${ }^{6}$

Traffic Impact Study and Addendum

CRANE TRANSPORTATION GROUP

Central Valley Office
2621 E. Windrim Court
Elk Grove, CA 95758
(916) 647-3406 Phone
(916) 647-3408 Fax

San Francisco Bay Area Office
6220 Bay View Avenue
San Pablo, CA 94806
(510) 236-9375 Phone
(510) 236-1091 Fax

MEMORANDUM

TO: \quad Emily Hedge (emily.hedge@countyofnapa.org)
CC: Laura Anderson (Laura.Anderson@countyofnapa.org)
Charlene Gallina (Charlene.Gallina@countyofnapa.org)
Rob Anglin (anglin@htralaw.com)
David Graves (wavey@saintsbury.com)

FROM: Mark Crane, P.E. (cranetransgroup@gmail.com)
DATE: May 18, 2020

RE: SAINTSBURY WINERY TRAFFIC STUDY ADDENDUM - REVISED MEASURE TO ELIMINATE SIGNIFICANT PROJECT TRAFFIC IMPACT AT THE SR 12-121/CUTTINGS WHARF RD INTERSECTION

Emily:

Based upon discussion and agreement between County staff and the Saintsbury project applicant, the measures detailed below are proposed to eliminate the project's expected cumulative significant circulation impact at the SR 12-121/Cuttings Wharf Road intersection. Counts conducted for our Traffic Impact Study showed that the peak hours at the subject intersection were 3:30-4:30 PM on Friday and 1:00-2:00 PM on Saturday. During these hours all project traffic added to the intersection would be visitors by appointment (ten 2-way vehicles from 3:304:30 PM on a Friday and nine 2-way vehicles from 1:00-2:00 PM on a Saturday).

Traffic analysis showed that the addition of project traffic to the SR 12-121/Cuttings Wharf Road intersection would result in a cumulative (year 2030) significant impact during both the Friday and Saturday PM peak traffic hours. However, after discussion with County Public Works staff it was determined that no physical improvements (such as signalization) were feasible to reduce the impact to a less than significant level. We also understand that payment of the County's
planned Traffic Impact Fee ("TIF") may not include a project that would mitigate traffic in this area.

Therefore, the only remaining measure possible would be to reduce net new project traffic during both peak hours to levels resulting in a less than significant impact based upon County criteria. To accomplish this objective the applicant has agreed to eliminate 100% of net new traffic entering or leaving the winery from 3:30-4:30 PM on a Friday afternoon and from 1:00-2:00 PM on a Saturday. This measure would require the Transportation Demand Management (TDM) Coordinator to schedule tastings for net new guests such that they are either entering or leaving the winery at times other than the critical hours. It should be noted that based upon the winery's practice of conducting tastings for about an hour and 15 minutes it will be possible to have guests arrive just before each restricted hour and then leave after the restricted hour. In addition, reductions less than 100% would have reduced project traffic impacts to a less than significant level. However, the applicant is willing for 100% reductions during both critical hours. Reduction of the net new project traffic during both peak hours as described above results in a less than significant impact based on County criteria.

In conclusion, the Saintsbury applicant is agreeable to eliminating 100% of net new guest traffic entering or leaving the winery from 3:30-4:30 PM on a Friday and from 1:00-2:00 PM on a Saturday. The Winery TDM Coordinator will be responsible for net new guest appointment scheduling to avoid visitation traffic on the local circulation system during these hours. Provision of a Winery TDM Coordinator can be enforced through a condition of approval that would replace the mitigation measure in this project's Traffic Impact Study that required payment of the County's planned TIF.

Mark Crane, P.E.

FINAL TRAFFIC IMPACT REPORT

SAINTSBURY WINERY USE PERMIT MODIFICATION 2019 IN NAPA COUNTY

January 7, 2020

Prepared for: SAINTSBURY WINERY

Prepared by: Mark D. Crane, P.E.
California Registered Traffic Engineer (\#1381) CRANE TRANSPORTATION GROUP

2621 E. Windrim Court
Elk Grove, CA 95758
(916) 647-3406
cranetransgroup@gmail.com

TABLE OF CONTENTS

I. INTRODUCTION1
II. SCOPE OF SERVICES1
III. EXECUTIVE SUMMARY OF IMPACTS, CONCLUSIONS \& RECOMMENDATIONS1
A. IMPACTS1

1. Project Trip Generation 1
2. Intersection Impacts Which Will Not Be Significant 2
3. Significant Intersection Impacts. 2
4. Left-Turn Lane Not Warranted 2
5. Acceptable Sight Lines 2
6. Proposed Marketing Event Schedules Eliminate Peak Traffic Times 2
7. Trip \& VMT Reduction Measures 2
B. CONCLUSIONS \& RECOMMENDATIONS 2
IV. OVERALL SUMMARY OF FINDINGS (WITHOUT AND WITH PROJECT) 3
A. "WITHOUT PROJECT" OPERATION CONDITIONS 3
8. Existing Harvest Volumes - September 2018 3
9. Year 2018, 2020 or Cumulative (2030) Harvest (Without Project) Circulation System Operation 3
B. PROJECT IMPACTS 3
10. Project Trip Generation 3
11. Project Site Access to Withers Road 4
12. Year 2018 Harvest + Project Off-Site Circulation Impact. 4
13. Year 2020 Harvest + Project Off-Site Circulation Impacts 4
14. Cumulative (Year 2030) Harvest + Project Off-Site Circulation Impacts 5
15. Sight Lines at Project Driveway 5
16. New Marketing Event Scheduling 5
C. RECOMMENDATIONS 5
17. SR 12-121/Cutting Wharf Road 5
V. PROJECT LOCATION \& DESCRIPTION6
VI. EXISTING CIRCULATION SYSTEM EVALUATION PROCEDURES 7
A. ANALYSIS LOCATIONS 7
18. SR 12-121/Cuttings Wharf Road intersection 7
19. SR 12-121/Los Carneros Avenue intersection 7
20. Withers Road/Cuttings Wharf Road intersection 7
21. Withers Road/Los Carneros Avenue intersection 7
22. Withers Road/Saintsbury Winery main driveway intersection 7
B. VOLUMES 7
23. Analysis Seasons and Days of the Week 7
24. Count Results 8
25. Seasonal Adjustments 8
C. ROADWAYS 8
26. SR 12-121 8
27. Cuttings Wharf Road 8
28. Los Carneros Avenue 8
29. Withers Road. 9
D. INTERSECTION LEVEL OF SERVICE 9
30. Analysis Methodology 9
31. Minimum Acceptable Operation 9
E. INTERSECTION PEAK HOUR SIGNAL WARRANT EVALUATION 10
32. Analysis Methodology 10
F. PLANNED IMPROVEMENTS 10
VII. FUTURE HORIZON TRAFFIC VOLUME PROJECTIONS 11
VIII. OFF-SITE HARVEST (WITHOUT PROJECT) CIRCULATION SYSTEM OPERATION 12
A. YEAR 2018 (WITHOUT PROJECT) OPERATING CONDITIONS. 12
33. Intersection Level of Service - Table 4 12
34. Intersection Peak Hour Signal Warrant Evaluation - Table 5 12
B. YEAR 2020 (WITHOUT PROJECT) OPERATING CONDITIONS 13
35. Intersection Level of Service - Table 4 13
36. Intersection Peak Hour Signal Warrant Evaluation - Table 5 13
C. CUMULATIVE (YEAR 2030) HARVEST (WITHOUT PROJECT) OPERATING.CONDITIONS 14
37. Intersection Level of Service - Table 4 14
38. Intersection Peak Hour Signal Warrant Evaluation - Table 5 14
IX. PROJECT IMPACT EVALUATION SIGNIFICANCE CRITERIA 15
A. COUNTY OF NAPA SIGNIFICANCE CRITERIA 15
B. PROJECT TRIP GENERATION 17
C. PROJECT TRIP DISTRIBUTION 18
D. FUTURE PLANNED ROADWAY IMPROVEMENTS 18
X. PROJECT OFF-SITE IMPACTS 18
A. YEAR 2018 HARVEST (WITH PROJECT) 18
39. Summary 18
40. Intersection Level of Service 18
41. Signalization Needs 19
B. YEAR 2020 HARVEST (WITH PROJECT) CONDITIONS 20
42. Summary 20
43. Intersection Level of Service 20
44. Signalization Needs 20
C. CUMULATIVE (YEAR 2030) HARVEST (WITH PROJECT) CONDITIONS 21
45. Summary 21
46. Intersection Level of Service 21
47. Signalization Needs 21
XI. PROJECT ACCESS IMPACTS 22
A. SIGHT LINE ADEQUACY AT WITHERS ROAD/SAINTSBURY WINERY DRIVEWAY INTERSECTION 22
B. PROJECT ENTRANCE LEFT TURN LANE REQUIREMENT 23
XII. MARKETING EVENTS 23
XIII. RECOMMENDATIONS 23

TABLES
FIGURES
APPENDIX

I. INTRODUCTION

This traffic report has been prepared for Saintsbury Winery to determine if traffic from the winery's proposed use permit modification 2018 will result in any significant local circulation system impacts along State Route 12-121, Cuttings Wharf Road, Los Carneros Avenue or Withers Road and the need for any mitigation measures. See Figure 1 for the project location.

II. SCOPE OF SERVICES

The scope of service for this traffic study was developed and approved by the Napa County Public Works and Planning Departments. Evaluation was conducted for harvest Friday and Saturday PM peak traffic conditions. Existing, year 2020 and year 2030 (Cumulative - General Plan Buildout) horizons were evaluated both with and without project traffic. Operating conditions at the SR 12-121 intersections with Cuttings Wharf Road and Los Carneros Avenue as well as at the Withers Road intersections with Cuttings Wharf Road and Los Carneros Avenue were evaluated for all analysis scenarios based upon County traffic significance criteria. In addition, sight line adequacy was evaluated at the project's driveway intersection with Withers Road. Significant impacts, if any, were identified and measures listed, if needed, to mitigate all impacts to a less than significant level.

III. EXECUTIVE SUMMARY OF IMPACTS, CONCLUSIONS \& RECOMMENDATIONS

A. IMPACTS

1. PROJECT TRIP GENERATION

The proposed project will result in the following harvest trip generation during the Friday and Saturday peak traffic hours.

HARVEST

[^0]
2. INTERSECTION IMPACTS WHICH WILL NOT BE SIGNIFICANT

Project traffic will not result in any Existing or year 2020 significant Friday or Saturday PM peak hour impacts to the SR 12-121 intersections with Cuttings Wharf Road or Los Carneros Avenue, nor for 2030 conditions at SR 12-121 and Los Carneros Avenue. In addition, project traffic will not result in significant Existing, Year 2020 or Cumulative (Year 2030) harvest condition Friday or Saturday PM peak hour impacts at the Withers Road intersections with Cuttings Wharf Road or Los Carneros Avenue.

3. SIGNIFICANT INTERSECTION IMPACTS

Project traffic will result in a significant cumulative (year 2030) impact at the SR12121/Cuttings Wharf Road intersection for both Friday and Saturday PM peak hour conditions.

4. LEFT TURN LANE NOT WARRANTED

Project traffic will not warrant provision of a left turn lane on the Withers Road approach to the project driveway.

5. ACCEPTABLE SIGHT LINES

Sight lines are acceptable at the project driveway connection to Withers Road.
6. PROPOSED MARKETING EVENT SCHEDULES ELIMINATE PEAK TRAFFIC TIMES
Existing marketing events would be replaced by 6 events/year with 50 people (18 vehicles) and 2 events/year with 100 people (36 vehicles). Events would either end by 2:30 PM, or start at 6:00 PM, thereby not adding any significant level of traffic to the local roadway system during the critical 3:00-5:30 PM time period. Less than significant.

7. TRIP \& VMT REDUCTION MEASURES

The project applicant will have a staff person appointed as Transportation Demand Management (TDM) coordinator to facilitate employees reducing auto commuting and Vehicle Miles Traveled (VMT). In addition, the TDM coordinator will promote use of shuttle buses to all marketing events.

B. CONCLUSIONS \& RECOMMENDATIONS

The project would result in only one potentially significant off-site circulation system operational impact: at the SR 12-121 intersection with the Cuttings Wharf Road intersection for cumulative (year 2030) conditions. However, while this intersection currently warrants signalization the County and Caltrans are not in favor of signalizing this location. As an alternative mitigation, the County Public Works Department and the project applicant have agreed that the project applicant will pay the traffic impact fee currently being developed by the County.

IV. OVERALL SUMMARY OF FINDINGS (WITHOUT AND WITH PROJECT)

A. "WITHOUT PROJECT" OPERATING CONDITIONS

1. Existing Harvest Volumes - September 2018

The SR 12-121 intersections with Cuttings Wharf Road and Los Carneros Avenue would be expected to have slightly higher volumes during the harvest Saturday PM peak traffic hour compared to the harvest Friday PM peak traffic hour. During the peak traffic hours at Cuttings Wharf Road about 2,650 peak hour vehicles are projected to enter the intersection from 1:00 to 2:00 PM on Saturday versus about 2,530 peak hour vehicles from 3:30 to 4:30 PM on Friday, while at the Los Carneros Avenue intersection about 2,490 vehicles are projected to enter the intersection during the Saturday PM peak hour versus about 2,335 vehicles during the Friday PM peak hour. However, the driveway serving the Saintsbury Winery would be expected to have slightly higher volumes during the Friday PM peak hour (8 two-way vehicles) versus the Saturday PM peak hour (5 two-way vehicles).
2. Year 2018, 2020 or Cumulative (2030) Harvest (Without Project) Circulation System Operation

- SR 12-121/Cuttings Wharf Road unsignalized intersection - unacceptable levels of service + volumes now meet both urban and rural peak hour signal warrant criteria levels during both the Friday and Saturday PM peak traffic hours.
- SR 12-121/Los Carneros Avenue unsignalized intersection - unacceptable levels of service during both the Friday and Saturday PM peak traffic hours and volumes would meet rural signal warrant criteria in both 2020 and 2030.
- Withers Road/Cuttings Wharf Road unsignalized intersection - acceptable levels of service on the Withers Road eastbound stop sign controlled intersection approach during both the Friday and Saturday PM peak traffic hours; adequate sight lines.
- Withers Road/Los Carneros Avenue unsignalized intersection - acceptable levels of service on the Withers Road westbound stop sign controlled intersection approach during both the Friday and Saturday PM peak traffic hours; adequate sight lines.

B. PROJECT IMPACTS

1. Project Trip Generation

The proposed project will result in the following trip generation during the Friday and Saturday peak traffic hours.

PROJECT TRIP GENERATION

HARVEST

FRIDAY PM PEAK HOUR* $(3: 30-4: 30)$		SATURDAY PM PEAK HOUR* $(1: 00-2: 00)$	
INBOUND	OUTBOUND	INBOUND	OUTBOUND
TRIPS	TRIPS	TRIPS	TRIPS
5	8	8	4

* Peak hour at the SR 12-121 intersections with Cuttings Wharf Road and Los Carneros Avenue.

Source: Saintsbury Winery; compiled by Crane Transportation Group
Trips during both the Friday and Saturday PM peak hours will be visitors by appointment.

2. Project Site Access to Withers Road

The Saintsbury Winery will continue to have employee and visitor access to Withers Road at the existing winery driveway connection. No left turn lane is in place along Withers Road at the project driveway and "with project" volumes will not warrant provision of a left turn lane based upon County daily traffic volume criteria. Less than significant.

3. Year 2018 Harvest + Project Off-Site Circulation Impacts

The proposed project would not result in any significant levels of service and delay impacts to the SR 12-121 intersections with Cuttings Wharf Road or Los Carneros Avenue, both of which would already be operating unacceptably without project traffic. The increase in traffic due to the project would be less than 5.5 percent on either the Cuttings Wharf Road or Los Carneros Avenue stop sign controlled approaches to SR 12121. These increases would not meet the County's level of service impact significance criteria limit. Also, the project would not result in any significant signal warrant impact at the SR 12-121/Cuttings Wharf Road intersection, with total volumes entering the intersection increased less than 1 percent at a location already meeting signal warrant \#3 criteria levels. Finally, project traffic would not degrade acceptable level of service at the Withers Road intersections with Cuttings Wharf Road or Los Carneros Avenue to unacceptable conditions. Less than significant.

4. Year 2020 Harvest + Project Off-Site Circulation Impacts

The proposed project would not result in any significant levels of service and delay impacts to the SR 12-121 intersections with Cuttings Wharf Road or Los Carneros Avenue, both of which would already be operating unacceptably without project traffic. The increase in traffic due to the project would be less than 5 percent on either the Cuttings Wharf Road or Los Carneros Avenue stop sign controlled approaches to SR 12121. These increases would not meet the County's level of service significance criteria limit. Also, the project would not result in any significant signal warrant impacts at the

SR 12-121 intersections with Cuttings Wharf Road or Los Carneros Avenue, with total volumes entering the intersections increased less than 1 percent at locations already meeting signal warrant \#3 criteria levels. Finally, project traffic would not degrade acceptable level of service at the Withers Road intersections with Cuttings Wharf Road or Los Carneros Avenue to unacceptable conditions. Less than significant.
5. Cumulative (Year 2030) Harvest + Project Off-Site Circulation Impacts The proposed project would result in a significant level of service and delay impact to the SR 12-121 intersection with Cuttings Wharf Road, which would already be operating unacceptably without project traffic. The increase in traffic on the stop sign controlled Cuttings Wharf Road intersection approach due to the project compared to the growth in ambient volumes between Existing and Cumulative conditions would be 29 percent during the Friday PM peak hour and 12 percent during the Saturday PM peak hour. These increases would exceed the County's maximum 5 percent traffic increase criteria for cumulative traffic conditions. However, this impact would be mitigated when the SR 12$121 /$ Cuttings Wharf Road intersection is signalized. The project would pay a fair share contribution towards the signal. Finally, project traffic would not result in a significant cumulative impact at the SR 12-121/Los Carneros Avenue intersection or the Withers Road intersections with Cuttings Wharf Road or Los Carneros Avenue. Potentially significant impact.
6. Sight Lines at Project Driveway

Sight lines at the existing Saintsbury Winery driveway connection to Withers Road meet minimum stopping sight distance criteria based upon the Caltrans March 2014 Highway Design Manual. Less than significant.

7. New Marketing Event Scheduling

Existing marketing events would be replaced by 6 events/year with 50 people (18 vehicles) and 2 events/year with 100 people (36 vehicles). Events would either end by 2:30 PM, or start at 6:00 PM, thereby not adding any significant level of traffic to the local roadway system during the critical 3:00-5:30 PM time period. Less than significant.

C. RECOMMEDATIONS

1. SR 12-121/Cuttings Wharf Road: The project would result in one significant off-site circulation system operational impact: at the SR 12-121 intersection with Cuttings Wharf Road for Friday and Saturday cumulative traffic conditionsHowever, while this intersection currently warrants signalization neither the County nor Caltrans are in favor of signalizing this location. As an alternative mitigation, the County Public Works Department and the project applicant have agreed that the project applicant will pay the traffic impact fee currently being developed by the County. Impact reduced to less than significant.

V. PROJECT LOCATION \& DESCRIPTION

The Saintsbury Winery is located on the south side of Withers Road about 700 feet west of Cuttings Wharf Road and 540 feet east of Los Carneros Avenue (see Figure 2). The winery is accessed via a single driveway.

The proposed Saintsbury Use Permit Modification 2018 will have the following yearly production increase and increased employees, visitation and marketing events.

- No change in production; A maximum of 160,000 gallons in any given year, with an average of 135,000 gallons per year.
- 3 new full-time employees.
- Up to 19 total employees during harvest (existing + project).
- No new bottling on-site.
- Visitation (by appointment only) will be increased from 12 up to a maximum of 95 people/day (up to a maximum of 450 per week). Visitation hours will remain 10:00 AM to 5:00 PM, 7 days per week.
- No new grape delivery trucks or other trucks.
- New marketing events as detailed below.

Proposed New Marketing Events - To Replace Existing Events

Marketing Event \#1 \# events/year: 6
Wine Club/ maximum \# people/event: 50
Release Event typical days: Weekend (primarily in March, May, Sept. \& Nov.) typical hours: 10:00 AM to 2:30 PM

Marketing Event \#2 \# events/year: 2
Large Event maximum \# people/event: 100 guests +2 event staff typical days: Weekend (one in August and second in November) typical hours: 10:00 AM to 2:30 PM

Bottling

Days of existing on-site bottling per year: 13-15 days
Additional days per year of new on-site bottling due to project: No change

TDM Coordinator

A staff person will be appointed TDM coordinator to implement programs that will reduce single occupant commuting by employees and to provide shuttle bus or van service for all major marketing events.

VI. EXISTING CIRCULATION SYSTEM EVALUATION PROCEDURES

A. ANALYSIS LOCATIONS

The following locations have been evaluated.

1. SR 12-121/Cuttings Wharf Road intersection. (The Cuttings Wharf Road approach is stop sign controlled.)
2. SR 12-121/Los Carneros Avenue intersection. (The Los Carneros Avenue northbound and southbound approaches are stop sign controlled.)
3. Withers Road/Cuttings Wharf Road intersection. (The Withers Road eastbound approach is stop sign controlled.)
4. Withers Road/Los Carneros Avenue intersection. (The Withers Road eastbound and westbound approaches are stop sign controlled.)
5. Withers Road/Saintsbury Winery main driveway intersection.

B. VOLUMES

1. ANALYSIS SEASONS AND DAYS OF THE WEEK

At County request project traffic impacts have been evaluated during harvest conditions. Based upon more than four years of historical information from Caltrans PeMS (Performance Measurement System) count surveys along SR 29 in the Napa Valley, September has the highest daily volumes of the year (during harvest). Therefore, conditions during this month were selected for evaluation.

In regards to the peak traffic days of the week, the Napa County Travel Behavioral Study ${ }^{1}$ shows that the highest weekday volumes in Napa Valley occur on a Friday, with the highest weekend volumes occurring on a Saturday. In addition, historical count data from the City of Napa show that Friday has the highest volumes of any weekday, while Caltrans historical counts for SR 29 between St. Helena and Napa also show that weekday PM peak hour volumes are higher on a Friday than on either a Wednesday or Thursday. Therefore, Friday and Saturday PM peak traffic conditions were evaluated in this study.

[^1]
2. COUNT RESULTS

Friday 3:00 to 6:00 PM as well as Saturday 1:00 to 6:00 PM turn movement counts were conducted by Crane Transportation Group (CTG) on June $8 \& 9,2018$ at the SR 12-121 intersections with Cuttings Wharf Road and Los Carneros Avenue, as well as at the Withers Road intersections with Cuttings Wharf Road, Los Carneros Avenue and the Saintsbury Winery driveway. The PM peak traffic hours at the SR 12-121 intersections were determined to be 3:304:30 PM on Friday and 1:00-2:00 PM on Saturday. Resultant June Friday and Saturday 2018 PM peak hour volumes are presented in Appendix Figures A-1 \& A-2.

3. SEASONAL ADJUSTMENTS

Seasonal factors to adjust June 2018 counts to reflect September 2018 (harvest) conditions were developed using the Caltrans PeMS Friday and Saturday PM peak period count data. Overall, June 2018 PM peak hour volumes would be expected to increase by about 8.3 percent on Friday and by almost 6.2 percent on Saturday to reflect September 2018 harvest conditions. Resultant year 2018 harvest Friday and Saturday PM peak hour volumes are presented in Figures 4 \& 5.

C. ROADWAYS

Roadway descriptions are based upon the designation that SR 12-121 and Withers Road run in a general east-west direction through the project area, while Cuttings Wharf Road and Los Carneros Avenue run in a general north-south direction. The project site is along the east side of Withers Road about 700 feet west of Cuttings Wharf Road and 540 feet east of Los Carneros Avenue. Figure 3 presents existing intersection geometrics and control.

SR 12-121 provides subregional access to Cuttings Wharf Road. It is a two-lane highway with a 55 mile per hour posted speed limit near the project site. It extends from the Sonoma/Napa county line easterly to State Route 29. SR 12-121 has two well-paved travel lanes and wide paved shoulders. A left turn deceleration lane is provided on the westbound approach to Cuttings Wharf Road while a right turn deceleration lane is provided on the eastbound approach. An eastbound acceleration lane is also provided for right turns from Cuttings Wharf Road.

Cuttings Wharf Road is a two-lane collector roadway extending in a general southerly direction from its intersection with SR 12-121. It ends about 3 miles south of SR 12-121 at the Napa River. There is no posted speed limit between the project driveway and SR 12-121, although observed speeds ranged from 40 to 55 miles per hour. Cuttings Wharf Road is stop sign controlled on its single lane approach to SR 12-121.

Los Carneros Avenue is a two-lane collector roadway extending south from an unsignalized intersection with SR 12-121 for about 6,200 feet before making a 90-degree turn to the east where it eventually ends at Cuttings Wharf Road. It has centerline striping and a posted speed limits of 25 miles per hour in the project vicinity.

Withers Road is a two-lane rural road extending westerly from an unsignalized intersection with Cuttings Wharf Road to a four-leg intersection with Los Carneros Avenue, where it lacks centerline striping and has no posted speed limits.

D. INTERSECTION LEVEL OF SERVICE

1. ANALYSIS METHODOLOGY

Transportation engineers and planners commonly use a grading system called level of service (LOS) to measure and describe the operational status of the local roadway network. LOS is a description of the quality of a roadway facility's operation, ranging from LOS A (indicating free-flow traffic conditions with little or no delay) to LOS F (representing oversaturated conditions where traffic flows exceed design capacity, resulting in long queues and delays). Intersections, rather than roadway segments between intersections, are almost always the capacity controlling locations for any circulation system.

Signalized Intersections. For signalized intersections, the 2017 Highway Capacity Manual Version 6 (Transportation Research Board, National Research Council) methodology was utilized. With this methodology, operations are defined by the level of service and average control delay per vehicle (measured in seconds) for the entire intersection. For a signalized intersection, control delay is the portion of the total delay attributed to traffic signal operation. This includes delay associated with deceleration, acceleration, stopping, and moving up in the queue. Table 1 summarizes the relationship between delay and LOS for signalized intersections.

Unsignalized Intersections. For unsignalized (all-way stop-controlled and side-street stopcontrolled) intersections, the 2017 Highway Capacity Manual Version 6 (Transportation Research Board, National Research Council) methodology for unsignalized intersections was utilized. For side-street stop-controlled intersections, operations are defined by the level of service and average control delay per vehicle (measured in seconds), with delay reported for the stop sign controlled approaches or turn movements. For all-way stop-controlled intersections, operations are defined by the average control delay for the entire intersection (measured in seconds per vehicle). The delay at an unsignalized intersection incorporates delay associated with deceleration, acceleration, stopping, and moving up in the queue. Table 2 summarizes the relationship between delay and LOS for unsignalized intersections.

2. MINIMUM ACCEPTABLE OPERATION

Napa County's minimum acceptable operating condition standards for unsignalized intersections are Level of Service D (LOS D) for the side street stop sign controlled approaches at two-way stop intersections as well as for overall operation at all-way-stop intersections. Please see capacity worksheets in the Appendix.

E. INTERSECTION PEAK HOUR SIGNAL WARRANT EVALUATION

1. ANALYSIS METHODOLOGY

Traffic signals are used to provide an orderly flow of traffic through an intersection. Many times they are needed to offer side street traffic an opportunity to access a major road where high volumes and/or high vehicle speeds block crossing or turn movements. They do not, however, increase the capacity of an intersection (i.e., increase the overall intersection's ability to accommodate additional vehicles) and, in fact, often slightly reduce the number of total vehicles that can pass through an intersection in a given period of time. Signals can also cause an increase in traffic accidents if installed at inappropriate locations.

There are 10 possible tests for determining whether a traffic signal should be considered for installation. These tests, called "warrants", consider criteria such as actual traffic volume, pedestrian volume, presence of school children, and accident history. The intersection volume data together with the available collision histories were compared to warrants contained in the California Manual on Uniform Traffic Control Devices, 2014, Revision 3 (2014 CMUTCD Rev. 2). Section 4C of the 2014 CMUTCD Rev. 3 provides guidelines, or warrants, which may indicate need for a traffic signal at an unsignalized intersection. As indicated in the 2014 CMUTCD Rev. 3, satisfaction of one or more warrants does not necessarily require immediate installation of a traffic signal. It is merely an indication that the local jurisdiction should begin monitoring conditions at that location and that a signal may ultimately be required.

Warrant 3, the peak hour volume warrant, is often used as an initial check of signalization needs since peak hour volume data is typically available and this warrant is usually the first one to be met. Warrant 3 is based on a logarithmic curve and takes only the hour with the highest volume of the day into account. For intersections in rural locations (with local area population less than 10,000 people or where the posted speed limit or 85 th percentile speed on the uncontrolled intersection approaches is greater than 40 miles per hour) a 70 percent "rural" warrant is applied. Both the urban and rural peak hour warrants have been evaluated in this study. Please see the Appendix for the warrant charts.

F. PLANNED IMPROVEMENTS

There are no planned and funded improvements at any location evaluated in this study that would improve intersection capacity. ${ }^{2}$

[^2]
VII. FUTURE HORIZON TRAFFIC VOLUME PROJECTIONS

Traffic analysis has been conducted for existing (2018), year 2020 and year 2030 harvest conditions. The 2030 horizon reflects the cumulative County General Plan Buildout year. At County request traffic projections were initially developed for a list of new or expanding winery projects already approved but not built in the vicinity of the Saintsbury Winery. The list and the traffic studies used to obtain their projections are presented in Table 3.

Initial review of the County calibration run and 2030 modeling results indicated that direct use of 2030 model volumes would not produce accurate projections for the study area roadways. Instead, an analysis procedure referred to as the "Difference Method" was utilized which determines the change in traffic projected by the model between the calibration year and the General Plan horizon year. The proportional amount of this total increase (from 2018 to 2030) is then determined and added to the existing traffic counts to produce 2030 projections.

Resultant year 2030 traffic modeling projections were then compared to volumes expected from the nearby projects. While mainline volume increases along SR 12-121 appeared reasonable from the model, traffic increases expected from the County's list of approved nearby projects were greater than increases projected by the model along Cuttings Wharf Road and Los Carneros Avenue. Cumulative traffic model results were therefore modified to reflect the increases from the list of projects. After adjustments, cumulative two-way weekday volumes along SR 12-121 would be expected to grow about 10 percent from 2018 to 2030 . Assuming development of the nearby projects over the next two years as well as regional growth, there would be about a 3.8 percent growth in weekday two-way PM peak hour traffic along SR 12-121 from 2018 to the year 2020. Since traffic modeling projections were only available for weekday PM peak hour conditions and not for the Saturday PM peak hour, Saturday two-way PM peak hour volumes on SR 12-121 were increased by similar percentages found for the weekday PM peak hour.

General Plan weekday PM peak hour traffic modeling projections were available for Cuttings Wharf Road but did not fully reflect traffic from the nearby projects. After inclusion of traffic from these developments, Cuttings Wharf Road would be expected to receive about a 17 percent increase in Friday PM peak hour traffic and about a 20 percent increase in Saturday PM peak hour traffic from 2018 to 2030, while 2018 to 2020 increases would be about 11 percent during a Friday PM peak hour and 14 percent during a Saturday PM peak hour.

General Plan weekday PM peak hour traffic modeling projections were also available for Los Carneros Avenue, but also did not fully reflect traffic from the nearby projects. After inclusion of traffic from the specific projects Los Carneros Avenue would be expected to receive about a 98 percent increase in Friday PM peak hour traffic and a 71 percent increase in Saturday PM peak hour traffic between 2018 and 2030, while 2018 to 2020 increases would be about 65 percent during a Friday PM peak hour and 86 percent during a Saturday PM peak hour.

Resultant year 2020 harvest "Without Project" Friday and Saturday peak hour volumes are
presented in Figures 6 \& 7, while year 2030 (Cumulative) harvest "Without Project" Friday and Saturday peak hour volumes are presented in Figures 8 \& 9.

VIII. OFF-SITE HARVEST (WITHOUT PROJECT) CIRCULATION SYSTEM OPERATION

A. YEAR 2018 (WITHOUT PROJECT) OPERATING CONDITIONS

1. INTERSECTION LEVEL OF SERVICE - Table 4

a. SR 12-121/Cuttings Wharf Road

1) Friday PM Peak Hour

Unacceptable Cuttings Wharf Road stop sign controlled approach operation: LOS E
2) Saturday PM Peak Hour

Unacceptable Cuttings Wharf Road stop sign controlled approach operation: LOS E
b. SR 12-121/Los Carneros Avenue

1) Friday PM Peak Hour

Unacceptable Los Carneros Avenue stop sign controlled approach operation: LOS F
2) Saturday PM Peak Hour

Unacceptable Los Carneros Avenue stop sign controlled approach operation: LOS F
c. Withers Road/Cuttings Wharf Road

1) Friday PM Peak Hour

Acceptable Withers Road eastbound stop sign controlled approach operation: LOS A
2) Saturday PM Peak Hour

Acceptable Withers Road eastbound stop sign controlled approach operation: LOS A
d. Withers Road/Los Carneros Avenue

1) Friday PM Peak Hour

Acceptable Withers Road westbound stop sign controlled approach operation: LOS A
2) Saturday PM Peak Hour

Acceptable Withers Road westbound stop sign controlled approach operation: LOS A

2. INTERSECTION PEAK HOUR SIGNAL WARRANT EVALUATION - Table 5

a. SR 12-121/Cuttings Wharf Road

1) Friday PM Peak Hour

Volumes would meet both urban and rural peak hour signal warrant \#3 criteria.
2) Saturday PM Peak Hour

Volumes would meet both urban and rural peak hour signal warrant \#3 criteria.
b. SR 12-121/Los Carneros Avenue

1) Friday PM Peak Hour

Volumes would not meet either urban or rural peak hour signal warrant \#3 criteria.
2) Saturday PM Peak Hour

Volumes would not meet either urban or rural peak hour signal warrant \#3 criteria.

B. YEAR 2020 (WITHOUT PROJECT) OPERATING CONDITIONS

1. INTERSECTION LEVEL OF SERVICE - Table 4

a. SR 12-121/Cuttings Wharf Road

1) Friday PM Peak Hour

Unacceptable Cuttings Wharf Road stop sign controlled approach operation: LOS F
2) Saturday PM Peak Hour

Unacceptable Cuttings Wharf Road stop sign controlled approach operation: LOS F
b. SR 12-121/Los Carneros Avenue

1) Friday PM Peak Hour

Unacceptable Los Carneros Avenue stop sign controlled approach operation: LOS F
2) Saturday PM Peak Hour

Unacceptable Los Carneros Avenue stop sign controlled approach operation: LOS F
c. Withers Road/Cuttings Wharf Road

1) Friday PM Peak Hour

Acceptable Withers Road eastbound stop sign controlled approach operation: LOS B
2) Saturday PM Peak Hour

Acceptable Withers Road eastbound stop sign controlled approach operation: LOS B
d. Withers Road/Los Carneros Avenue

1) Friday PM Peak Hour

Acceptable Withers Road westbound stop sign controlled approach operation: LOS A
2) Saturday PM Peak Hour

Acceptable Withers Road westbound stop sign controlled approach operation: LOS A

2. INTERSECTION PEAK HOUR SIGNAL WARRANT EVALUATION - Table 5

a. SR 12-121/Cuttings Wharf Road

1) Friday PM Peak Hour

Volumes would meet both urban and rural peak hour signal warrant \#3 criteria.
2) Saturday PM Peak Hour

Volumes would meet both urban and rural peak hour signal warrant \#3 criteria.
b. SR 12-121/Los Carneros Avenue

1) Friday PM Peak Hour

Volumes would meet rural peak hour signal warrant \#3 criteria.
2) Saturday PM Peak Hour

Volumes would meet rural peak hour signal warrant \#3 criteria.

C. CUMULATIVE (YEAR 2030) HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

1. INTERSECTION LEVEL OF SERVICE - Table 4

a. SR 12-121/Cuttings Wharf Road

1) Friday PM Peak Hour

Unacceptable Cuttings Wharf Road stop sign controlled approach operation: LOS F
2) Saturday PM Peak Hour

Unacceptable Cuttings Wharf Road stop sign controlled approach operation: LOS F
b. SR 12-121/Los Carneros Avenue

1) Friday PM Peak Hour

Unacceptable Los Carneros Avenue stop sign controlled approach operation: LOS F
2) Saturday PM Peak Hour

Unacceptable Los Carneros Avenue stop sign controlled approach operation: LOS F
c. Withers Road/Cuttings Wharf Road

1) Friday PM Peak Hour

Acceptable Withers Road eastbound stop sign controlled approach operation: LOS B
2) Saturday PM Peak Hour

Acceptable Withers Road eastbound stop sign controlled approach operation: LOS B
d. Withers Road/Los Carneros Avenue

1) Friday PM Peak Hour

Acceptable Withers Road westbound stop sign controlled approach operation: LOS A
2) Saturday PM Peak Hour

Acceptable Withers Road westbound stop sign controlled approach operation: LOS A

2. INTERSECTION PEAK HOUR SIGNAL WARRANT
 EVALUATION - Table 5

a. SR 12-121/Cuttings Wharf Road

1) Friday PM Peak Hour

Volumes would meet both urban and rural peak hour signal warrant \#3 criteria.
2) Saturday PM Peak Hour

Volumes would meet both urban and rural peak hour signal warrant \#3 criteria.
b. SR 12-121/Los Carneros Avenue

1) Friday PM Peak Hour

Volumes would meet rural peak hour signal warrant \#3 criteria.
2) Saturday PM Peak Hour

Volumes would meet rural peak hour signal warrant \#3 criteria.

IX. PROJECT IMPACT EVALUATION SIGNIFICANCE CRITERIA

A. COUNTY OF NAPA SIGNIFICANCE CRITERIA

The following criteria have recently been developed for traffic impact analyses in Napa County.

EXISTING + PROJECT CONDITIONS

A. SIGNALIZED INTERSECTIONS

A project would cause a significant impact requiring mitigation if:

1. A signalized intersection operates at LOS $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D during the selected peak hours without project trips, and deteriorates to LOS E or F with the addition of project trips, or
2. A signalized intersection operates at LOS E or F during the selected peak hours without project trips, and the addition of project trips increases the total entering volume by one percent or more.

For the second criteria, the following equation should be used if the signalized intersection operates at LOS E or F without the project:

Project Contribution \% = Project Trips \div Existing Volumes

Maintaining LOS D or better at all signalized intersections would sometimes require expanding the physical footprint of an intersection. In some locations around the County, expanding physical transportation infrastructure could be in direct conflict with the County's goals of preserving the area's rural character, improving safety, and sustaining the agricultural industry, making these potential improvements infeasible. The County's Circulation Element lists intersections that are slated for improvement or expansion in unincorporated Napa County. ${ }^{3}$

Transportation studies should individually consider the feasibility of potential mitigation measures with respect to right-of-way acquisition, regardless of the intersection's place in the Circulation Element's identified improvement lists, and present potential alternative mitigation measures that do not require right-of-way acquisition. County staff would then review that information and make the decision about the feasibility of the identified potential mitigations.

[^3]For intersections that cannot be improved without substantial additional right-of-way according to both the Circulation Element and the individual transportation impact study, and where other mitigations such as updating signal timing, signal phasing and operations, and/or signing and striping improvements do not improve the LOS, LOS E or F will be considered acceptable and the one percent threshold would not apply. Analysis of signalized intersection LOS should still be presented for informational purposes, and there should still be an evaluation of effects on safety and local access, per Policy CIR18.

B. UNSIGNALIZED INTERSECTIONS (ALL WAY STOP AND SIDE STREET STOP SIGN CONTROLLED)

LOS for all way stop controlled intersections is defined as an average of the delay at all approaches. LOS for side street stop controlled intersections is defined by the delay and LOS for the worst case approach. The recommended interpretation of Policy CIR-16 regarding unsignalized intersection significance criteria is as follows:

1. An unsignalized intersection operates at LOS A, B, C or D during the selected peak hours without project trips, the LOS deteriorates to LOS E or F with the addition of project traffic, and the peak hour traffic signal warrant criteria should also be evaluated and presented for information purposes, or
2. An unsignalized intersection operates at LOS E or F during the selected peak hours without project trips and the project contributes one percent or more of the total entering traffic for all way stop controlled intersections, or 10 percent or more of the traffic on a side street approach for side street stop controlled intersections; the peak hour traffic signal warrant criteria should also be evaluated and presented for informational purposes.

All Way Stop Controlled Intersections

For the second criteria at an all way stop controlled intersection, the following equation should be used if the all way stop controlled intersection operates at LOS E or F without the project.

$$
\text { Project Contribution \% = Project Trips } \div \text { Existing Volumes }
$$

Side Street Stop Controlled Intersections

For the second criteria at a side street stop controlled intersection, the following equation should be used if the side street stop controlled intersection operates at LOS E or F without the project.

$$
\text { Project Contribution \% = Project Trips } \div \text { Existing Volumes }
$$

Both of those volumes are for the stop controlled approaches only. Each stop controlled approach that operates at LOS E or F should be analyzed individually.

CUMULATIVE+ PROJECT CONDITIONS

A. SIGNALIZED INTERSECTIONS AND UNSIGNALIZED INTERSECTIONS

A project would cause a significant cumulative impact requiring mitigation if:

1. The overall amount of expected traffic growth causes conditions to deteriorate such that any of the significance criteria described above for existing conditions are met, and
2. The project's contribution to a significant cumulative impact would be equal to or greater than five percent of the growth in traffic from existing conditions.

A project's contribution to a cumulative condition would be calculated as the project's percentage contribution to the total growth in traffic from existing conditions.

Project Contribution \% = Project Trips \div (Cumulative Volumes - Existing Volumes)

- If projected daily volumes on the project driveway in combination with volumes on the roadway providing access to the project driveway meet County warrant criteria for provision of a left turn lane on the approach to the project entrance.
- If sight lines at project access driveways do not meet Caltrans stopping sight distance criteria based upon prevailing vehicle speeds.

B. PROJECT TRIP GENERATION

Friday and Saturday PM peak hour trip generation projections were developed with the assistance of the project applicant for all components of new employee and visitor activities associated with the proposed Saintsbury Winery Use Permit Modification 2018 (see worksheets in the Appendix). Results are presented on an hourly basis in Tables 6 and 7 for harvest Friday and Saturday conditions, while a summary of peak hour trips is presented in Table 8. A distribution of project visitor traffic is shown in Appendix Figure A-3, with 50 percent of visitor traffic occurring between 2:00 and 4:00 PM. During the harvest Friday PM peak traffic hour there would be a projected 5 inbound and 8 outbound vehicles, while during the harvest Saturday PM peak traffic hour, there would be a projected 8 inbound and 4 outbound vehicles. As shown, during both the Friday and Saturday PM peak hours all new trips would be associated with increased visitor traffic.

It should be noted that Saintsbury Winery will be developing a Traffic Demand Management (TDM) plan to reduce travel (and vehicle miles traveled) by employees and visitors. To provide a conservative traffic analysis no project trip generation reductions due to TDM measures have been included in the analysis.

C. PROJECT TRIP DISTRIBUTION

Project traffic was distributed to SR 12-121, Cuttings Wharf Road and Los Carneros Avenue in a pattern reflective of existing distribution patterns at the Saintsbury Winery driveway intersection as well as other nearby intersections. During the Friday and Saturday PM peak hours the majority of inbound project traffic on SR 12-121 would be expected to come from the east, while a majority of outbound traffic would be expected to turn to the east on the state highway.

The harvest Friday and Saturday PM peak hour project traffic increments expected on the local roadway network during the times of ambient peak traffic flows are presented in Figures 10 \& 11. Friday and Saturday Existing "With Project" PM peak hour harvest volumes are presented in Figures 12 \& 13; Year 2020 "With Project" PM peak hour harvest volumes are presented in Figures 14 \& 15, and Cumulative (year 2030) "With Project" PM peak hour harvest volumes are presented in Figures 16 \& 17.

D. FUTURE PLANNED ROADWAY IMPROVEMENTS

There are no capacity increasing roadway improvements planned by Caltrans or the County on the local roadway network serving the project site. ${ }^{4}$

X. PROJECT OFF-SITE IMPACTS

A. YEAR 2018 HARVEST (WITH PROJECT) CONDITIONS

1. SUMMARY

Project traffic would not result in any level of service or signal warrant significant impacts to the SR 12-121 or Withers Road intersections with Cuttings Wharf Road or Los Carneros Avenue during either the Friday or Saturday PM peak traffic hours. Less than significant.

2. INTERSECTION LEVEL OF SERVICE - Table 4

a) SR 12-121/CUTTINGS WHARF ROAD

The SR 12-121/Cuttings Wharf Road intersection would maintain unacceptable Friday and Saturday PM peak hour operation with the addition of project traffic. However, the increase in traffic due to the project would not meet the County's traffic impact significance criteria requiring a 10 percent or greater increase in traffic on the stop sign controlled intersection

[^4]would result in a 5.3 percent increase in traffic on the Cuttings Wharf Road stop sign controlled intersection approach, while during the Saturday PM peak hour the project would result in a 2.5 percent increase in traffic on the Cuttings Wharf Road intersection approach. Less than significant.

b) SR 12-121/LOS CARNEROS AVENUE

The SR 12-121/Los Carneros Avenue intersection would maintain unacceptable Friday and Saturday PM peak hour operation with the addition of project traffic. However, the increase in traffic due to the project would not meet the County's traffic impact significance criteria requiring a 10 percent or greater increase in traffic on the stop sign controlled intersection approach in order to result in a significant impact. During the Friday PM peak hour the project would result in a 2.7 percent increase in traffic on the Los Carneros Avenue stop sign controlled intersection approach, while during the Saturday PM peak hour the project would result in a 3.6 percent increase in traffic on the Los Carneros Avenue intersection approach. Less than significant.

c) WITHERS ROAD/CUTTINGS WHARF ROAD \& WITHERS ROAD/LOS CARNEROS AVENUE

The Withers Road unsignalized intersections with both Cuttings Wharf Road and Los Carneros Avenue would maintain acceptable LOS A or B operation with the addition of project traffic. Less than significant.

3. SIGNALIZATION NEEDS - Table 5

a) SR 12-121/CUTTINGS WHARF ROAD

The SR 12-121/Cuttings Wharf Road intersection would already have ambient Friday and Saturday PM peak hour volumes exceeding both urban and rural signal warrant \#3 criteria levels. However, the proposed project would result in less than a 1 percent increase in traffic passing through the intersection during the Friday and Saturday PM peak traffic hours. The project would add a 0.4 percent increase during the Friday PM peak hour and a 0.3 percent increase during the Saturday PM peak hour. Less than significant.
b) SR 12-121/LOS CARNEROS AVENUE

The SR 12-121/Los Carneros Avenue intersection would not have ambient Friday and Saturday PM peak hour volumes exceeding urban or rural signal warrant \#3 criteria levels and the proposed project would not increase volumes passing through the intersection to meet warrant criteria levels during either the Friday or Saturday PM peak traffic hours. Less than significant.

B. YEAR 2020 HARVEST (WITH PROJECT) CONDITIONS

1. SUMMARY

Project traffic would not result in any level of service or signal warrant significant impacts to the SR 12-121 or Withers Road intersections with Cuttings Wharf Road or Los Carneros Avenue during any Friday or Saturday PM peak traffic hours. Less than significant.

2. INTERSECTION LEVEL OF SERVICE - Table 4

a) SR 12-121/CUTTINGS WHARF ROAD

The SR 12-121/Cuttings Wharf Road intersection would maintain unacceptable Friday and Saturday PM peak hour operation with the addition of project traffic. However, the increase in traffic due to the project would not meet the County's traffic impact significance criteria requiring a 10 percent or greater increase in traffic on the stop sign controlled intersection approach in order to result in a significant impact. During the Friday PM peak hour the project would result in a 4.7 percent increase in traffic on the Cuttings Wharf Road stop sign controlled intersection approach, while during the Saturday PM peak hour the project would result in a 2.2 percent increase in traffic on the Cuttings Wharf Road intersection approach. Less than significant.

b) SR 12-121/LOS CARNEROS AVENUE

The SR 12-121/Los Carneros Avenue intersection would maintain unacceptable Friday and Saturday PM peak hour operation with the addition of project traffic. However, the increase in traffic due to the project would not meet the County's recently adopted traffic impact significance criteria requiring a 10 percent or greater increase in traffic on the stop sign controlled intersection approach in order to result in a significant impact. During the Friday PM peak hour the project would result in a 1.6 percent increase in traffic on the Los Carneros Avenue stop sign controlled intersection approach, while during the Saturday PM peak hour the project would result in a 1.9 percent increase in traffic on the Los Carneros Avenue intersection approach. Less than significant.

3. SIGNALIZATION NEEDS - Table 5

a) SR 12-121/CUTTINGS WHARF ROAD

The SR 29/Oakville Cross Road intersection would already have ambient Friday and Saturday PM peak hour volumes exceeding both urban and rural signal warrant \#3 criteria levels. However, the proposed project would result in less than a 1 percent increase in traffic passing through the intersection during the Friday and Saturday PM peak traffic hours. The project would add a 0.4 percent increase during the Friday PM peak hour and 0.3 percent increase during the Saturday PM peak hour. Less than significant.

b) SR 12-121/LOS CARNEROS AVENUE

The SR 12-121/Los Carneros Avenue would already have ambient Friday and Saturday PM peak hour volumes meeting or exceeding rural signal warrant \#3 criteria levels. However, the proposed project would result in less than a 1 percent increase in traffic passing through the intersection during the Friday and Saturday PM peak traffic hours. The project would add a 0.1 percent increase during the Friday PM peak hour and 0.2 percent increase during the Saturday PM peak hour. Less than significant.

C. CUMULATIVE (YEAR 2030) HARVEST (WITH PROJECT) CONDITIONS

1. SUMMARY

Project traffic would result in a significant level of service impact to the SR 12-121/Cuttings Wharf Road intersection during both the Friday and Saturday PM peak traffic hours. Potentially significant impact.

2. INTERSECTION LEVEL OF SERVICE - Table 4

a) SR 12-121/CUTTINGS WHARF ROAD

The SR 12-121/Cuttings Wharf Road intersection would maintain unacceptable Friday and Saturday PM peak hour operation with the addition of project traffic. The increase in traffic due to the project in relation to the growth in traffic from existing to 2030 conditions on the stop sign controlled intersection approach would meet the County's traffic impact significance criteria requiring a 5 percent or greater increase in order to result in a significant impact. During the Friday PM peak hour the project would result in a 29 percent increase in traffic on the Cuttings Wharf Road intersection approach, while during the Saturday PM peak hour the project would result in a 12 percent increase in traffic on the Cuttings Wharf Road intersection approach.

Potentially significant impact.

b) SR 12-121/LOS CARNEROS AVENUE

The SR 12-121/Los Carneros Avenue intersection would maintain unacceptable Friday and Saturday PM peak hour operation with the addition of project traffic. However, the increase in traffic due to the project would not meet the County's traffic impact significance criteria requiring a 5 percent or greater increase in the growth of traffic from existing to 2030 conditions on the stop sign controlled intersection approach in order to result in a significant impact. During the Friday PM peak hour the project would result in a 3.6 percent increase in traffic on the Los Carneros Avenue stop sign controlled intersection approach, while during the Saturday PM peak hour the project would result in a 3.4 percent increase in traffic on the Los Carneros Avenue intersection approach. Less than significant.

3. SIGNALIZATION NEEDS - Table 5

a) SR 12-121/CUTTINGS WHARF ROAD

The SR 12-121/Cuttings Wharf Road intersection would already have ambient Friday and Saturday PM peak hour volumes exceeding both rural and urban signal warrant \#3 criteria levels. However, the proposed project would result in less than a 5 percent increase in the growth in traffic from existing to 2030 conditions passing through the intersection during the Friday and Saturday PM peak traffic hours. The project would add a 3.9 percent increase during the Friday PM peak hour and a 3.2 percent increase during the Saturday PM peak hour. Less than significant.

b) SR 12-121/LOS CARNEROS AVENUE

The SR 12-121/Los Carneros Avenue intersection would already have ambient Friday and Saturday PM peak hour volumes exceeding rural signal warrant \#3 criteria levels. However, the proposed project would result in less than a 5 percent increase in the growth in traffic from existing to 2030 conditions passing through the intersection during the Friday and Saturday PM peak traffic hours. The project would add a 1.3 percent increase during the Friday PM peak hour and a 1.5 percent increase during the Saturday PM peak hour. Less than significant.

XI. PROJECT ACCESS IMPACTS

A. SIGHT LINE ADEQUACY AT WITHERS ROAD/SAINTSBURY WINERY DRIVEWAY INTERSECTION

Sight lines at the Withers Road/Saintsbury Winery driveway intersection are acceptable to the east and west along Withers Road. Existing sight lines are as follows for a driver exiting the site.

Sight line to the east along Withers Road (to see westbound vehicles) > 1,000 feet
Sight line to the west along Withers Road (to see eastbound vehicles) $>1,000$ feet
The Caltrans Design Manual (March 2014) states that stopping sight distance is the sight line criteria to be utilized at private road connections to public roadways. The minimum required stopping sight distances based upon vehicle speed and grade are as follows.

	MINIMUM REQUIRED STOPPING
SPEED	SIGHT DISTANCE
35 mph	250 feet
40 mph	300 feet

Source: Caltrans Highway Design Manual, March 2014

There is no posted speed limit at the project entrance. Vehicles were observed by Crane Transportation Group traveling between 25 and 35 mph . Based upon a 35 or 40 mile per hour criteria, there are adequate sight lines to both the east and west along Withers Road for a driver exiting the winery driveway. Less than significant.

B. PROJECT ENTRANCE LEFT TURN LANE REQUIREMENT

Combined daily volumes on Withers Road and the Saintsbury Winery driveway would not meet County criteria for provision of a left turn lane on the Withers Road westbound approach to the winery driveway with the addition of project traffic. Please see the County warrant criteria chart in Appendix Figure A-4. Less than significant.

XII. MARKETING EVENTS

Table 9 presents the list of new Saintsbury Winery marketing events that will replace their existing event schedule. There will be six events/year with 50 guests (resulting in about 18 vehicles), and two events/year with 100 guests (resulting in about 38 vehicles). All new events will either end by 2:30 PM or start no earlier than 6:00 PM, thereby avoiding adding traffic to the local roadway network during the critical 3:00 to 5:30 PM period. Less than significant.

XIII. RECOMMENDATIONS

1. SR 12-121/Cuttings Wharf Road: The project would result in one significant off-site circulation system operational impact: at the SR 12-121 intersection with Cuttings Wharf Road for Friday and Saturday cumulative traffic conditions. However, while this intersection currently warrants signalization neither the County nor Caltrans are in favor of signalizing this location. As an alternative mitigation, the County Public Works Department and the project applicant have agreed that the project applicant will pay the traffic impact fee currently being developed by the County. Impact reduced to less than significant.

This Report is intended for presentation and use in its entirety, together with all of its supporting exhibits, schedules, and appendices. Crane Transportation Group will have no liability for any use of the Report other than in its entirety, such as providing an excerpt to a third party or quoting a portion of the Report. If you provide a portion of the Report to a third party, you agree to hold CTG harmless against any liability to such third parties based upon their use of or reliance upon a less than complete version of the Report.

Tables

Table 1

SIGNALIZED INTERSECTION LOS CRITERIA

Level of Service	Description	Average Control Delay (Seconds Per Vehicle)
A	Operations with very low delay occurring with favorable progression and/or short cycle lengths.	≤ 10.0
B	Operations with low delay occurring with good progression and/or short cycle lengths.	10.0 to 20.0
C	Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.	20.0 to 35.0
D	Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, and/or high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable.	35.0 to 55.0
E	Operations with high delay values indicating poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences. This is considered to be the limit of acceptable delay.	55.0 to 80.0
F	Operation with delays unacceptable to most drivers occurring due to oversaturation, poor progression, or very long cycle lengths.	>80.0

Source: Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board).

Table 2

UNSIGNALIZED INTERSECTION LOS CRITERIA

Level of Service	Description	Average Control Delay (Seconds Per Vehicle)
A	Little or no delays	≤ 10.0
B	Short traffic delays	10.0 to 15.0
C	Average traffic delays	15.0 to 25.0
D	Long traffic delays	25.0 to 35.0
E	Very long traffic delays	35.0 to 50.0
F	Extreme traffic delays with intersection capacity exceeded (for an all-way stop), or with approach/turn movement capacity exceeded (for a side street stop controlled intersection)	>50.0

[^5]Table 3
TRIP GENERATION
APPROVED/PENDING PROJECTS ADDING TRAFFIC TO ROAD SYSTEM IN VICINITY OF SAINTSBURY WINERY

PROJECT	LOCATION	FRIDAY PM PEAK HOUR TRIPS		SATURDAY PM PEAK HOUR TRIPS	
		IN	OUT	IN	OUT
Hyde Winery Expansion ${ }^{(1)}$	1044 Los Carneros Road, just south of SR 12-121	12	24	25	25
Carneros Resort; relocate uses within project (no new traffic projected) ${ }^{(2)}$	North of SR 12-121, opposite Los Carneros Avenue	0	0	0	0
Etude Winery Expansion ${ }^{(3)}$	Cuttings Wharf Road south of Withers Road	9	8	9	8
Hudson Vineyards Winery ${ }^{(4)}$	5398 SR 12-121, west of Old Sonoma Road	7	11	7	6
Cuvaison Winery Expansion ${ }^{(5)}$	1221 Duhig Road	5	19	20	19
Bouchaine Vineyards, Inc. Winery Expansion ${ }^{(6)}$	1075 Buchli Station Road	4	12	14	15
Mahoney Vineyards Winery ${ }^{(7)}$	1134 Dealy Lane	1	2	2	2
Sleeping Giant Winery ${ }^{(8)}$	North side of Las Amigas Road in Carneros	1	1	1	1

${ }^{(1)}$ Traffic Impact Study for Hyde Winery, by W-Trans, under preparation June 2018.
${ }^{(2)}$ Carneros Inn Use Permit Modification, under review June 2018. (No traffic study prepared as no additional traffic expected.)
(3) Traffic Impact Report, Etude Winery Expansion by Crane Transportation Group, July 15, 2016.
${ }^{(4)}$ Traffic Import Report, Proposed Hudson Vineyards Winery Along SR 12-121 by Crane Transportation Group, April 27, 2015.
${ }^{(5)}$ Traffic Impact Study for Cuvaison Winery by W-Trans, September 21, 2017.
${ }^{(6)}$ Traffic Impact Study for Expansion of Bouchaine Vineyards by W-Trans, April 14, 2015.
${ }^{(7)}$ Mahoney Vineyards CEQA Determination Use Permit Application, County of Napa Planning, Building \& Environmental Services, May 18, 2016.
${ }^{(8)}$ Sleeping Giant Winery Potential Traffic Impacts and Warrant for Traffic Study by RSA, January 7, 2016.

Project list source: Napa County

Compiled by: Crane Transportation Group

Table 4

INTERSECTION LEVEL OF SERVICE

EXISTING (2018) HARVEST

	WEEKDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
LOCATION	EXISTING	EXISTING + PROJECT	EXISTING	EXISTING + PROJECT
SR 12-121/Cuttings Wharf Road	$\mathrm{E}-42.2^{(1)}$	$\mathrm{E}-44.6$	$\mathrm{E}-41.4$	$\mathrm{E}-42.6$
SR 12-121/Los Carneros Ave.	$\mathrm{F}-61.3^{(2)}$	$\mathrm{F}-67.8$	$\mathrm{~F}-187$	$\mathrm{~F}-205$
Los Carneros Ave./Withers Road	$\mathrm{A}-8.7^{(3)}$	$\mathrm{A}-8.7$	$\mathrm{~A}-8.4$	$\mathrm{~A}-8.4$
Cuttings Wharf Road/Withers Road	$\mathrm{A}-9.8^{(4)}$	$\mathrm{B}-10.1$	$\mathrm{~A}-9.9$	$\mathrm{~B}-10.1$

YEAR 2020 HARVEST

LOCATION	WEEKDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
	EXISTING	EXISTING + PROJECT	EXISTING	EXISTING + PROJECT
	F-55.5 ${ }^{(1)}$	$\mathrm{F}-59.7$	$\mathrm{~F}-53.6$	F-56.0
SR 12-121/Los Carneros Ave.	$\mathrm{F}-162.2^{(2)}$	$\mathrm{F}-173.3$	$\mathrm{~F}-422$	$\mathrm{~F}-445$
Los Carneros Ave./Withers Road	$\mathrm{A}-8.8^{(3)}$	$\mathrm{A}-8.8$	$\mathrm{~A}-8.4$	$\mathrm{~A}-8.4$
Cuttings Wharf Road/Withers Road	$\mathrm{B}-10.0^{(4)}$	$\mathrm{B}-10.4$	$\mathrm{~B}-10.2$	$\mathrm{~B}-10.4$

CUMULATIVE (YEAR 2030) HARVEST

LOCATION	WEEKDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
	EXISTING	EXISTING + PROJECT	EXISTING	EXISTING + PROJECT
	$\mathrm{F}-82.5^{(1)}$	$\mathrm{F}-90.0$	$\mathrm{~F}-72.8$	$\mathrm{~F}-78.9$
SR 12-121/Los Carneros Ave.	$\mathrm{F}-227^{(2)}$	$\mathrm{F}-242$	$\mathrm{~F}-649$	$\mathrm{~F}-683$
Los Carneros Ave./Withers Road	$\mathrm{A}-8.8^{(3)}$	$\mathrm{A}-8.8$	$\mathrm{~A}-8.4$	$\mathrm{~A}-8.4$
Cuttings Wharf Road/Withers Road	$\mathrm{B}-10.1^{(4)}$	$\mathrm{B}-10.5$	$\mathrm{~B}-10.3$	$\mathrm{~B}-10.5$

${ }^{(1)}$ Side street stop sign controlled level of service - Northbound Los Carneros Ave. approach LOS/delay (in seconds).
${ }^{(2)}$ Side street stop sign controlled level of service - Northbound Cuttings Wharf Road approach LOS/delay (in seconds).
${ }^{(3)}$ Side street stop sign controlled level of service - Westbound Withers Road approach LOS/delay (in seconds).
${ }^{(2)}$ Side street stop sign controlled level of service - Eastbound Withers Road approach LOS/delay (in seconds).
Source: Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board).
Source: Crane Transportation Group

Table 5

INTERSECTION SIGNAL WARRANT EVALUATION

Do Volumes Meet Caltrans Peak Hour Warrant \#3 Volume Criteria Levels?

EXISTING - 2018 HARVEST

LOCATION	FRIDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
	$\begin{gathered} \hline \text { W/O } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WITH } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { W/O } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \\ \hline \end{gathered}$
SR 12-121/Cuttings Wharf Road	Yes - R, U	$\begin{aligned} & \text { Yes } \\ & {[0.3 \%]} \end{aligned}$	Yes - R, U	$\begin{aligned} & \text { Yes } \\ & {[0.4 \%]} \end{aligned}$
SR 12-121/LLos Carneros Ave.	No	No	No	No

YEAR 2020 HARVEST

LOCATION	FRIDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \\ \hline \end{gathered}$
SR 12-121/Cuttings Wharf Road	Yes - R, U	$\begin{aligned} & \hline \text { Yes } \\ & {[0.3 \%]} \\ & \hline \end{aligned}$	Yes - R, U	$\begin{aligned} & \hline \text { Yes } \\ & {[0.4 \%]} \\ & \hline \end{aligned}$
SR 12-121//Los Carneros Ave.	Yes - R	$\begin{aligned} & \text { Yes } \\ & {[0.1 \%]} \end{aligned}$	Yes - R	$\begin{aligned} & \text { Yes } \\ & {[0.2 \%]} \end{aligned}$

CUMULATIVE (YEAR 2030) HARVEST

LOCATION	FRIDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
	W/O PROJECT		WITH PROJECT	W/O PROJECT
	Yes $-\mathrm{R}, \mathrm{U}$	Yes PROJECT		
	Yes -R	Yes $-\mathrm{R}, \mathrm{U}$ (1.3%)	Yes (3.2%)	

[xx] - Percent project traffic added to intersection. Less than a 1% increase is not considered a significant impact for existing \& 2020 conditions.
(xx) - Percent project traffic added to the growth in volumes between existing and cumulative conditions. Less than a 5% increase is not considered a significant impact.

Source: Crane Transportation Group; Caltrans Manual on Uniform Traffic Control Devices, Revision 3, 2017

Table 6

PROJECT TRIP GENERATION SAINTSBURY WINERY USE PERMIT MODIFICATION 2018

HARVEST

FRIDAY

	TOTAL	HOURS	TRIPS							
			3-4 PM		4-5 PM		5-6 PM		3:30-4:30 PM*	
			IN	OUT	IN	OUT	IN	OUT	IN	OUT
Admin Employees - Full Time	1	$\begin{gathered} \text { 9:00 AM- } \\ \text { 5:00 PM } \end{gathered}$	0	0	0	0	0	1	0	0
Admin Employees - Part Time	1	$\begin{gathered} \text { 9:00 AM- } \\ \text { 5:00 PM } \end{gathered}$	0	0	0	0	0	1	0	0
Production Employees - Full Time	0		0	0	0	0	0	0	0	0
Production Employees - Part Time	5	$\begin{gathered} \hline \text { 7:00 AM- } \\ \text { 7:00 PM } \end{gathered}$	0	0	0	0	0	0	0	0
Tours/Testing Employees	2	$\begin{gathered} \text { 9:00 AM- } \\ \text { 5:30 PM } \\ \hline \end{gathered}$	0	0	0	0	0	0	0	0
Visitors	$83 /$ day $(32 \text { vehicles/day })^{(1)}$	$\begin{gathered} \text { 10:00 AM- } \\ \text { 5:00 PM } \end{gathered}$	5	8	0	5	0	0	5	8
Grape Delivery Trucks	0/day		0	0	0	0	0	0	0	0
Other Trucks	0/day		0	0	0	0	0	0	0	0
TOTAL			5	8	0	5	0	2	5	8

* Peak traffic hour at the Cuttings Wharf Road and Los Carneros Ave. intersections with SR 12/121.
${ }^{(1)} 2.6$ visitors/vehicle average on weekdays per County data.
Source: Saintsbury Winery project applicant; Compiled by: Crane Transportation Group

Table 7

PROJECT TRIP GENERATION SAINTSBURY WINERY USE PERMIT MODIFICATION 2018

HARVEST

SATURDAY

$\begin{array}{\|l} \hline \text { NEW OR } \\ \text { ADJUSTED } \\ \text { ACTIVITIES } \\ \hline \end{array}$	NET NEW	HOURS	TRIPS											
			NOON-1 PM		1-2 PM*		2-3 PM		3-4 PM		4-5 PM		5-6 PM	
			IN	OUT										
Admin Employees Full Time	0		0	0	0	0	0	0	0	0	0	0	0	0
Production Employees - Full Time	0		0	0	0	0	0	0	0	0	0	0	0	0
Production Employees - Part Time	5	$\begin{gathered} \hline 7: 00 \mathrm{AM}- \\ \text { 7:00 PM } \end{gathered}$	0	0	0	0	0	0	0	0	0	0	0	0
Tours \& Tasting Employees	2	$\begin{gathered} \text { 9:00 AM- } \\ \text { 5:30 PM } \end{gathered}$	0	0	0	0	0	0	0	0	0	0	0	0
Visitors	$\begin{gathered} 83 / \text { day } \\ (30 \text { vehicles/day })^{(1)} \end{gathered}$	$\begin{gathered} \text { 10:00 AM- } \\ \text { 5:00 PM } \end{gathered}$	4	3	8	4	7	8	5	7	0	5	0	0
Grape Delivery Trucks	0/day		0	0	0	0	0	0	0	0	0	0	0	0
TOTAL			4	3	8	4	7	8	5	7	0	5	0	0

[^6]Source: Saintsbury Winery project applicant; Compiled by: Crane Transportation Group

Table 8

SUMMARY OF SAINTSBURY WINERY USE PERMIT MODIFICATION 2018 TRIP GENERATION

HARVEST

FRIDAY PM PEAK HOUR* $(3: 15-4: 15)$		SATURDAY PM PEAK HOUR* $(\mathbf{1 2 : 3 0 - 1 : 3 0)}$	
INBOUND	OUTBOUND	INBOUND	OUTBOUND
TRIPS	TRIPS	TRIPS	TRIPS
5	8	8	4

Source: Saintsbury Winery; compiled by Crane Transportation Group

Table 9

SAINTSBURY WINERY EXPANSION NEW MARKETING EVENT TRAFFIC DETAILS

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & & & \begin{array}{c}\text { REGULAR } \\ \text { VISITATION } \\ \text { ELIMINATED }\end{array} \\ \text { DURING }\end{array}\right\}$

* 1 trip day before the event (time varies - during business hours) and 1 trip day after the event (time varies - during business hours).
** 1 hour before and after event.
Source: Saintsbury Winery applicant

Figures

Saintsbury Winery Use Permit Modification 2018 Traffic Study

Saintsbury Winery Use Permit Modification 2018 Traffic Study

Figure 6
2020 Harvest (without Project)
Friday PM Peak Hour Volumes

Saintsbury Winery Use Permit Modification 2018 Traffic Study

Saintsbury Winery Use Permit Modification 2018 Traffic Study
dกOYפ NOI $\forall \perp Y O d S N \forall Y \perp ~ \exists N \forall Y O ~ C$

Saintsbury Winery Use Permit Modification 2018 Traffic Study
dחOY૭ NOI $\forall \perp Y O d S N \forall Y \perp ~ \exists N \forall Y O ~-~$

Saintsbury Winery Use Permit Modification 2018 Traffic Study

Appendix

Saintsbury Winery Use Permit Modification 2018 Traffic Study

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\leqslant			\&			*	
Traffic Vol, veh/h	3	1	0	6	1	5	0	19	0	5	13	0
Future Vol, veh/h	3	1	0	6	1	5	0	19	0	5	13	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stop	Free	Free	Free	Free	Free	Free						
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	1	0	7	1	6	0	22	0	6	15	0

Major/Minor	Major1	Major2			Minor1		
Conflicting Flow All	0	0	1234	0	2571	1201	
Stage 1	-	-	-	-	1201	-	
Stage 2	-	-	-	-	1370	-	
Critical Hdwy	-	-	4.12	-	6.4	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.218	-	3.5	3.318	
Pot Cap-1 Maneuver	-	-	565	-	29	225	
Stage 1	-	-	-	-	288	-	
Stage 2	-	-	-	-	238	-	
Platoon blocked, \%	-	-		-			
Mov Cap-1 Maneuver	-	-	565	-	24	225	
Mov Cap-2 Maneuver	-	-	-	-	87	-	
Stage 1	-	-	-	-	234	-	
Stage 2	-	-	-	-	238	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	1.1	42.2
HCM LOS			E

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	87	225	-	-	565	-
HCM Lane V/C Ratio	0.06	0.593	-	-	0.19	-
HCM Control Delay (s)	49	41.9	-	-	12.9	-
HCM Lane LOS	E	E	-	-	B	-
HCM 95th \%tile Q(veh)	0.2	3.4	-	-	0.7	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	\uparrow	
Traffic Vol, veh/h	4	2	2	122	118	8
Future Vol, veh/h	4	2	2	122	118	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	5	2	2	145	140	10

Intersection												
Int Delay，s／veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「	${ }^{7}$	4	「		\uparrow	「		\uparrow	「
Traffic Vol，veh／h	13	1175	15	15	1195	26	11	0	17	2	1	17
Future Vol，veh／h	13	1175	15	15	1195	26	11	0	17	2	1	17
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	－	－	None									
Storage Length	160	－	100	150	－	150	－	－	25	－	－	25
Veh in Median Storage，\＃	\＃	0	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles，\％	0	0	0	0	1	0	0	0	0	0	0	0
Mvmt Flow	13	1211	15	15	1232	27	11	0	18	2	1	18

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow			\&	
Traffic Vol, veh/h	1	1	0	0	0	2	0	11	1	7	13	1
Future Vol, veh/h	1	1	0	0	0	2	0	11	1	7	13	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	1	0	0	0	2	0	13	1	8	15	1

Intersection						
Int Delay, s/veh	2.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$	$\mathbf{1}$	个	$\mathbf{7}$	$\mathbf{7}$
Traffic Vol, veh/h	1171	23	107	1229	7	112
Future Vol, veh/h	1171	23	107	1229	7	112
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow	1233	24	113	1294	7	118

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	\uparrow	
Traffic Vol, veh/h	4	1	2	111	125	1
Future Vol, veh/h	4	1	2	111	125	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	5	1	2	132	149	1

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	20	213	597	-	-	552	-	-0.15	238
HCM Lane V/C Ratio	1	0.213	0.005	-	-0.021	-	-0.421	0.035	
HCM Control Delay (s)	$\$ 469.6$	26.4	11.1	-	-	11.7	-	$-\$ 364.6$	20.7
HCM Lane LOS	F	D	B	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	2.7	0.8	0	-	-	0.1	-	-	1.1

Intersection												
Int Delay, s/veh	3.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\&			*	
Traffic Vol, veh/h	3	1	0	6	1	5	0	20	0	5	14	0
Future Vol, veh/h	3	1	0	6	1	5	0	20	0	5	14	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	1	0	7	1	6	0	24	0	6	16	0

Intersection						
Int Delay, s/veh	3.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$	$\mathbf{1}$	个	a	$\mathbf{7}$
Traffic Vol, veh/h	1201	34	114	1129	6	144
Future Vol, veh/h	1201	34	114	1129	6	144
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	6	0	2	7	0	2
Mvmt Flow	1251	35	119	1176	6	150

[^7]Synchro 10 Report

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	\uparrow	
Traffic Vol, veh/h	4	2	2	139	131	8
Future Vol, veh/h	4	2	2	139	131	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	5	2	2	165	156	10

Major/Minor M	Minor2		Major1		ajor2	
Conflicting Flow All	330	161	166	0	-	0
Stage 1	161	-	-	-	-	-
Stage 2	169	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	665	884	1412	-	-	-
Stage 1	868	-	-	-	-	-
Stage 2	861	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	664	884	1412	-	-	-
Mov Cap-2 Maneuver	664	-	-	-	-	-
Stage 1	866	-	-	-	-	-
Stage 2	861	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10		0.1		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBL	NBT EBLn1		SBT	SBR
Capacity (veh/h)		1412	-	724	-	-
HCM Lane V/C Ratio		0.002	-	0.01	-	-
HCM Control Delay (s)		7.6	0	10	-	-
HCM Lane LOS		A	A	B	-	-
HCM 95th \%tile Q(veh)		0	-	0	-	-

[^8]Synchro 10 Report

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.1	0.3	$\$ 421.9$	60
HCM LOS		F	F	

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	SBLn2
Capacity (veh/h)	$14 \quad 217$	546	-	-	556	-	-	16	211
HCM Lane V/C Ratio	1.7670 .143	0.025	-	-	0.05	-	-	0.193	0.088
HCM Control Delay (s)	\$ 918.824 .3	11.8	-	-	11.8	-	-	277.7	23.7
HCM Lane LOS	F C	B	-	-	B	-	-	F	C
HCM 95th \%tile Q(veh)	3.80 .5	0.1	-	-	0.2	-	-	0.5	0.3

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection												
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow			\&	
Traffic Vol, veh/h	1	1	0	0	0	2	0	12	1	7	14	1
Future Vol, veh/h	1	1	0	0	0	2	0	12	1	7	14	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	1	0	0	0	2	0	14	1	8	16	1

[^9]Page 2

Intersection						
Int Delay, s/veh	3.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$	$\mathbf{1}$	个	$\mathbf{1}$	$\mathbf{7}$
Traffic Vol, veh/h	1206	25	123	1266	8	128
Future Vol, veh/h	1206	25	123	1266	8	128
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow	1269	26	129	1333	8	135

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	01295	02860	1269
Stage 1	-	- -	1269	
Stage 2	-	- -	1591	
Critical Hdwy		4.11	6.4	6.21
Critical Hdwy Stg 1	-	- -	5.4	
Critical Hdwy Stg 2	-	- -	5.4	
Follow-up Hdwy	-	- 2.209	3.5	3.309
Pot Cap-1 Maneuver	-	539	19	206
Stage 1	-	- -	- 267	

\quad Stage 2	-	-	-	-	186	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	539	-	14	206
Mov Cap-2 Maneuver	-	-	-	-	45	-
Stage 1	-	-	-	-	203	-
Stage 2	-	-	-	-	186	-

	EB	WB	NB
Approach	1.2	53.6	
HCM Control Delay, s	0	1	F

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBT	EBR	WBL	WBT
Capacity (veh/h)	45	206	-	-	539	-
HCM Lane V/C Ratio	0.187	0.654	-	-	0.24	-
HCM Control Delay (s)	102.6	50.5	-	-	13.8	-
HCM Lane LOS	F	F	-	-	B	-
HCM 95th \%tile Q(veh)	0.6	3.9	-	-	0.9	-

[^10]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.2 | | | | | |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | Mr | | | -1 | \uparrow | |
| Traffic Vol, veh/h | 4 | 1 | 2 | 129 | 143 | 1 |
| Future Vol, veh/h | 4 | 1 | 2 | 129 | 143 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 84 | 84 | 84 | 84 | 84 | 84 |
| Heavy Vehicles, $\%$ | 2 | 2 | 2 | 3 | 2 | 2 |
| Mvmt Flow | 5 | 1 | 2 | 154 | 170 | 1 |

Approach	EB	NB	SB
HCM Control Delay, s	10.2	0.1	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1406	-	697	-

[^11]

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	16	186	586			504		12	231
HCM Lane V/C Ratio	1.302	0.252	0.005			0.023		0.521	0.041
HCM Control Delay (s)	\$ 667.4	30.8	11.2			12.3		\$ 483.4	21.2
HCM Lane LOS	F	D	B			B		F	C
HCM 95th \%tile Q(veh)	3.1	1	0			0.1		1.2	0.1

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

[^12]| Intersection | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.1 | | | | | | | | | | | |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | | \& | | | \& | | | \uparrow | | | \uparrow | |
| Traffic Vol, veh/h | 3 | 1 | 0 | 6 | 1 | 6 | 0 | 22 | 0 | 5 | 16 | 0 |
| Future Vol, veh/h | 3 | 1 | 0 | 6 | 1 | 6 | 0 | 22 | 0 | 5 | 16 | 0 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 4 | 1 | 0 | 7 | 1 | 7 | 0 | 26 | 0 | 6 | 19 | 0 |

Intersection						
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{4}$	$\mathbf{7}$	1	4	$\mathbf{1}$	$\mathbf{7}$
Traffic Vol, veh/h	1312	36	120	1160	7	150
Future Vol, veh/h	1312	36	120	1160	7	150
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	6	0	2	7	0	2
Mvmt Flow	1353	37	124	1196	7	155

Major/Minor	Major1	Major2			Minor1		
Conflicting Flow All	0	0	1390	0	2797	1353	
Stage 1	-	-	-	-	1353	-	
Stage 2	-	-	-	-	1444	-	
Critical Hdwy	-	-	4.12	-	6.4	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.218	-	3.5	3.318	
Pot Cap-1 Maneuver	-	-	492	-	21	183	
Stage 1	-	-	-	-	243	-	
Stage 2	-	-	-	-	219	-	
Platoon blocked, \%	-	-		-			
Mov Cap-1 Maneuver	-	-	492	-	16	183	
Mov Cap-2 Maneuver	-	-	-	-	63	-	
Stage 1	-	-	-	-	182	-	
Stage 2	-	-	-	-	219	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	1.4	82.5
HCM LOS		F	

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	63	183	-	-	492	-
HCM Lane V/C Ratio	0.115	0.845	-	-0.251	-	
HCM Control Delay (s)	69.4	83.1	-	-	14.8	-
HCM Lane LOS	F	F	-	-	B	-
HCM 95th \%tile Q(veh)	0.4	6	-	-	1	-

[^13]Synchro 10 Report

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	1	
Traffic Vol, veh/h	4	2	2	145	137	9
Future Vol, veh/h	4	2	2	145	137	9
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	5	2	2	173	163	11

[^14]Synchro 10 Report

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.1	0.3	$\$ 649$	75.1
HCM LOS			F	F

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1 SBLn2
Capacity (veh/h)	10	198	513	-	-	524	-	-

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\&			\uparrow	
Traffic Vol, veh/h	1	1	0	0	0	2	0	15	1	7	18	1
Future Vol, veh/h	1	1	0	0	0	2	0	15	1	7	18	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	1	0	0	0	2	0	18	1	8	21	1

Intersection						
Int Delay, s/veh	4.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$	\mathbf{r}	个	$\mathbf{7}$	$\mathbf{7}$
Traffic Vol, veh/h	1284	27	129	1349	9	135
Future Vol, veh/h	1284	27	129	1349	9	135
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow	1338	28	134	1405	9	141

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	01366	03011	1338
Stage 1		- -	1338	
Stage 2		-	1673	
Critical Hdwy	-	4.11	6.4	6.21
Critical Hdwy Stg 1	-	- -	5.4	
Critical Hdwy Stg 2	-	- -	5.4	
Follow-up Hdwy	-	2.209	3.5	3.309
Pot Cap-1 Maneuver		506	15	188
Stage 1			247	
Stage 2	-	- -	169	
Platoon blocked, \%	-	-	-	
Mov Cap-1 Maneuver	-	506	11	188
Mov Cap-2 Maneuver	-	- -	29	-
Stage 1	-	- -	- 182	
Stage 2	-	- -	- 169	

Approach	EB	WB	NB
HCM Control Delay, s	0	1.3	72.8
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	29	188	-	-	506	-
HCM Lane V/C Ratio	0.323	0.748	-	-0.266	-	
HCM Control Delay (s)	180	65.7	-	-	14.7	-
HCM Lane LOS	F	F	-	-	B	-
HCM 95th \%tile Q(veh)	1	4.9	-	-	1.1	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	\uparrow	
Traffic Vol, veh/h	4	1	2	137	151	1
Future Vol, veh/h	4	1	2	137	151	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	5	1	2	163	180	1

Intersection												
Int Delay, s/veh	3.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\&			*	
Traffic Vol, veh/h	3	1	0	6	1	6	0	19	0	7	13	0
Future Vol, veh/h	3	1	0	6	1	6	0	19	0	7	13	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	1	0	7	1	7	0	22	0	8	15	0

Intersection						
Int Delay, s/veh	3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{4}$	$\mathbf{7}$	1	4	$\mathbf{1}$	$\mathbf{7}$
Traffic Vol, veh/h	1153	32	106	1110	5	135
Future Vol, veh/h	1153	32	106	1110	5	135
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	6	0	2	7	0	2
Mvmt Flow	1201	33	110	1156	5	141

Major/Minor	Major1	Major2				
Minor1						
Conflicting Flow All	0	0	1234	0	2577	1201
Stage 1	-	-	-	-	1201	-
Stage 2	-	-	-	-	1376	-
Critical Hdwy	-	-	4.12	-	6.4	6.22
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.218	-	3.5	3.318
Pot Cap-1 Maneuver	-	-	565	-	29	225
Stage 1	-	-	-	-	288	-
Stage 2	-	-	-	-	237	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	565	-	23	225
Mov Cap-2 Maneuver	-	-	-	-	84	-
Stage 1	-	-	-	-	232	-
Stage 2	-	-	-	-	237	-

Approach	EB	WB	NB
HCM Control Delay, s	0	1.1	44.6
HCM LOS		E	

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBT	EBR	WBL	WBT
Capacity (veh/h)	84	225	-	-	565	-
HCM Lane V/C Ratio	0.062	0.625	-	-0.195	-	
HCM Control Delay (s)	50.7	44.4	-	-	12.9	-
HCM Lane LOS	F	E	-	-	B	-
HCM 95th \%tile Q(veh)	0.2	3.7	-	-	0.7	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	\uparrow	
Traffic Vol, veh/h	11	2	2	122	118	11
Future Vol, veh/h	11	2	2	122	118	11
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	13	2	2	145	140	13

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow			\&	
Traffic Vol, veh/h	1	1	0	0	0	3	0	11	1	10	13	1
Future Vol, veh/h	1	1	0	0	0	3	0	11	1	10	13	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	1	0	0	0	4	0	13	1	12	15	1

	Intersection					
Int Delay, s/veh	2.5					
Movement E	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	「	${ }^{*}$	4	${ }_{1}$	「
Traffic Vol, veh/h 117	171	23	112	1229	7	115
Future Vol, veh/h 117	171	23	112	1229	7	115
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow 12	233	24	118	1294	7	121

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	1257	0	2763	1233
Stage 1	-	-	-	-1233	-	
Stage 2	-	-	-	-	1530	-
Critical Hdwy	-	-	4.11	-	6.4	6.21
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.209	-	3.5	3.309
Pot Cap-1 Maneuver	-	-	557	-	22	217
\quad Stage 1	-	-	-	-	278	-
Stage 2	-	-	-	-	199	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	557	-	17	217
Mov Cap-2 Maneuver	-	-	-	-	60	-
Stage 1	-	-	-	-	219	-
Stage 2	-	-	-	-	199	-

Approach	EB	WB	NB
HCM Control Delay, s	0	1.1	42.6
HCM LOS			E

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBT	EBR	WBL	WBT
Capacity (veh/h)	60	217	-	-	557	-
HCM Lane V/C Ratio	0.123	0.558	-	-0.212	-	
HCM Control Delay (s)	73.2	40.7	-	-	13.2	-
HCM Lane LOS	F	E	-	-	B	-
HCM 95th \%tile Q(veh)	0.4	3	-	-	0.8	-

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	\uparrow	
Traffic Vol, veh/h	7	1	2	111	125	6
Future Vol, veh/h	7	1	2	111	125	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, \%	2	2	2	3	2	2
Mvmt Flow	8	1	2	132	149	7

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	20	213	597	-	-551	-	-0.5	238	
HCM Lane V/C Ratio	1.053	0.213	0.005	-	-0.021	-	-0.421	0.035	
HCM Control Delay (s)	$\$ 489.1$	26.4	11.1	-	-11.7	-	$-\$ 364.6$	20.7	
HCM Lane LOS	F	D	B	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	2.9	0.8	0	-	-	0.1	-	-	1.1

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection												
Int Delay, s/veh	3.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\&			*	
Traffic Vol, veh/h	3	1	0	6	1	6	0	20	0	7	14	0
Future Vol, veh/h	3	1	0	6	1	6	0	20	0	7	14	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	1	0	7	1	7	0	24	0	8	16	0

	Intersection					
Int Delay, s/veh	4.2					
Movement E	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	「'	${ }^{*}$	4	${ }^{1}$	「'
Traffic Vol, veh/h 1201	201	34	117	1129	6	151
Future Vol, veh/h 120	201	34	117	1129	6	151
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	6	0	2	7	0	2
Mvmt Flow 12	251	35	122	1176	6	157

Major/Minor	Major1		Major2	Minor1		
Conflicting Flow All	0	0	1286	0	2671	1251
Stage 1	-				1251	
Stage 2		-			1420	
Critical Hdwy	-	-	4.12		6.4	6.22
Critical Hdwy Stg 1	-	-			5.4	
Critical Hdwy Stg 2		-			5.4	
Follow-up Hdwy	-		2.218	-	3.5	3.318
Pot Cap-1 Maneuver	-		539		25	211
Stage 1	-	-	-		272	
Stage 2	-	-		-	225	
Platoon blocked, \%	-	-				
Mov Cap-1 Maneuver	-	-	539		19	211
Mov Cap-2 Maneuver	-	-	-	-	71	
Stage 1	-	-			211	
Stage 2	-	-	-		225	

	EB	WB	NB
Approach	HCM Control Delay, s	0	1.3
HCM LOS		59.7	

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	71	211	-	-	539	-
HCM Lane V/C Ratio	0.088	0.745	-	-0.226	-	
HCM Control Delay (s)	60.5	59.7	-	-	13.6	-
HCM Lane LOS	F	F	-	-	B	-
HCM 95th \%tile Q(veh)	0.3	5	-	-	0.9	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			\uparrow	\uparrow	
Traffic Vol, veh/h	11	2	2	139	131	11
Future Vol, veh/h	11	2	2	139	131	11
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, \%	2	2	2	3	2	2
Mvmt Flow	13	2	2	165	156	13

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	332	163	169	0	-	0
\quad Stage 1	163	-	-	-	-	-
\quad Stage 2	169	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	663	882	1409	-	-	-
\quad Stage 1	866	-	-	-	-	-
\quad Stage 2	861	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	662	882	1409	-	-	-
Mov Cap-2 Maneuver	662	-	-	-	-	-
Stage 1	864	-	-	-	-	-
Stage 2	861	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	10.4	0.1	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1409	-	688	-
HCM Lane V/C Ratio	0.002	-	-0.02	-
HCM Control Delay (s)	7.6	0	10.4	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0	-	0.1	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.1	0.3	$\$ 445.2$	60
HCM LOS		F	F	

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	14	217	546	-	-	555	-	-16	211
HCM Lane V/C Ratio	1.841	0.143	0.025	-	-0.052	-	-0.193	0.088	
HCM Control Delay (s)	$\$ 950.2$	24.3	11.8	-	-	11.8	-	-277.7	23.7
HCM Lane LOS	F	C	B	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	3.9	0.5	0.1	-	-	0.2	-	-	0.5
HC	0.3								

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow			\&	
Traffic Vol, veh/h	1	1	0	0	0	3	0	12	1	10	14	1
Future Vol, veh/h	1	1	0	0	0	3	0	12	1	10	14	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	1	0	0	0	4	0	14	1	12	16	1

Intersection						
Int Delay, s/veh	3.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$	$\mathbf{1}$	个	$\mathbf{1}$	$\mathbf{7}$
Traffic Vol, veh/h	1206	25	128	1266	8	131
Future Vol, veh/h	1206	25	128	1266	8	131
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	0	0	1	0	0	1
Mvmt Flow	1269	26	135	1333	8	138

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	\uparrow	
Traffic Vol, veh/h	7	1	2	129	143	6
Future Vol, veh/h	7	1	2	129	143	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	8	1	2	154	170	7

Approach	EB	NB	SB
HCM Control Delay, s	10.4	0.1	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1399	-	682	-
HCM Lane V/C Ratio	0.002	-	-014	-
HCM Control Delay (s)	7.6	0	10.4	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0	-	0	-

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1	SBLn2	
Capacity (veh/h)	16	186	586	-	-504	-	-0.2	231	
HCM Lane V/C Ratio	1.367	0.252	0.005	-	-0.023	-	-0.521	0.041	
HCM Control Delay (s)	$\$ 693.7$	30.8	11.2	-	-12.3	-	$-\$ 483.4$	21.2	
HCM Lane LOS	F	D	B	-	-	B	-	-	F
HCM 95th \%tile Q(veh)	3.3	1	0	-	-	0.1	-	-	1.2

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			\uparrow			\&	
Traffic Vol, veh/h	3	1	0	6	1	7	0	22	0	7	16	0
Future Vol, veh/h	3	1	0	6	1	7	0	22	0	7	16	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stop	Free	Free	Free	Free	Free	Free						
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	1	0	7	1	8	0	26	0	8	19	0

Intersection						
Int Delay, s/veh 5.9						
Movement E	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	「	${ }^{7}$	4	${ }^{7}$	「
Traffic Vol, veh/h 13	312	36	123	1160	7	157
Future Vol, veh/h 1312	312	36	123	1160	7	157
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Fr	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Stop
Storage Length	-	115	175	-	0	50
Veh in Median Storage, \#	\# 0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	6	0	2	7	0	2
Mvmt Flow 13	353	37	127	1196	7	162

Major/Minor	Major1	Major2						Minor1		
Conflicting Flow All	0	0	1390	0	2803	1353				
\quad Stage 1	-	-	-	-	1353	-				
Stage 2	-	-	-	-	1450	-				
Critical Hdwy	-	-	4.12	-	6.4	6.22				
Critical Hdwy Stg 1	-	-	-	-	5.4	-				
Critical Hdwy Stg 2	-	-	-	-	5.4	-				
Follow-up Hdwy	-	-	2.218	-	3.5	3.318				
Pot Cap-1 Maneuver	-	-	492	-	21	183				
Stage 1	-	-	-	-	243	-				
Stage 2	-	-	-	-	218	-				
Platoon blocked, \%	-	-		-						
Mov Cap-1 Maneuver	-	-	492	-	16	183				
Mov Cap-2 Maneuver	-	-	-	-	62	-				
Stage 1	-	-	-	-	180	-				
Stage 2	-	-	-	-	218	-				

Approach	EB	WB	NB
HCM Control Delay, s	0	1.4	90
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	62	183	-	-	492	-
HCM Lane V/C Ratio	0.116	0.884	-	-0.258	-	
HCM Control Delay (s)	70.6	90.9	-	-	14.8	-
HCM Lane LOS	F	F	-	-	B	-
HCM 95th \%tile Q(veh)	0.4	6.6	-	-	1	-

[^15]Synchro 10 Report
Page 3

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	\uparrow	
Traffic Vol, veh/h	11	2	2	145	137	12
Future Vol, veh/h	11	2	2	145	137	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	13	2	2	173	163	14

Major/Minor	Minor2	Major1			Major2	
Conflicting Flow All	347	170	177	0	-	0
\quad Stage 1	170	-	-	-	-	-
\quad Stage 2	177	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	650	874	1399	-	-	-
\quad Stage 1	860	-	-	-	-	-
\quad Stage 2	854	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	649	874	1399	-	-	-
Mov Cap-2 Maneuver	649	-	-	-	-	-
Stage 1	858	-	-	-	-	-
Stage 2	854	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	10.5	0.1	0

HCM LOS B

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1399	-	676	-
HCM Lane V/C Ratio	0.002	-0.023	-	-
HCM Control Delay (s)	7.6	0	10.5	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0	-	0.1	-

[^16]Synchro 10 Report
Page 4

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.1	0.3	$\$ 683$	75.1
HCM LOS			F	F

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2
Capacity (veh/h)	10	198	513	-	-	523	-	-

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\&			\uparrow	
Traffic Vol, veh/h	1	1	0	0	0	3	0	15	1	10	18	1
Future Vol, veh/h	1	1	0	0	0	3	0	15	1	10	18	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	1	0	0	0	4	0	18	1	12	21	1

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	1366	0	3024	1338
Stage 1	-				1338	
Stage 2					1686	
Critical Hdwy	-		4.11	-	6.4	6.21
Critical Hdwy Stg 1	-	-		-	5.4	
Critical Hdwy Stg 2	-	-		-	5.4	
Follow-up Hdwy	-		2.209	-	3.5	3.309
Pot Cap-1 Maneuver	-		506		15	188
Stage 1	-				247	
Stage 2	-				167	
Platoon blocked, \%						
Mov Cap-1 Maneuver	-		506		11	188
Mov Cap-2 Maneuver	-	-			23	
Stage 1	-					
Stage 2	-	-	-		167	

Approach	EB	WB	NB
HCM Control Delay, s	0	1.3	78.9
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	23	188	-	-	506	-
HCM Lane V/C Ratio	0.408	0.765	-	-0.276	-	
HCM Control Delay (s)	243.8	68.1	-	-	14.8	-
HCM Lane LOS	F	F	-	-	B	-
HCM 95th \%tile Q(veh)	1.2	5.1	-	-	1.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	\uparrow	
Traffic Vol, veh/h	7	1	2	137	151	6
Future Vol, veh/h	7	1	2	137	151	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, $\%$	2	2	2	3	2	2
Mvmt Flow	8	1	2	163	180	7

* NOTE

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE

Source: Year 2014 Manual on Uniform Traffic Control Devices, Federal Highway Administration

PEAK HOUR VOLUME WARRANT \#3
(Urban Area)

* NOTE

150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET
APPROACH WITH TWO OR MORE LANES AND100 VPH APPLIES AS THE LOWER
THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE

SAINTSBURY WINERY EXPANSION EXPECTED PROJECT TRAFFIC ACTIVITY DETAILS

Existing Gallons/Year Production: Permit allows an average of 135,000 gallon over a three-year period. Maximum in any year is $\mathbf{1 6 0 , 0 0 0}$ gallons.

Gallons/Year After Expansion: No increase in proposed; proposed = existing.

1st Year of Expected Full Production: 135,000 gallons

HARVEST

EXISTING CONDITIONS	PROJECT INCREMENT
A. Full-time admin employees \# on Weekdays _4_ \# on Saturday \qquad \# on Sunday \qquad 0 Work hours: Weekday 9:00 AM to 5:00 PM Saturday N/A Sunday N/A	Full-time admin employees \# on Weekdays \qquad \# on Saturday \qquad \# on Sunday \qquad Work hours: Weekday 9:00 AM to 5:00 PM Saturday N/A Sunday N/A
B. Part-time admin employees \# on Weekdays \qquad _ \# on Saturday \qquad \# on Sunday \qquad 0 Work hours: Weekday N/A Saturday N/A Sunday N/A	Part-time admin employees \# on Weekdays _1 \# on Saturday \qquad \# on Sunday \qquad Work hours: Weekday 9:00 AM to 5:00 PM Saturday N/A Sunday N/A
C. Full-time production employees \# on Weekdays \qquad 3 \# on Saturday \qquad 0 \# on Sunday 0 \qquad Work hours: Weekday 7:00 AM to 7:00 PM Saturday N/A Sunday N/A	Full-time production employees \# on Weekdays _0 \qquad \# on Sunday \qquad Work hours: Weekday N/A Saturday N/A Sunday N/A

SAINTSBURY WINERY EXPANSION EXPECTED PROJECT TRAFFIC ACTIVITY DETAILS

HARVEST

EXISTING CONDITIONS	PROJECT INCREMENT
D. Part-time production employees (Harvest only) \# on Weekdays _ 0 \# on Saturday \qquad 3 \# on Sunday 3 \qquad Work hours: Weekday N/A Saturday 7:00 AM to 7:00 PM Sunday 7:00 AM to 7:00 PM	Part-time production employees (Harvest only) \# on Weekdays _5 \# on Saturday \qquad \# on Sunday \qquad Work hours: Weekday 7:00 AM to 7:00 PM Saturday 7:00 AM to 7:00 PM Sunday 7:00 AM to 7:00 PM
E. Tours \& tasting employees \# on Weekdays __3_ \# on Saturday \qquad \# on Sunday \qquad Work hours: Weekday 9:00 AM to 5:30 PM Saturday 9:00 AM to 5:30 PM Sunday 9:00 AM to 5:30 PM	Tours \& tasting employees \# on Weekdays ___ \# on Saturday __ 2 \# on Sunday \qquad Work hours: Weekday 9:00 AM to 5:30 PM Saturday 9:00 AM to 5:30 PM Sunday 9:00 AM to 5:30 PM
F. Maximum tours/tasting visitors \# on Weekdays __12_ \# on Saturday \qquad \# on Sunday \qquad 12 Tasting hours: Weekday 10:00 AM to 5:00 PM Saturday 10:00 AM to 5:00 PM Sunday 10:00 AM to 5:00 PM	Maximum tours/tasting visitors \# on Weekdays __83_ \# on Saturday __ 83 \# on Sunday \qquad Tasting hours: Weekday 10:00 AM to 5:00 PM Saturday 10:00 AM to 5:00 PM Sunday 10:00 AM to 5:00 PM
G. Grape delivery trucks \# on Weekdays _1 avg \& 3 max_ \# on Saturday \qquad 1 \# on Sunday \qquad 1 Delivery hours: Weekday 5:00 AM to 12:00 Noon Saturday 5:00 AM to 12:00 Noon Sunday N/A \# days of grape delivery: $_$20	Grape delivery trucks \# on Weekdays _No change \# on Saturday _No change \# on Sunday _ No change Delivery hours: Weekday \qquad to \qquad Saturday \qquad to \qquad Sunday \qquad to \qquad \# days of grape delivery: \qquad

SAINTSBURY WINERY EXPANSION EXPECTED PROJECT TRAFFIC ACTIVITY DETAILS

EXISTING CONDITIONS	PROJECT INCREMENT
H. Other trucks \# on Weekdays _1 (30-40 days/year) \# on Saturday \qquad \# on Sunday \qquad Delivery hours: Weekday 8:00 AM to 4:30 PM Saturday N/A Sunday N/A Please Detail: Glass \& barrel delivery trucks. Shipping bottled product.	Other trucks \# on Weekdays _Same as existing \# on Saturday \qquad \# on Sunday \qquad Delivery hours: Weekday \qquad to \qquad Saturday \qquad to \qquad Sunday \qquad to \qquad

I. Grape Source \& Trucks

Percent grapes grown on site for expanded production: 15\%
Grapes grown off site - access route to winery entrance
From the west: 60%
From the east: 40%

J. Existing Marketing Events - To Be Discontinued

Marketing Event \#1 \# events/year: 8
maximum \# people/event: 25
typical days: Weekend
typical hours: Lunch (11:00 AM to 2:00 PM) or
Dinner (2:00 PM to 5:00 PM)
Marketing Event \#2 \# events/year: 1 maximum \# people/event: 50
typical days: Weekend
typical hours: 10:00 AM to 4:00 PM

K. Proposed New Marketing Events - To Replace Existing Events

NOTE: The County is now requesting new marketing events avoid adding traffic to the local roadway network between 3:00 and 5:30 PM.

Marketing Event \#1 \# events/year: 6
Wine Club/ maximum \# people/event: 50
Release Event typical days: Weekend (primarily in March, May, Sept. \& Nov.)
typical hours: 10:00 AM to 2:30 PM
Marketing Event \#2 \# events/year: 2
Large Event maximum \# people/event: 100 guests +2 event staff
typical days: Weekend (one in August and second in November)
typical hours: 10:00 AM to 2:30 PM

L. Bottling

Days of existing on-site bottling per year: 13-15 days
Additional days per year of new on-site bottling due to project: No change

COUNTY of NAPA LEFT TURN WARRANT GRAPH - Withers Road/Saintsbury Winery Driveway

Figure A-4
COUNTY of NAPA LEFT TURN WARRANT GRAPH Withers Road/Saintsbury Winery Driveway

[^0]: * Peak hour at the SR 12-121 intersections with Cuttings Wharf Road and Los Carneros Avenue.

[^1]: ${ }^{1}$ Fehr \& Peers, December 8, 2014.

[^2]: ${ }^{2}$ Mr. Michael Hawkins, Napa County Public Works Department, March 2018.

[^3]: ${ }^{3}$ According to the Circulation Element dated June 8, 2008, the following intersections can be altered or expanded as a mitigation measure: SR-12/Airport Boulevard/SR-29, SR-221/SR-12/Highway 29, and several intersections along SR-29 and SR-128 north of Napa. The significance criteria shown above should apply to facilities where appropriate based upon the most recent Circulation Element chapter of the General Plan.

[^4]: ${ }^{4}$ Mr. Michael Hawkins, Napa County Public Works Department, March 2018. approach in order to result in a significant impact. During the Friday PM peak hour the project

[^5]: Source: Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board).

[^6]: * Peak traffic hour at the Cuttings Wharf Road and Los Carneros Ave. intersections with SR 12/121.
 ${ }^{(1)} 2.8$ visitors/vehicle average on weekend days per County data.

[^7]: Year 2020 Friday PM Peak Hour
 without Project

[^8]: Year 2020 Friday PM Peak Hour
 without Project

[^9]: Year 2020 Saturday PM Peak Hour
 without Project

[^10]: Year 2020 Saturday PM Peak Hour
 without Project
 Page 3

[^11]: Year 2020 Saturday PM Peak Hour without Project

[^12]: Year 2030 Friday PM Peak Hour
 without Project

[^13]: Year 2030 Friday PM Peak Hour
 without Project

[^14]: Year 2030 Friday PM Peak Hour
 without Project

[^15]: Year 2030 Friday PM Peak Hour
 with Project

[^16]: Year 2030 Friday PM Peak Hour
 with Project

