficient		0.41674			
PF SI	ope Coefficient	-1.34015	-1.34015		nt	0.74570			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		16.5			
%lm	proved % Followers	0.0		% Improved Avg S	peed	0.0			
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	51.0			
Veh	icle Results								
Aver	age Speed, mi/h	51.0		Percent Followers,	%	76.3			
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	16.5			
Vehi	cle LOS	E							

Copyright © 2021 University of Florida. All Rights Reserved.

HCSTM Two-Lane Version 7.8.5 2025 Saturday 29 NB with Project.xuf Generated: 01/06/2021 17:48:17

Project Information

Pro	roject mormation								
Anal	yst	DRR		Date		1-6-21			
Ager	Agency CTG			Analysis Year		2025 with Project SB			
Juris	diction	Napa Co		Time Period Analy	zed	Saturday PM Peak Hour			
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary			
	Segment 1								
Veh	Vehicle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280			
Lane	Width, ft	12		Shoulder Width, ft	:	6			
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0			
Der	Demand and Capacity								
Directional Demand Flow Rate, veh/h		1217		Opposing Demand Flow Rate, veh/h		-			
Peak Hour Factor		0.94		Total Trucks, %		1.00			
Segment Capacity, veh/h 1		1700		Demand/Capacity	(D/C)	0.72			
Inte	ermediate Results								
Segn	nent Vertical Class	1	1		mi/h	54.5			
Spee	d Slope Coefficient	3.51227		Speed Power Coefficient		0.41674			
PF SI	ope Coefficient	-1.34015		PF Power Coefficient		0.74570			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		18.9			
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0			
Sub	osegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	5280	-		-	50.8			
Veh	icle Results								
Aver	age Speed, mi/h	50.8		Percent Followers,	%	78.8			
Segn	nent Travel Time, minutes	1.18		Followers Density, followers/mi/ln		18.9			
Vehi	cle LOS	E							

Copyright © 2021 University of Florida. All Rights Reserved.

HCS T Two-Lane Version 7.8.5 2025 Saturday 29 SB with Project.xuf Generated: 01/06/2021 17:47:23

Project Information

Pro	Project mormation									
Analy	yst	DRR		Date		1/16/2020				
Agen	су	CTG		Analysis Year		2030 with Project NB				
Juriso	diction	Nара Со		Time Period Analy	zed	Friday PM Peak Hour				
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary				
	Segment 1									
Veh	Vehicle Inputs									
Segn	nent Type	Passing Constrained	Passing Constrained			5280				
Lane	Width, ft	12		Shoulder Width, ft	:	6				
Spee	d Limit, mi/h	50		Access Point Dens	ity, pts/mi	10.0				
Der	nand and Capacity									
Direc	tional Demand Flow Rate, veh/h	1046		Opposing Demand	d Flow Rate, veh/h	-				
Peak	Hour Factor	0.94		Total Trucks, %		3.00				
Segment Capacity, veh/h 1700			Demand/Capacity	(D/C)	0.62					
Inte	Intermediate Results									
Segment Vertical Class 1		Free-Flow Speed,	mi/h	54.4						
Spee	d Slope Coefficient	3.50866		Speed Power Coef	ficient	0.41674				
PF SI	ope Coefficient	-1.34037		PF Power Coefficie	ent	0.74580				
In Pa	ssing Lane Effective Length?	No		Total Segment Der	nsity, veh/mi/ln	15.4				
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0				
Sub	osegment Data									
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h				
1	Tangent	5280	-		-	51.0				
Veh	icle Results									
Avera	age Speed, mi/h	51.0		Percent Followers,	%	75.0				
Segn	nent Travel Time, minutes	1.18		Followers Density,	followers/mi/ln	15.4				
Vehic	cle LOS	E								
Bicy	vcle Results									
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	4				
Flow	Rate Outside Lane, veh/h	1046		Bicycle Effective W	/idth, ft	24				
Bicyc	le LOS Score	3.43		Bicycle Effective S	peed Factor	4.62				
Bicyc	le LOS	С								

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TW Two-Lane Version 7.8.5 2030 Friday 29 NB with Project.xuf Generated: 01/16/2020 20:56:19

Project Information

Project Information								
Analyst		DRR		Date		1/16/2020		
Ager	gency CTG			Analysis Year		2030 with Project SB		
Jurisdiction		Nара Со		Time Period Analyzed		Friday PM Peak Hour		
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary		
Segment 1								
Vehicle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		5280		
Lane Width, ft		12		Shoulder Width, ft		6		
Speed Limit, mi/h		50		Access Point Density, pts/mi		10.0		
Demand and Capacity								
Directional Demand Flow Rate, veh/h		1346		Opposing Demand Flow Rate, veh/h		-		
Peak Hour Factor		0.94		Total Trucks, %		3.00		
Segn	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.79		
Inte	ermediate Results							
Segment Vertical Class		1		Free-Flow Speed, mi/h		54.4		
Speed Slope Coefficient		3.50866		Speed Power Coefficient		0.41674		
PF Slope Coefficient		-1.34037		PF Power Coefficient		0.74580		
In Passing Lane Effective Length?		No		Total Segment Density, veh/mi/ln		21.6		
%Improved % Followers		0.0		% Improved Avg Speed		0.0		
Sub	osegment Data							
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	5280	-	-		50.6		
Veh	icle Results							
Average Speed, mi/h		50.6		Percent Followers, %		81.2		
Segment Travel Time, minutes		1.19		Followers Density, followers/mi/ln		21.6		
Vehicle LOS		E						
Bic	ycle Results			-				
Percent Occupied Parking		0		Pavement Condition Rating		4		
Flow Rate Outside Lane, veh/h		1346		Bicycle Effective Width, ft		24		
Bicycle LOS Score		3.56		Bicycle Effective Speed Factor		4.62		
Bicycle LOS		D						

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2030 Friday 29 SB with Project.xuf Generated: 01/16/2020 20:52:33

Project Information

Project mormation								
Analyst		DRR		Date		1-6-21		
Agency		CTG		Analysis Year		2030 with Project NB		
Jurisdiction		Nара Со		Time Period Analyzed		Saturday PM Peak Hour		
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary		
Segment 1								
Vehicle Inputs								
Segment Type		Passing Constrained		Length, ft		5280		
Lane Width, ft		12		Shoulder Width, ft		6		
Speed Limit, mi/h		50		Access Point Density, pts/mi		10.0		
Demand and Capacity								
Directional Demand Flow Rate, veh/h		1173		Opposing Demand Flow Rate, veh/h		-		
Peak Hour Factor		0.94		Total Trucks, %		1.00		
Segment Capacity, veh/h		1700		Demand/Capacity (D/C)		0.69		
Intermediate Results								
Segment Vertical Class		1		Free-Flow Speed, mi/h		54.5		
Speed Slope Coefficient		3.51227		Speed Power Coefficient		0.41674		
PF Slope Coefficient		-1.34015		PF Power Coefficient		0.74570		
In Passing Lane Effective Length?		No		Total Segment Density, veh/mi/ln		18.0		
%Improved % Followers		0.0		% Improved Avg Speed		0.0		
Subsegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	5280	-		-	50.8		
Vehicle Results								
Average Speed, mi/h		50.8		Percent Followers, %		77.9		
Segment Travel Time, minutes		1.18		Followers Density, followers/mi/ln		18.0		
Vehicle LOS		E						
Vehicle LOS		E						

Copyright © 2021 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2030 Saturday 29 NB with Project.xuf Generated: 01/06/2021 17:45:21

Project Information

Analyst		DRR		Date		1-6-21		
Agency		CTG		Analysis Year		2030 with Project SB		
Juris	diction	Nара Со		Time Period Analyzed		Saturday PM Peak Hour		
Proje	ect Description	Bella Oaks Winery		Unit		United States Customary		
Segment 1								
Vehicle Inputs								
Segment Type		Passing Constrained		Length, ft		5280		
Lane Width, ft		12		Shoulder Width, ft		6		
Speed Limit, mi/h		50		Access Point Density, pts/mi		10.0		
Demand and Capacity								
Directional Demand Flow Rate, veh/h		1296		Opposing Demand Flow Rate, veh/h		-		
Peak Hour Factor		0.94		Total Trucks, %		1.00		
Segment Capacity, veh/h		1700		Demand/Capacity (D/C)		0.76		
Intermediate Results								
Segment Vertical Class		1		Free-Flow Speed, mi/h		54.5		
Speed Slope Coefficient		3.51227		Speed Power Coefficient		0.41674		
PF Slope Coefficient		-1.34015		PF Power Coefficient		0.74570		
In Passing Lane Effective Length?		No		Total Segment Density, veh/mi/ln		20.5		
%Improved % Followers		0.0		% Improved Avg Speed		0.0		
Subsegment Data								
#	Segment Type	Length, ft	Radius, ft		Superelevation, %	Average Speed, mi/h		
1	Tangent	5280	-		-	50.7		
Vehicle Results								
Average Speed, mi/h		50.7		Percent Followers, %		80.3		
Segment Travel Time, minutes		1.18		Followers Density, followers/mi/In		20.5		
Vehicle LOS		E						

Copyright © 2021 University of Florida. All Rights Reserved.

HCS TM Two-Lane Version 7.8.5 2030 Saturday 29 SB with Project.xuf Generated: 01/06/2021 17:46:25

uf

APPENDIX D

STAGLIN FAMILY VINEYARD DRIVEWAY Friday Hourly Percent of Total Trips

Friday, October 18, 2019

Friday, October 18, 2019 Total In/Out - 148 Vehicles

STAGLIN FAMILY VINEYARD DRIVEWAY Friday Hourly Percent of Total Trips

Friday, November 15, 2019

Total In/Out - 86 Vehicles

Staglin Family Vineyard Traffic Study

Figure A-1

Friday Traffic Percentages

Staglin Family Vineyard (by Hour) - October 18 and November 15, 2019

Staglin Family Vineyard (by Hour) - October 19 and November 16, 2019

APPENDIX E

Existing Conditions Winery Traffic Information / Trip Generation

Determine Winery Daily Trips. Complete Sections A through I below to determine your winery project's estimated baseline daily, peak hour trips, and annual trips.

<u>Section</u>	on A. Maximum Daily Weekday Traffic (Friday, non-harvest season)	
1.	Total number of FT employees ¹ : <u>8</u> x 3.05 one-way trips per employee	= <u>24.4</u> daily trips
2.	Total number of PT employees ¹ : x 1.90 one-way trips per employee	=0daily trips
3.	Maximum weekday visitors ² : <u>10</u> /2.6 visitors per vehicle x 2 one-way trips	=daily trips
4.	Gallons of production: <u>36,000</u> /1,000 x 0.009 daily truck trips ³ x 2 one-way trips	= <u>0.6</u> daily trips
5.	TOTAL	= <u>32.7 (33)</u> daily trips
<u>Section</u>	on B. Maximum Daily Weekday Traffic (Friday, harvest season)	- <i></i>
6.	Total number of FT employees ¹ : 8 x 3.05 one-way trips per employee	= <u>24.4</u> daily trips
7.	Total number of PT employees ¹ : $\frac{0}{100}$ x 1.90 one-way trips per employee	=0daily trips
8.	Maximum weekday visitors ² : $\frac{10}{2.6}$ visitors per vehicle x 2 one-way trips	= <u>7.7</u> daily trips
9.	Gallons of production: <u>36,000</u> /1,000 x 0.009 daily truck trips x 2 one-way trips	=daily trips
10.	Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips	= 1.0 daily trips
11.	TOTAL	= <u>33.7 (34)</u> daily trips
<u>Section</u>	on C. Maximum Daily Weekend Traffic (Saturday, non-harvest season)	
12.	Total number of FT Sat. employees ¹ : <u>5</u> x 3.05 one-way trips per employee	= <u>15.3</u> daily trips
13.	Total number of PT Sat. employees ¹ :0 x 1.90 one-way trips per employee	=0daily trips
14.	Maximum Saturday visitors ² : 0 /2.8 visitors per vehicle x 2 one-way trips	=0daily trips
15.	Gallons of production:69/1,000 x 0.009 daily truck trips ³ x 2 one-way trips	= <u>0.6</u> daily trips
16.	TOTAL	= <u>16.9 (17)</u> daily trips
<u>Section</u>	on D. Maximum Daily Weekend Traffic (Saturday, harvest season)	
17.	Total number of FT Sat. employees ¹ : <u>5</u> x 3.05 one-way trips per employee	= <u>15.3</u> daily trips
18.	Total number of PT Sat. employees ¹ : x 1.90 one-way trips per employee	=0daily trips
19.	Maximum Saturday visitors ² : 0 /2.8 visitors per vehicle x 2 one-way trips	=0daily trips
20.	Gallons of production: <u>36,000</u> /1,000 x 0.009 daily truck trips x 2 one-way trips	= <u>0.6</u> daily trips
21.	Avg. annual tons of grape on-haul:69/ 144 truck trips x 2 one-way trips	= <u>1</u> daily trips
22.	TOTAL	= 16.9(17) daily trips

22.

¹ Full-Time and part-time employees that staff the largest of any event that is proposed to occur two or more times in a month, on average.

² The number of weekday visitors shall include guests of the largest of any event that is proposed to occur two or more times in a month, on average.

³ Assumes 1.47 materials and supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year

Existing Conditions Winery Traffic Information / Trip Generation (continued)

Section E. PM Peak Hour Trip Generation (Friday, non-harvest season)		
(Sum of daily trips from Sec. A, lines 3 and 4) x 0.38 + (No. of FTE) + (line 2 / 2)	12	_PM peak trips
Section F. PM Peak Hour Trip Generation (Friday, harvest season)		
(Sum of daily trips, Sec. B, lines 8, 9, 10) x 0.38 + (No. of FTE) + (line 7 / 2)	<u> 12 </u>	_PM peak trips
Section G. PM Peak Hour Trip Generation (Saturday, non-harvest season)		
(Sum of daily trips from Sec. C, line 14 and 15) x 0.57 + (No. of FTE) + (line 13 / 2)	=1	_PM peak trips
Section H. PM Peak Hour Trip Generation (Saturday, harvest season)		
(Sum of daily trips Sec. D, lines 19, 20, and 21) x 0.57 + (No. of FTE) + (line 18 / 2)	=6	_PM peak trips
Section I. Maximum Annual Trips	0404	
(Sec. A, line 5 x 206) + (Sec. B, line 11 x 55) + (Sec. C, line 16 x 82) + (Sec. D, line 22 x 22)	<u>= 9124</u>	_Annual trips

Proposed Project Winery Traffic Information / Trip Generation

<u>Determine Winery Daily Trips</u>. Complete Sections J through R below to determine your winery project's estimated future daily, peak hour trips, and annual trips.

1.Total number of FT employees 1.Total number of FT employees 1.Total number of PT employees 1.Total number of PT employees 2.Total number of PT sat.Employees 2.Total number of PT sat.Total number of PT sat.Employees 2.Total number of PT sat.Employees 2.Total number of PT Sat.Employees 2.Sat.	Section J. Maximum Daily Weekday Traffic (Friday, non-harvest season)	
2.Total number of PT employees $\frac{1}{2}$, x 1.90 one-way trips per employee $\frac{9.5}{3.8}$ daily trips3.Maximum weekday visitors $\frac{2}{2}$, $\frac{44}{2.6}$ visitors per vehicle x 2 one-way trips $\frac{33.8}{2.6}$ daily trips4.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips 3 x 2 one-way trips $\frac{9.6}{2.6}$ daily trips5.TOTAL $\frac{9.5}{2.6}$ daily trips5.Total number of FT employees $\frac{11}{2.5}$ x 1.90 one-way trips per employee $\frac{33.6}{2.6}$ daily trips6.Total number of FT employees $\frac{12}{2.5}$ x 1.90 one-way trips per employee $\frac{33.6}{2.6}$ daily trips7.Total number of FT employees $\frac{12}{2.5}$ x 1.90 one-way trips per employee $\frac{33.6}{2.6}$ daily trips9.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips $\frac{9.6}{2.6}$ daily trips10.Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips $\frac{9.15}{2.6}$ daily trips12.Total number of FT Sat. employees $\frac{1.0}{2.8}$ x 1.90 one-way trips per employee $\frac{9.15}{2.6}$ daily trips13.Total number of PT Sat. employees $\frac{1.0}{2.8}$ x 1.90 one-way trips per employee $\frac{9.15}{2.6}$ daily trips14.Maximum Saturday visitors $\frac{2.44}{2.8}$ visitors per vehicle x 2 one-way trips $\frac{9.16}{2.6}$ daily trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\frac{3}{2} \times 2$ one-way trips $\frac{9.15}{2.6}$ daily trips15.Gallons of production: $\frac{36000}{2.1,000 \times 0.009}$ daily truck trips per employee $\frac{9.15}{2.6}$ daily trips16.Total number of FT Sat. employees $\frac{1.6}{2.5} \times 1.90$ one-	1. Total number of FT employees ¹ : <u>11</u> x 3.05 one-way trips per employee	= <u>33.6</u> daily trips
3.Maximum weekday visitors $\frac{44}{2.6}$ visitors per vehicle x 2 one-way trips $= \frac{33.8}{0.6}$ $= \frac{0.6}{0.6}$ daily trips4.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $^3 \times 2$ one-way trips $= \frac{0.6}{0.6}$ $= \frac{0.6}{0.6}$ daily trips5.TOTALSection K. Maximum Daily Weekday Traffic (Friday, harvest season)6.Total number of FT employees $\frac{1}{2}$: $\frac{1}{2} \times 3.05$ one-way trips per employee7.Total number of PT employees $\frac{1}{2}$: $\frac{1}{2.6}$ visitors per vehicle x 2 one-way trips9.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips10.TOTAL9.Gallons of grape on-haul: $\frac{69}{2}$ 11.TOTAL9.Section L. Maximum Daily Weekend Traffic (Saturday, non-harvest season)12.Total number of PT Sat. employees $\frac{1}{2}$ 13.Total number of PT Sat. employees $\frac{1}{2}$ 14.TOTAL9.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\frac{1}{2}$ a cone-way trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\frac{1}{2}$ a cone-way trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\frac{1}{2}$ a cone-way trips16.TOTAL= $\frac{9.15}{2}$ daily tripsGold daily tripsTotal number of PT Sat. employees $\frac{1}{2}$ x 3.05 one-way trip	2. Total number of PT employees ¹ : <u>5</u> x 1.90 one-way trips per employee	= <u>9.5</u> daily trips
4. Gallons of production: $36000 / 1,000 \times 0.009$ daily truck trips $^3 \times 2$ one-way trips 5. TOTAL = $\frac{-0.6}{-77.5 (78)}$ daily trips 5. Total number of FT employees ¹ : $\frac{11}{2} \times 3.05$ one-way trips per employee 7. Total number of PT employees ¹ : $\frac{5}{2} \times 1.90$ one-way trips per employee 8. Maximum weekday visitors ² : $\frac{44}{2} / 2.6$ visitors per vehicle $\times 2$ one-way trips 9. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\times 2$ one-way trips 10. Avg. annual tons of grape on-haul: $\frac{69}{2} / 144$ truck trips $\times 2$ one-way trips 11. TOTAL = $\frac{-9.15}{-78.5 (79)}$ daily trips 12. Total number of FT Sat. employees ¹ : $\frac{3}{2} \times 3.05$ one-way trips per employee 13. Total number of PT Sat. employees ¹ : $\frac{3}{2} \times 3.05$ one-way trips per employee 14. Maximum Saturday visitors ² : $\frac{44}{2} / 2.8$ visitors per vehicle $\times 2$ one-way trips 15. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $^3 2$ one-way trips 16. TOTAL = $\frac{9.15}{-4}$ daily trips 17. Total number of FT Sat. employees ¹ : $\frac{3}{2} \times 3.05$ one-way trips per employee 18. Total number of PT Sat. employees ¹ : $\frac{3}{2} \times 3.05$ one-way trips per employee 19. Maximum Saturday visitors ² : $\frac{44}{2} / 2.8$ visitors per vehicle $\times 2$ one-way trips 20. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\times 2$ one-way trips 21. Avg. annual tons of grape on-haul: $\frac{69}{2} / 144$ truck trips $\times 2$ one-way trips 21. Avg. annual tons of grape on-haul: $\frac{69}{2} / 144$ truck trips $\times 2$ one-way trips 22. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily trups $\times 2$ one-way trips 23. Avg. annual tons of grape on-haul: $\frac{69}{2} / 144$ truck trips $\times 2$ one-way trips 24. Avg. annual tons of grape on-haul: $\frac{69}{2} / 144$ truck trips $\times 2$ one-way trips 24. Avg. annual tons of grape on-haul: $\frac{69}{2} / 144$ truck trips $\times 2$ one-way trips	3. Maximum weekday visitors ² : <u>44</u> /2.6 visitors per vehicle x 2 one-way trips	= <u>33.8</u> daily trips
5. $TOTAL = \frac{77.5 (78)}{2} daily trips$ $\frac{Section K. Maximum Daily Weekday Traffic (Friday, harvest season)}{16}$ 6. Total number of FT employees ¹ :11 × 3.05 one-way trips per employee 7. Total number of PT employees ¹ :5 × 1.90 one-way trips per employee 8. Maximum weekday visitors ² :44 / 2.6 visitors per vehicle x 2 one-way trips 9. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 10. Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips 11. Total number of FT Sat. employees ¹ :3 × 3.05 one-way trips per employee 13. Total number of FT Sat. employees ¹ :9 × 1.90 one-way trips per employee 14. Maximum Saturday visitors ² :44 / 2.8 visitors per vehicle x 2 one-way trips 15. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips ³ x 2 one-way trips 16. Total number of FT Sat. employees ¹ :9 × 3.05 one-way trips per employee 18. Total number of FT Sat. employees ¹ :9 × 3.05 one-way trips per employee 19. Maximum Saturday visitors ² :44 / 2.8 visitors per vehicle x 2 one-way trips 20. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 21. Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips 23. Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips 24. Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips 25. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 26. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 27. Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips 28. Total number of PT Sat. employees ¹ :9 / 144 truck trips x 2 one-way trips 29. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 20. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 20. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 20. Gallons of production: 36000 / 1,000 x 0.009 daily truck trips x 2 one-way trips 2	4. Gallons of production: $\frac{36000}{1,000}$ / 1,000 x 0.009 daily truck trips ³ x 2 one-way trips	=0.6
Section K. Maximum Daily Weekday Traffic (Friday, harvest season)6.Total number of FT employees ¹ :1x 3.05 one-way trips per employee= 33.6daily trips7.Total number of PT employees ¹ :5x 1.90 one-way trips per employee= 9.5daily trips8.Maximum weekday visitors ² :44/2.6 visitors per vehicle x 2 one-way trips= 33.8daily trips9.Gallons of production: 36000/1,000 x 0.009 daily truck trips x 2 one-way trips= 0.6daily trips10.Avg. annual tons of grape on-haul: 69/ 144 truck trips x 2 one-way trips= 1.0daily trips11.Total number of FT Sat. employees ¹ : 3x 3.05 one-way trips per employee= 9.15daily trips12.Total number of PT Sat. employees ¹ : 0x 1.90 one-way trips per employee= 0.6daily trips13.Total number of PT Sat. employees ¹ : 0x 1.90 one-way trips per employee= 0.6daily trips14.Maximum Saturday visitors ² : 44/2.8 visitors per vehicle x 2 one-way trips= 0.6daily trips15.Gallons of production: 36000/1,000 x 0.009 daily truck trips ³ x 2 one-way trips= 41daily trips17.Total number of PT Sat. employees ¹ : 6x 3.05 one-way trips per employee= 5.7daily trips18.Total number of PT Sat. employees ¹ : 6x 3.05 one-way trips per employee= 5.7daily trips19.Maximum Daily Weekend Traffic (Saturday, harvest season)= 5.7daily trips17.Total number of PT Sat. employees ¹ : 6x 3.05 on	5. TOTAL	= <u>77.5 (78)</u> daily trips
Section K. Maximum Daily Weekday Traffic (Friday, harvest season)6.Total number of FT employees1: $\frac{11}{5}$ x 3.05 one-way trips per employee= $\frac{33.6}{9.5}$ daily trips7.Total number of PT employees1: $\frac{5}{5}$ x 1.90 one-way trips per employee= $\frac{9.5}{9.5}$ daily trips8.Maximum weekday visiors2: $\frac{44}{2.6}$ visitors per vehicle x 2 one-way trips= $\frac{33.6}{0.6}$ daily trips9.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips= $\frac{0.6}{0.6}$ daily trips10.Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips= $\frac{9.15}{7.6}$ daily trips11.TOTAL= $\frac{78.5}{7.9}$ daily trips12.Total number of FT Sat. employees1: $\frac{9}{2}$ x 1.90 one-way trips per employee= $\frac{9.15}{0.6}$ daily trips13.Total number of PT Sat. employees1: $\frac{9}{2}$ x 1.90 one-way trips per employee= $\frac{9.15}{0.6}$ daily trips14.Maximum Saturday visitors2: $\frac{44}{7.8}$ visitors per vehicle x 2 one-way trips= $\frac{9.15}{0.6}$ daily trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips3 x 2 one-way trips= $\frac{18.3}{0.6}$ daily trips16.TOTAL= $\frac{18.3}{0.6}$ daily trips17.Total number of PT Sat. employees1: $\frac{3}{2} \times 3.05$ one-way trips per employee= $\frac{18.3}{0.6}$ daily trips18.Total number of PT Sat. employees1: $\frac{3}{2} \times 3.05$ one-way trips per employee= $\frac{5.7}{0.6}$ daily trips19.Maximum Saturday visitors2: $\frac{44}{2.8}$ visitors per vehicle x 2 one-way trips= $\frac{31.4}{0.6}$ daily trips19.Maximum Saturday visitors2: $$		
Section N. Maximum Daily Weekend Traffic (Saturday, non-harvest season)6.Total number of FT employees $\frac{1}{2}$: $\frac{1}{2}$ x 3.05 one-way trips per employee= $\frac{33.6}{9.5}$ daily trips7.Total number of PT employees $\frac{1}{2}$: $\frac{1}{2}$ x 1.90 one-way trips per employee= $\frac{9.5}{0.6}$ daily trips8.Maximum weekday visitors $\frac{244}{2.6}$ visitors per vehicle x 2 one-way trips= $\frac{33.6}{0.6}$ daily trips9.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips= $\frac{0.6}{0.6}$ daily trips10.Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips= $\frac{1.0}{0.6}$ daily trips11.TOTAL= $\frac{78.5}{79}$ daily trips12.Total number of FT Sat. employees $\frac{1.0}{2} \times 1.90$ one-way trips per employee= $\frac{9.15}{0.6}$ daily trips13.Total number of PT Sat. employees $\frac{1.0}{2} \times 1.90$ one-way trips per employee= $\frac{9.15}{0.6}$ daily trips14.Maximum Saturday visitors $\frac{2.44}{2.8}$ visitors per vehicle x 2 one-way trips= $\frac{31.4}{0.6}$ daily trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\frac{3}{2} \times 2$ one-way trips= $\frac{18.3}{0.6}$ daily trips16.Total number of FT Sat. employees $\frac{1.6}{2} \times 3.05$ one-way trips per employee= $\frac{18.3}{0.6}$ daily trips17.Total number of PT Sat. employees $\frac{1.6}{2} \times 3.05$ one-way trips per employee= $\frac{18.3}{0.6}$ daily trips18.Total number of PT Sat. employees $\frac{1.2}{2} \times 3.05$ one-way trips per employee= $\frac{5.7}{0.6}$ daily trips19.Maximum Saturday visitors $\frac{2.44}{2.8}$ visitors per vehicle x 2 one-way trips <t< td=""><td>Section K. Maximum Daily Weekday Traffic (Eriday, baryost season)</td><td></td></t<>	Section K. Maximum Daily Weekday Traffic (Eriday, baryost season)	
0.Total number of PT employees $\frac{1.5}{2}$ x 1.90 one-way trips per employee $=\frac{9.5}{2}$ daily trips7.Total number of PT employees $\frac{1.5}{2}$ x 1.90 one-way trips per employee $=\frac{9.5}{2}$ daily trips8.Maximum weekday visitors $\frac{2}{2}$ ($\frac{44}{2}$ / 2.6 visitors per vehicle x 2 one-way trips $=\frac{33.8}{2}$ daily trips9.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips $=\frac{9.5}{2}$ daily trips10.Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips $=\frac{1.0}{2}$ daily trips11.TOTAL $=\frac{78.5}{79}$ daily trips12.Total number of FT Sat. employees $\frac{1.3}{2}$ x 3.05 one-way trips per employee $=\frac{9.15}{2}$ daily trips13.Total number of PT Sat. employees $\frac{1.0}{2}$ x 1.90 one-way trips per employee $=\frac{9.15}{2}$ daily trips14.Maximum Saturday visitors $\frac{2.44}{2.8}$ visitors per vehicle x 2 one-way trips $=\frac{9.15}{2}$ daily trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips $\frac{31.4}{2}$ daily trips $=\frac{18.3}{2}$ daily trips16.Total number of FT Sat. employees $\frac{1.6}{2}$ x 3.05 one-way trips per employee $=\frac{18.3}{2}$ daily trips17.Total number of PT Sat. employees $\frac{1.6}{2}$ x 3.05 one-way trips per employee $=\frac{18.3}{2}$ daily trips18.Total number of PT Sat. employees $\frac{1.6}{2}$ x 3.05 one-way trips per employee $=\frac{18.3}{2}$ daily trips19.Maximum Saturday visitors $\frac{2.44}{2.8}$ visitors per vehicle x 2 one-way trips $=\frac{18.3}{2}$ daily trips19.Maximum Saturday visitors $\frac{2.44}{2.8}$ visitors per vehicle x 2 one-way t	Section K. Maximum Daily Weekudy Hame (Fludy, Ildivest season)	-33.6 daily trips
7.Initial number of PT employees .X 1.90 one-way trips per employee $=\frac{-33.8}{3.8}$ daily trips8.Maximum weekday visitors ² : 442.6 visitors per vehicle x 2 one-way trips $=\frac{33.8}{0.6}$ daily trips9.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips $=\frac{33.8}{0.6}$ daily trips10.Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips $=\frac{1.0}{0.6}$ daily trips11.TOTAL $=78.5$ (79)daily trips $=\frac{9.15}{0.6}$ daily trips12.Total number of FT Sat. employees ¹ : $\frac{3}{2}$ x 3.05 one-way trips per employee $=\frac{9.15}{0.6}$ daily trips13.Total number of PT Sat. employees ¹ : $\frac{3}{2}$ x 1.90 one-way trips per employee $=\frac{9.15}{0.6}$ daily trips14.Maximum Saturday visitors ² : $\frac{44}{2.8}$ visitors per vehicle x 2 one-way trips $=\frac{9.15}{0.6}$ daily trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips ³ x 2 one-way trips $=\frac{18.3}{0.6}$ daily trips16.Total number of FT Sat. employees ¹ : $\frac{6}{3}$ x 3.05 one-way trips per employee $=\frac{18.3}{0.6}$ daily trips17.Total number of PT Sat. employees ¹ : $\frac{3}{3}$ x 1.90 one-way trips per employee $=\frac{18.3}{0.6}$ daily trips18.Total number of PT Sat. employees ¹ : $\frac{3}{3}$ x 1.90 one-way trips per employee $=\frac{5.7}{0.6}$ daily trips19.Maximum Saturday visitors ² : $\frac{44}{2.8}$ visitors per vehicle x 2 one-way trips $=\frac{0.6}{0.6}$ daily trips19.	7. Total number of PT employees $\frac{1}{5}$ x 3.05 one-way trips per employee	= <u>9.5</u> daily trips
a.Maximum Weekday visitors $(-1)^{-1}/(2.0)$ visitors per vehicle x 2 one-way trips $= \frac{-0.6}{0.6}$ daily trips9.Gallons of production: $(36000)^{-1}/(1,000 \times 0.009)$ daily truck trips x 2 one-way trips $= \frac{0.6}{0.6}$ daily trips10.Avg. annual tons of grape on-haul: $(69)^{-1}/(144)$ truck trips x 2 one-way trips $= \frac{0.6}{0.6}$ daily trips11.TOTAL $= \frac{0.6}{78.5}$ (79) daily trips12.Total number of FT Sat. employees $^{1}:3$ x 3.05 one-way trips per employee $= \frac{9.15}{0}$ daily trips13.Total number of PT Sat. employees $^{1}:0$ x 1.90 one-way trips per employee $= \frac{9.15}{0}$ daily trips14.Maximum Saturday visitors $^{2}:44$ /2.8 visitors per vehicle x 2 one-way trips $= \frac{0.6}{0.6}$ daily trips15.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips 3 x 2 one-way trips $= \frac{0.6}{0.6}$ daily trips16.TOTAL $= \frac{41}{0.6}$ daily trips17.Total number of FT Sat. employees $^{1:6}$ x 3.05 one-way trips per employee $= \frac{18.3}{0.6}$ daily trips18.Total number of FT Sat. employees $^{1:6}$ x 3.05 one-way trips per employee $= \frac{18.3}{0.6}$ daily trips18.Total number of PT Sat. employees $^{1:6}$ x 3.05 one-way trips per employee $= \frac{5.7}{0.6}$ daily trips19.Maximum Saturday visitors $^{2:44}$ /2.8 visitors per vehicle x 2 one-way trips $= \frac{0.6}{0.6}$ daily trips19.Maximum Saturday visitors $^{2:44}$ /2.8 visitors per vehicle x 2 one-way trips $= \frac{0.6}{0.6}$ daily trips20.Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips $= \frac{0.6}{0.6}$ daily trip	7. Total number of PT employees $\frac{3}{2}$ X 1.50 one-way trips per employee	= <u>33.8</u> daily trips
Section L. Maximum Daily Weekend Traffic (Saturday, non-harvest season) 12. Total number of FT Sat. employees ¹ : $\frac{3}{2}$ x 3.05 one-way trips per employee 13. Total number of PT Sat. employees ¹ : $\frac{3}{2}$ x 1.90 one-way trips per employee 14. Maximum Saturday visitors ² : $\frac{44}{2}$ /2.8 visitors per vehicle x 2 one-way trips 15. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips ³ x 2 one-way trips 16. TOTAL = $\frac{9.15}{44}$ daily trips 17. Total number of FT Sat. employees ¹ : $\frac{6}{2}$ x 3.05 one-way trips per employee 18. Total number of FT Sat. employees ¹ : $\frac{6}{2}$ x 3.05 one-way trips per employee 19. Maximum Daily Weekend Traffic (Saturday, harvest season) 17. Total number of FT Sat. employees ¹ : $\frac{6}{2}$ x 3.05 one-way trips per employee 18. Total number of PT Sat. employees ¹ : $\frac{3}{2}$ x 1.90 one-way trips per employee 19. Maximum Saturday visitors ² : $\frac{44}{2}$ /2.8 visitors per vehicle x 2 one-way trips 20. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips 21. Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips 23. Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips 24. Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips 25. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips 26. daily trips 27. Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips 28. Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips 29. $\frac{1.0}{2.000}$ daily trips 20. $\frac{1.0}{2.0$	8. Maximum weekday visitors 2.5 visitors per venicle x 2 one-way trips 6. Gallons of production: 36000 (1 000 x 0 000 daily truck trips x 2 one way trips	= <u>0.6</u> daily trips
Avg. annual tons of grape on Haul.Total number of grape on Haul.Total number of FT Sat. employees ¹ :11.Total number of FT Sat. employees ¹ :12.Total number of PT Sat. employees ¹ :13.Total number of PT Sat. employees ¹ :14.Maximum Saturday visitors ² :15.Gallons of production:16.3600017.Total number of FT Sat. employees ¹ :18.Total number of FT Sat. employees ¹ :19.Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees ¹ :18.Total number of FT Sat. employees ¹ :19.Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees ¹ :18.Total number of PT Sat. employees ¹ :19.Maximum Saturday visitors ² :19.Maximum Saturday visitors ² :19.Maximum Saturday visitors ² :19.Gallons of production:36000/1,000 x 0.009 daily truck trips x 2 one-way trips19.Gallons of production:36000/1,000 x 0.009 daily truck trips x 2 one-way trips20.Gallons of production:36000/1,000 x 0.009 daily truck trips x 2 one-way trips21.Avg. annual tons of grape on-haul:69./ 144 truck trips x 2 one-way trips21.Avg. annual tons of grape on-haul:69./ 144 truck trips x 2 one-way trips	9. Galoris of production. (3000×0.005) daily truck trips x 2 one-way trips	= 1.0 daily trips
Section L. Maximum Daily Weekend Traffic (Saturday, non-harvest season)12.Total number of FT Sat. employees $1:3$ x 3.05 one-way trips per employee13.Total number of PT Sat. employees $1:0$ x 1.90 one-way trips per employee14.Maximum Saturday visitors $2:44$ /2.8 visitors per vehicle x 2 one-way trips15.Gallons of production: 36000 /1,000 x 0.009 daily truck trips 3 x 2 one-way trips16.TOTAL= 0.6 daily tripsSection M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees $1:6$ x 3.05 one-way trips per employee18.Total number of PT Sat. employees $1:6$ x 3.05 one-way trips per employee19.Maximum Saturday visitors $2:44$ /2.8 visitors per vehicle x 2 one-way trips19.Maximum Saturday visitors $2:44$ /2.8 visitors per vehicle x 2 one-way trips20.Gallons of production: 36000 /1,000 x 0.009 daily truck trips x 2 one-way trips21.Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips	10. Avg. annual tons of grape on-hadi / 144 truck trips x 2 one-way trips	-78.5 (79) daily trips
Section L. Maximum Daily Weekend Traffic (Saturday, non-harvest season)12.Total number of FT Sat. employees $1:3$ x 3.05 one-way trips per employee= 9.15 daily trips13.Total number of PT Sat. employees $1:0$ x 1.90 one-way trips per employee= 0 daily trips14.Maximum Saturday visitors $2:44$ /2.8 visitors per vehicle x 2 one-way trips= 31.4 daily trips15.Gallons of production: 36000 /1,000 x 0.009 daily truck trips 3 x 2 one-way trips= 0.6 daily trips16.TOTAL= 411 daily tripsSection M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees $1:6$ x 3.05 one-way trips per employee= 18.3 daily trips18.Total number of PT Sat. employees $1:3$ x 1.90 one-way trips per employee= 5.7 daily trips19.Maximum Saturday visitors $2:44$ /2.8 visitors per vehicle x 2 one-way trips= 31.4 daily trips20.Gallons of production: 36000 /1,000 x 0.009 daily truck trips x 2 one-way trips= 0.6 daily trips21.Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips= 1.0 daily trips		
Section L. Maximum Daily Weekend Traffic (Saturday, non-harvest season)12.Total number of FT Sat. employees1: 3 x 3.05 one-way trips per employee= 9.15 daily trips13.Total number of PT Sat. employees1: 0 x 1.90 one-way trips per employee= 0 daily trips14.Maximum Saturday visitors2: 44 /2.8 visitors per vehicle x 2 one-way trips= 31.4 daily trips15.Gallons of production: 36000 /1,000 x 0.009 daily truck trips3 x 2 one-way trips= 0.6 daily trips16.TOTAL= 411 daily tripsSection M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees1: 6 x 3.05 one-way trips per employee= 18.3 daily trips18.Total number of PT Sat. employees1: 3 x 1.90 one-way trips per employee= 5.7 daily trips19.Maximum Saturday visitors2: 44 /2.8 visitors per vehicle x 2 one-way trips= 31.4 daily trips20.Gallons of production: 36000 /1,000 x 0.009 daily truck trips x 2 one-way trips= 0.6 daily trips21.Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips= 1.0 daily trips		
12.Total number of FT Sat. employees1:3x 3.05 one-way trips per employee $= 9.15$ daily trips13.Total number of PT Sat. employees1:0x 1.90 one-way trips per employee $= 0$ daily trips14.Maximum Saturday visitors2:44 /2.8 visitors per vehicle x 2 one-way trips $= 31.4$ daily trips15.Gallons of production: 36000 /1,000 x 0.009 daily truck trips3 x 2 one-way trips $= 0.6$ daily trips16.TOTAL $= 411$ daily trips17.Total number of FT Sat. employees1:6x 3.05 one-way trips per employee $= 18.3$ daily trips18.Total number of PT Sat. employees1:3x 1.90 one-way trips per employee $= 5.7$ daily trips19.Maximum Saturday visitors2:44 /2.8 visitors per vehicle x 2 one-way trips $= 31.4$ daily trips20.Gallons of production: 36000 /1,000 x 0.009 daily truck trips x 2 one-way trips $= 31.4$ daily trips21.Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips $= 1.0$ daily trips	Section L. Maximum Daily Weekend Traffic (Saturday, non-harvest season)	
13.Total number of PT Sat. employees1: 0x 1.90 one-way trips per employee=0daily trips14.Maximum Saturday visitors2: 44/2.8 visitors per vehicle x 2 one-way trips=31.4daily trips15.Gallons of production: 36000 /1,000 x 0.009 daily truck trips3 x 2 one-way trips=0.6daily trips16.TOTAL=41daily tripsSection M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees1: 6x 3.05 one-way trips per employee=18.318.Total number of PT Sat. employees1: 3x 1.90 one-way trips per employee=5.719.Maximum Saturday visitors2: 44/2.8 visitors per vehicle x 2 one-way trips=31.420.Gallons of production: 36000 /1,000 x 0.009 daily truck trips x 2 one-way trips=0.621.Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips=1.021.Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips=1.0	12. Total number of FT Sat. employees ¹ : <u>3</u> x 3.05 one-way trips per employee	= <u>9.15</u>
14.Maximum Saturday visitors2: 44 $/2.8$ visitors per vehicle x 2 one-way trips $= 31.4$ daily trips15.Gallons of production: 36000 $/1,000 \times 0.009$ daily truck trips3 x 2 one-way trips $= 0.6$ daily trips16.TOTAL $= 41$ daily tripsSection M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees1: $x 3.05$ one-way trips per employee $= 18.3$ daily trips18.Total number of PT Sat. employees1: $x 1.90$ one-way trips per employee $= 5.7$ daily trips19.Maximum Saturday visitors2: 44 $/2.8$ visitors per vehicle x 2 one-way trips $= 31.4$ daily trips20.Gallons of production: 36000 $/1,000 \times 0.009$ daily truck trips x 2 one-way trips $= 0.6$ daily trips21.Avg. annual tons of grape on-haul: 69 $/144$ truck trips x 2 one-way trips $= 1.0$ daily trips	13. Total number of PT Sat. employees ¹ : x 1.90 one-way trips per employee	= <u>0</u> daily trips
15.Gallons of production: 36000 /1,000 x 0.009 daily truck trips ³ x 2 one-way trips= 0.6 daily trips16.TOTAL= 0.6 daily tripsSection M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees ¹ : 6 x 3.05 one-way trips per employee= 18.3 daily trips18.Total number of PT Sat. employees ¹ : 3 x 1.90 one-way trips per employee= 5.7 daily trips19.Maximum Saturday visitors ² : 44 /2.8 visitors per vehicle x 2 one-way trips= 0.6 daily trips20.Gallons of production: 36000 /1,000 x 0.009 daily truck trips x 2 one-way trips= 0.6 daily trips21.Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips= 1.0 daily trips	14. Maximum Saturday visitors ² : <u>44</u> /2.8 visitors per vehicle x 2 one-way trips	= <u>31.4</u> daily trips
16.TOTAL = $\frac{41}{\text{daily trips}}$ Section M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees ¹ : $\frac{6}{3}$ x 3.05 one-way trips per employee= $\frac{18.3}{5.7}$ daily trips18.Total number of PT Sat. employees ¹ : $\frac{3}{2}$ x 1.90 one-way trips per employee= $\frac{5.7}{4}$ daily trips19.Maximum Saturday visitors ² : $\frac{44}{2.8}$ visitors per vehicle x 2 one-way trips= $\frac{31.4}{4}$ daily trips20.Gallons of production: $\frac{36000}{11,000 \times 0.009}$ daily truck trips x 2 one-way trips= $\frac{0.6}{4}$ daily trips21.Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips= $\frac{1.0}{4}$ daily trips	15. Gallons of production: $\frac{36000}{1,000}$ x 0.009 daily truck trips ³ x 2 one-way trips	=0.6daily trips
Section M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees1:6x 3.05 one-way trips per employee=18.3daily trips18.Total number of PT Sat. employees1:3x 1.90 one-way trips per employee=5.7daily trips19.Maximum Saturday visitors2:44/2.8 visitors per vehicle x 2 one-way trips=31.4daily trips20.Gallons of production:36000/1,000 x 0.009 daily truck trips x 2 one-way trips=0.6daily trips21.Avg. annual tons of grape on-haul:69/ 144 truck trips x 2 one-way trips=1.0daily trips	16. TOTAL	= <u>41</u> daily trips
Section M. Maximum Daily Weekend Traffic (Saturday, harvest season)17.Total number of FT Sat. employees1: $\underline{6}$ x 3.05 one-way trips per employee= $\underline{18.3}$ daily trips18.Total number of PT Sat. employees1: $\underline{3}$ x 1.90 one-way trips per employee= $\underline{5.7}$ daily trips19.Maximum Saturday visitors2: $\underline{44}$ /2.8 visitors per vehicle x 2 one-way trips= $\underline{31.4}$ daily trips20.Gallons of production: $\underline{36000}$ /1,000 x 0.009 daily truck trips x 2 one-way trips= $\underline{0.6}$ daily trips21.Avg. annual tons of grape on-haul: $\underline{69}$ / 144 truck trips x 2 one-way trips= $\underline{10.0}$ daily trips		
17. Total number of FT Sat. employees1:6x 3.05 one-way trips per employee= 18.3daily trips18. Total number of PT Sat. employees1:3x 1.90 one-way trips per employee= $\frac{5.7}{2}$ daily trips19. Maximum Saturday visitors2:44/2.8 visitors per vehicle x 2 one-way trips= $\frac{31.4}{2}$ daily trips20. Gallons of production: $\frac{36000}{2}$ /1,000 x 0.009 daily truck trips x 2 one-way trips= $\frac{0.6}{2}$ daily trips21. Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips= $\frac{1.0}{2}$	Section M. Maximum Daily Weekend Traffic (Saturday, barvest season)	
18.Total number of PT Sat. employees $\frac{1}{3}$ x 1.90 one-way trips per employee $= \frac{5.7}{3}$ daily trips19.Maximum Saturday visitors ² : $\frac{44}{2.8}$ visitors per vehicle x 2 one-way trips $= \frac{31.4}{3}$ daily trips20.Gallons of production: $\frac{36000}{1,000}$ x 0.009 daily truck trips x 2 one-way trips $= \frac{0.6}{3}$ daily trips21.Avg. annual tons of grape on-haul: $\frac{69}{2}$ / 144 truck trips x 2 one-way trips $= \frac{1.0}{3}$ daily trips	17 Total number of ET Sat $employees^{1.6}$ x 3.05 one-way trips per employee	=18.3 daily trips
10.Note the formation of the set of the polyces $\frac{1}{2.8}$ with the polyce the polyce $\frac{1}{2.8}$ with the polyce	18 Total number of PT Sat, employees $\frac{1}{3}$ x 1.90 one-way trips per employee	=5.7 daily trips
20. Gallons of production: $\frac{36000}{1,000 \times 0.009}$ daily truck trips x 2 one-way trips = $\frac{0.6}{1.0}$ daily trips 21. Avg. annual tons of grape on-haul: $\frac{69}{1.0}$ / 144 truck trips x 2 one-way trips = $\frac{1.0}{1.0}$ daily trips	19 Maximum Saturday visitors ² . 44 /2.8 visitors per vehicle x 2 one-way trins	=31.4 daily trips
21. Avg. annual tons of grape on-haul: $\frac{69}{144}$ / 144 truck trips x 2 one-way trips = $\frac{1.0}{140}$ daily trips	20. Gallons of production \cdot 36000 /1 000 x 0 009 daily truck trips x 2 one-way trips	=0.6 daily trips
	21. Avg. annual tons of grape on-haul: 69 / 144 truck trips x 2 one-way trips	=1.0 daily trips
22. TOTAL $=57$ daily trips	22. TOTAL	=57 daily trips

¹ Full-Time and part-time employees that staff the largest of any event that is proposed to occur two or more times in a month, on average.

² The number of weekday visitors shall include guests of the largest of any event that is proposed to occur two or more times in a month, on average.

³ Assumes 1.47 materials and supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year

Proposed Project Winery Traffic Information / Trip Generation (continued)

<u>Determine Winery Peak Hour Trips</u>. If the number of daily trips on either Section K, line 11, or Section M, line 21, is greater than 20, or Public Works Director determines that other circumstances such as access safety or other potential network impacts warrant further analysis, then the potential transportation impacts of your project must be evaluated in a traffic impact study (TIS) prepared in accordance with Napa County Public Works TIS Guidelines. Follow the direction outlined in Traffic Impact Study Analysis, below. If the number of daily trips on either Section K, line 11, or Section M, line 22, is equal to or less than 20, complete Sections N through R below to determine your project's estimated peak hour trips and annual trips. In lieu of completing Sections N through R, you may opt to prepare a project-specific traffic impact analysis if you anticipate the number of peak hour trips from your proposal is different from that estimated here.

Section N. PM Peak Hour Trip Generation (Friday, non-harvest season) (Sum of daily trips from Sec. J, lines 3 and 4) x 0.38 + (No. of FTE) + (line 2 / 2)	=	29	_PM peak trips
Section O. PM Peak Hour Trip Generation (Friday, harvest season) (Sum of daily trips from Sec. K, lines 8, 9, 10) x 0.38 + (No. of FTE) + (line 7 / 2)	=	30	_PM peak trips
Section P. PM Peak Hour Trip Generation (Saturday, non-harvest season) (Sum of daily trips from Sec. L, line 14 and 15) x 0.57 + (No. of FTE) + (line 13/ 2)	=	21	_PM peak trips
Section Q. PM Peak Hour Trip Generation (Saturday, harvest season) (Sum of daily trips, Sec. M, lines 19, 20, and 21) x 0.57 + (No. of FTE) + (line 18 / 2)	=	28	_PM peak trips
<u>Section R. Maximum Annual Trips</u> (Sec. J, line 5 x 206) + (Sec. K, line 11 x 55) + (Sec. L, line 16 x 82) + (Sec. M, line 22 x 22)	<u>_</u> 2	4783	Annual trips

<u>Traffic Impact Study Analysis</u>. If the number of daily trips on either Section K, line 11, or Section M, line 22, is greater than 20, then the potential transportation impacts of your project must be evaluated in a traffic impact study (TIS) prepared in accordance with Napa County Public Works TIS Guidelines. Existing trip counts on the transportation network should be collected during the harvest season (August 16 – October 31). If collected outside of the harvest season, during the months of November through February, counts shall be adjusted upward by 15 percent to estimate harvest season network volumes. If collected during the weeks between March 1 and August 15, counts shall be adjusted upward by seven percent. For peak hour analysis in the TIS, the County will allow any one of the following methodologies:

- a) Use the peak hour factors in Sections E through I, above, to estimate the peak hour trips and annual trips generated by the project. To determine the potential peak hour impacts of the project, apply the harvest season estimated peak hour project trips (Sections F and H for the existing condition, and Sections O and Q for the proposed project) to roadway volumes during the hour between 3:00 p.m. and 4:00 p.m. on Fridays and Saturdays; or
- b) For New Wineries use peak hour trip counts as projected using the Institute for Transportation Engineers' (ITE) peak hour factors for winery land uses from the most current version of ITE Trip Generation. To determine the potential peak hour impacts of the project, apply the estimated peak hour project trips from ITE to roadway volumes during the hour between 4:00 p.m. and 5:00 p.m. on a Friday and 1:45 p.m. and 2:45 p.m. on a Saturday; or
- c) Conduct a site-specific analysis informed by actual trip counts at the driveway of the project (for winery use permit modifications) or at the driveway of a project with comparable operating characteristics to that proposed (for new winery use permits). To determine the potential peak hour impacts of the project, apply the site-specific peak hour of generator to the peak hour of the network on a Friday and the peak hour of the roadway on a Saturday, based on the assembled trip count data.

For Average Daily Traffic (ADT) analysis in the TIS, the County will utilize one of the following methodologies:

- a) Average of the Maximum Daily Weekday Traffic and the Maximum Daily Weekend Traffic during the harvest season, as given in the Winery Traffic Information / Trip Generation worksheet.
- b) A site specific analysis which at a minimum 24-hour vehicle counts shall be collected during a continuous week period (7-days) for which traffic count data is collected for each day of the week. Existing trip counts should be collected during the harvest season (August 16 – October 31). If collected outside of the harvest season, during the months of November through February, counts shall be adjusted upward by 15 percent to estimate harvest season network volumes. If collected during the weeks between March 1 and August 15, counts shall be adjusted upward by seven percent. Projected daily trip counts shall be based on total number of full-time employee, part-time employees, daily visitors, gallons of production, grape on-haul and the factors identified in the Proposed Winery Traffic Information and Trip Generation worksheet, respectively.
- c) For land uses other than wineries, the ADT shall be determined using the most current version of ITE Trip Generation.