"H"

Traffic Impact Study

CRANE TRANSPORTATION GROUP
TRAFFIC AND TRANSPORTATION PLANNING AND ENGINEERING

FINAL

TRAFFIC IMPACT REPORT
PARADUXX WINERY
USE PERMIT MODIFICATION 2018
(P18-00347)

August 27, 2019

Prepared for: PARADUXX WINERY

Prepared by: Mark D. Crane, P.E., President California Registered Traffic Engineer (\#1381) CRANE TRANSPORTATION GROUP 2621 E. Windrim Court Elk Grove, CA 95758 (916) 647-3406 cranetransgroup@gmail.com

Table of Contents

Page

I. INTRODUCTION 1
II. SCOPE OF SERVICES 1
III. SUMMARY OF FINDINGS 2
A. "WITHOUT PROJECT" OPERATING CONDITIONS 2

1. Existing Volumes - Harvest 2016 2
2. Planned \& Ongoing Roadway Improvements 2
3. Year 2016, 2020 and Cumulative (2030) Harvest "Without Project" Circulation System Operation. 2
B. PROJECT IMPACTS 3
4. Project Trip Generation 3
5. Off-Site Impacts 3
a. Arterials (Silverado Trail) 3
b. Intersections 4
c. Signal Warrants 5
6. Sight Lines at Project Driveway 5
7. Marketing Events. 5
C. MITIGATION MEASURES 6
D. CONCLUSIONS \& RECOMMENDATIONS 6
IV. PROJECT LOCATION \& DESCRIPTION 6
V. EXISTING CIRCULATION SYSTEM EVALUATION PROCEDURES 7
A. ANALYSIS LOCATIONS 7
8. INTERSECTIONS 7
9. ARTERIAL ROADWAY SEGMENTS 8
B. VOLUMES 8
10. ANALYSIS SEASONS AND DAYS OF THE WEEK 8
11. COUNT RESULTS 8
12. SEASONAL ADJUSTMENTS 8
C. ROADWAYS 9
D. INTERSECTION LEVEL OF SERVICE 9
13. ANALYSIS METHODOLOGY 9
14. MINIMUM ACCEPTABLE OPERATION 10
E. ARTERIAL LEVEL OF SERVICE 10
15. ANALYSIS METHODOLOGY 10
16. MINIMUM ACCEPTABLE OPERATION 10
F. INTERSECTION SIGNAL WARRANTS 10
17. ANALYSIS METHODOLOGY 10
G. PLANNED IMPROVEMENTS 11
VI. FUTURE HORIZON TRAFFIC VOLUME PROJECTIONS 11
VII. OFF-SITE CIRCULATION SYSTEM OPERATION - WITHOUT PROJECT 12
18. YEAR 2016 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS 12
A. INTERSECTION LEVEL OF SERVICE 12
B. ARTERIAL SEGMENT LEVEL OF SERVICE 13
C. SIGNAL WARRANT EVALUATION 13
19. YEAR 2020 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS 14
A. INTERSECTION LEVEL OF SERVICE 14
B. ARTERIAL SEGMENT LEVEL OF SERVICE 14
C. SIGNAL WARRANT EVALUATION 15
20. YEAR 2030 (CUMULATIVE) HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS 15
A. INTERSECTION LEVEL OF SERVICE 15
B. ARTERIAL SEGMENT LEVEL OF SERVICE 16
C. SIGNAL WARRANT EVALUATION 16
VIII. SIGNIFICANCE CRITERIA 17
A. COUNTY OF NAPA 17
IX. PROJECT IMPACT EVALUATION 20
A. TRIP GENERATION 20
21. METHODOLOGY 20
22. PROJECT VOLUMES 20
B. TRIP DISTRIBUTION 21
C. OFF-SITE IMPACTS 21
23. EXISTING (2016) HARVEST + PROJECT CONDITIONS 21
24. YEAR 2020 HARVEST + PROJECT CONDITIONS 23
25. CUMULATIVE (YEAR 2030) HARVEST + PROJECT CONDITIONS 25
X. OTHER POTENTIAL PROJECT IMPACTS 28
A. SIGHT LINES AT PROJECT ENTRANCE 28
B. LEFT TURN LANE AT PROJECT ENTRANCE 28
C. MARKETING EVENTS 29
XI. MITIGATION MEASURES 29
XII. CONCLUSIONS \& RECOMMENDATIONS 30

Figures

Tables
Appendix

I. INTRODUCTION

This report has been prepared at the request of Paraduxx Winery to determine whether proposed changes to existing winery operation as detailed in their use permit modification 2018 will result in any significant circulation impacts to the local roadway network. The project site is located along the west side of Silverado Trail between Oakville Cross Road and Yountville Cross Road (see Figure 1 Regional Map and Figure 2 Site Specific Air Photo). The scope of analysis includes evaluation of Silverado Trail as well as the Silverado Trail intersections with the winery driveway, Yountville Cross Road and Oakville Cross Road for harvest year 2016, Year 2020 and cumulative year 2030 horizons.

II. SCOPE OF SERVICES

The scope of service for this traffic study was developed to provide analysis requested by both the Napa County Public Works and the Planning, Building \& Environmental Services departments. It should be noted that this study was first submitted to the County in 2016 and has then been revised several times reflecting comments by County staff, updated County review criteria and changes in the project description. The existing conditions analysis has remained 2016 harvest conditions as the 2020 and Cumulative 2030 evaluation horizons are the important analysis years since use permit modification activities would only be in operation by 2020 at the earliest. The analysis has conformed to the following criteria.

- Project trip generation has been based upon direction from the County Public Works Department.
- All significance criteria used for operations evaluation have been approved by the Napa County Public Works Department and meet CEQA requirements.

Evaluation was conducted for harvest (crush) Friday PM commute peak hour and Saturday afternoon peak hour traffic conditions. Historical traffic count information for major Napa County roadways indicates that there are higher volumes during this time period than during all other times of the year. Existing (year 2016), year 2020 and year 2030 (Cumulative - General Plan Buildout) With and Without Project operating conditions were evaluated for Silverado Trail arterial operation both north and south of the winery as well as at the Silverado Trail intersections with the project driveway, Yountville Cross Road and Oakville Cross Road. In addition, new marketing event sizes and proposed limitations to start and end times were detailed. Finally, sight line adequacy was evaluated at the project driveway intersection with Silverado Trail. Significant impacts, if any, were identified and measures listed, if needed, to mitigate all impacts to a less than significant level. Five years of accident data for Silverado Trail between and including the Oakville Cross Road and Yountville Cross Road intersections have also been requested by County Public Works and have been provided in a separate memo report.

III. SUMMARY OF FINDINGS

A. "WITHOUT PROJECT" OPERATING CONDITIONS

1. EXISTING VOLUMES - HARVEST 2016

Silverado Trail adjacent to the proposed project site had higher September harvest two-way traffic volumes during the Friday PM peak traffic hour compared Saturday PM peak traffic hour (about 1,825 two-way peak hour vehicles from 3:15 to 4:15 PM on Friday versus about 1,660 two-way peak hour vehicles from 3:30 to 4:30 PM on Saturday). The driveway serving the project site had about 40 vehicles during the Friday PM peak hour and about 25 vehicles during the Saturday PM peak hour.

2. PLANNED \& ONGOING ROADWAY IMPROVEMENTS

There are no planned circulation system improvements along Silverado Trail at analysis locations. Repaving of Silverado Trail in the project vicinity was just completed in July 2019 as was an improvement at the Silverado Trail/Yountville Cross Road intersection where a median acceleration lane was provided on Silverado Trail just north of the intersection to facilitate left turns from Yountville Cross Road.

3. YEAR 2016, 2020 AND CUMULATIVE (2030) HARVEST "WITHOUT PROJECT" CIRCULATION SYSTEM OPERATION

- Silverado Trail North \& South of Winery - Arterial operation would be LOS E in both directions north and south of the winery for all three horizon years.
- Silverado Trail/Oakville Cross Road intersection - There would be unacceptable level of service E or F operation on the stop sign controlled Oakville Cross Road approach during both the Friday and Saturday PM peak hours.
- Silverado Trail/Yountville Cross Road intersection - There would be unacceptable level of service E or F operation on the stop sign controlled Yountville Cross Road approach during the Friday PM peak hour, but acceptable level of service C or D operation during the Saturday PM peak hour.
- Silverado Trail/Paraduxx Winery Driveway intersection - Operation would be an acceptable level of service C or D during the Friday and Saturday PM peak hours.
- Signal Warrants - Both the Oakville and Yountville Cross Roads intersections have volumes meeting both urban and rural peak hour signal Warrant \#3 criteria levels during the Friday and Saturday PM peak hours.

B. PROJECT IMPACTS

1. PROJECT TRIP GENERATION

The proposed use permit modification 2018 would be expected to generate 4 inbound and 8 outbound trips during the Friday PM peak hour along Silverado Trail, with 6 inbound and 9 outbound vehicles during the Saturday PM peak traffic hour along Silverado Trail.

NET NEW TRIPS BASED UPON EXISTING
HOURLY TRAFFIC FLOW PATTERNS TO/FROM WINERY

FRIDAY PM PEAK HOUR TRIPS $(3: 15-4: 15)$	SATURDAY AFTERNOON PEAK HOUR TRIPS $(3: 30-4: 30)$		
IN	OUT	IN	OUT
4	8	6	9

Project trip generation expected during harvest Friday and Saturday peak traffic hours on the local circulation system was based upon methodology recently approved by the Napa County Public Works Department. Daily trip generation projections were first developed using the County's Use Permit Winery Traffic Information/Trip Generation Sheet trip rate factors. As requested by Napa County Public Works, two Fridays and two Saturdays of 24-hour counts on the winery driveway then determined the percent two-way traffic for each hour of the day. The Friday and Saturday hours with the highest percent of daily traffic were then determined and this maximum hourly percent was applied to the daily volumes. Resulting peak hour project volumes were then assumed to take place on the local roadway network peak hours even if the roadway peaks were different than the winery driveway peaks. For Paraduxx Winery, the driveway peak hours were 2:00-3:00 PM on both Friday and Saturday, while the peak traffic hours along Silverado Trail were 3:15-4:15 PM on Friday and 3:30-4:30 PM on Saturday. Virtually all new PM peak hour trips will be associated with increased visitation.

2. OFF-SITE IMPACTS

a. ARTERIALS (SILVERADO TRAIL)

i) Year 2016 or Year 2020 Harvest + Project Off-Site Circulation Impacts

The proposed project would not result in any significant off-site circulation impacts to Silverado Trail. The roadway would already be operating at LOS E and the addition of project traffic would not increase total arterial volumes by 1 percent or greater ${ }^{1}$ at any location along Silverado Trail. Less than significant.

[^0]
ii) Cumulative Year 2030 Harvest + Project Off-Site Circulation Impacts

The proposed project would not result in any significant off-site circulation impacts to Silverado Trail. The roadway would already be operating at LOS E and the addition of project traffic would not increase total arterial volumes by 1 percent or greater ${ }^{2}$ at any location along Silverado Trail. Less than significant.

b. INTERSECTIONS

i) Year 2016 or Year 2020 Harvest + Project Off-Site Circulation Impacts

The proposed project would not result in any significant off-site circulation impacts to the Silverado Trail/Oakville Cross Road or Silverado Trail/Yountville Cross Road intersections.

- The Silverado Trail/Oakville Cross Road intersection would already be operating unacceptably during both the Friday and Saturday PM peak hours, but the addition of project traffic would not increase peak hour volumes 10 percent or greater ${ }^{2}$ on the stop sign controlled intersection approach. Less than significant.
- The Silverado Trail/Yountville Cross Road intersection would already be operating unacceptably during the Friday PM peak hour, but the addition of project traffic would not increase peak hour volumes 10 percent or greater ${ }^{2}$ on the stop sign controlled intersection approach. In addition, acceptable Saturday PM peak hour operation would not be degraded by the addition of project traffic. Less than significant.
- The Silverado Trail/Paraduxx Winery intersection would continue to operate at level of service C or D with the addition of project traffic. Less than significant.

ii) Cumulative Year 2030 Harvest + Project Off-Site Circulation Impacts

The proposed project would not result in any significant off-site circulation impacts to the Silverado Trail/Oakville Cross Road or Silverado Trail/Yountville Cross Road intersections.

- The Silverado Trail/Oakville Cross Road intersection would already be operating unacceptably during both the Friday and Saturday PM peak hours, but the addition of project traffic would not increase the change in peak hour volumes from existing to cumulative conditions by 5 percent or greater ${ }^{2}$ on the stop sign controlled intersection approach. Less than significant.

[^1]- The Silverado Trail/Yountville Cross Road intersection would already be operating unacceptably during the Friday PM peak hour, but the addition of project traffic would not increase the change in peak hour volumes from existing to cumulative conditions by 5 percent or greater ${ }^{3}$ on the stop sign controlled intersection approach. In addition, acceptable Saturday PM peak hour operation would not be degraded by the addition of project traffic. Less than significant.
- The Silverado Trail/Paraduxx Winery intersection would continue to operate at level of service C or D with the addition of project traffic. Less than significant.

c. SIGNAL WARRANTS
 i) Year 2016 or Year 2020 Harvest + Project Off-Site Circulation Impacts

The Silverado Trail intersections with Oakville Cross Road and Yountville Cross Road would continue to have volumes exceeding Warrant \#3 urban and rural criteria with the addition of project traffic These results are for informational purposes only as there are no County significance criteria for this evaluation.

ii) Cumulative Year 2030 Harvest + Project Off-Site Circulation Impacts

The Silverado Trail intersections with Oakville Cross Road and Yountville Cross Road would continue to have volumes exceeding Warrant \#3 urban and rural criteria with the addition of project traffic These results are for informational purposes only as there are no County significance criteria for this evaluation.

3. Sight Lines at Project Driveway

Sight lines at the project's driveway connection to Silverado Trail meet minimum stopping sight distance criteria based upon the Caltrans July 2018 Highway Design Manual. Less than significant.

4. Marketing Events

The project is modifying its current permitted marketing schedule of 277 events resulting in the schedule of 198 events shown below. There will be a reduction of about 355 guests per year with the new marketing event schedule (or about 4 percent of the currently permitted number of guests). All but 35 of the 198 events would be permitted under the existing use permit. Valet parking will be provided for all large events. For the 35 new events (60 -guest events 33 times per year and 400-guest events two times per year) the applicant agrees that there will be no events beginning or ending between 2:30 and 5:30 PM on Fridays or Saturdays. Less than significant.

[^2]
NEW MARKETING EVENTS
 WITH USE PERMIT MODIFICATION 2018

SIZE \& DAYS OF EVENTS	\# OF EVENTS	\# OF GUESTS/EVENT	\# OF GUEST VEHICLES
Medium Events (Wed.-Sat.)	33	60	$22-23$
Large Events (Wed.-Sat.)	2	400	$143-154$

C. MITIGATION MEASURES

No measures are required.

D. CONCLUSIONS \& RECOMMENDATIONS

The project will result in no significant off-site circulation system operational impacts to Silverado Trail or to the Silverado Trail intersections with Oakville Cross Road, Yountville Cross Road or the winery access driveway based upon County of Napa significance criteria. It is important to note that study results are based upon a very conservative analysis wherein it assumes (based upon County methodology) that the Friday and Saturday PM peak traffic hours at the Paraduxx Winery occur at exactly the same time as the peak traffic hours along the adjacent Silverado Trail. Even though this is not the case, study results still show no off-site significant impacts and would still be valid even if the winery's peak afternoon traffic hours shift to be the same as those along Silverado Trail.

A left turn lane is already provided on the Silverado Trail northbound approach to the project driveway and a median refuge area is provided to the north of the winery driveway to assist left turn movements from the project site. In addition, sight lines at the project driveway connection to Silverado Trail are acceptable and meet Caltrans stopping sight distance criteria. The number of marketing events is being reduced from 277 down to 198 (with a reduction of about 355 yearly guests) with only 35 of the total remaining events not covered by the winery's existing use permit. For the 35 new events, none would start or end between 2:30 and 5:30 PM on a Friday or Saturday.

IV. PROJECT LOCATION \& DESCRIPTION

The Paraduxx Winery is located on the west side of Silverado Trail about a mile south of the Oakville Cross Road intersection and a mile north of the Yountville Cross Road intersection (see Figures $1 \& 2$). A left turn lane is already in place on the northbound Silverado Trail approach to the project entrance and a median refuge area is in place just north of the driveway to assist in left turn movements from the project site. For analysis purposes, the proposed use permit modification 2018 will be comprised of the following components.

- No net increase in employees traveling to/from the winery. While there will be an increase in production employees at the winery, their number will be offset by an equal decrease in other employees (admin/sales) that will be moving and working off site.
- Increase production from 200,000 up to 300,000 gallons per year.
- Increase daily visitors by 94 during peak tourist visitation days (from 50 up to 144 daily visitors). Maintain visitation hours between 10:00 AM and 6:00 PM.
- Increase grape delivery up to 10 trucks/day on weekdays and up to 6/day on Saturdays over two months.
- Increase on-site bottling 5,000-8,000 gallons/year (for an additional 4-6 days of bottling).
- The word "Stop" will be painted on the pavement of the Paraduxx driveway approach to Silverado Trail.
- Marketing event changes:
- Small events (existing entitlement): Reduction of 104 events (from 260 to 156 events with 24 guests/event).
- Cultural events (existing entitlement): Eliminate all 10 events with 24 guests/event.
- Auction (existing entitlement): 2 events/year; proposed reduction in attendance by 200 guests/event (from 500 to 300 guests).
- Newly proposed entitlements:
- Medium events: 33 new events/year with up to 60 guests/event.
- Large events: 2 events/year with 400 guests/event.
- Newly proposed entitlement events will not start or end between 2:30 and 5:30 PM on Friday or Saturday.

V. EXISTING CIRCULATION SYSTEM EVALUATION PROCEDURES

A. ANALYSIS LOCATIONS

1. INTERSECTIONS

The following locations have been evaluated.
a. Silverado Trail/Oakville Cross Road intersection (The Oakville Cross Road approach is stop sign controlled.)
b. Silverado Trail/Yountville Cross Road intersection (The Yountville Cross Road eastbound approach is stop sign controlled.)

c. Silverado Trail/Project Driveway intersection

Figure 3 presents a schematic of approach lane geometrics and control at each analysis intersection.

2. ARTERIAL ROADWAY SEGMENTS

The following locations have been evaluated.

a. Silverado Trail Just North and South of the Paraduxx Driveway

B. VOLUMES

1. ANALYSIS SEASONS AND DAYS OF THE WEEK

Project traffic impacts have been evaluated during harvest conditions. Based upon more than four years of historical information from Caltrans PeMS (Performance Measurement System) count surveys along SR 29 in the Napa Valley, September has the highest daily volumes of the year (during harvest). Therefore, only September harvest conditions were selected for evaluation.

In regards to the peak traffic days of the week, the Napa County Travel Behavioral Study ${ }^{4}$ shows that the highest weekday volumes in Napa Valley occur on a Friday, with the highest weekend volumes occurring on a Saturday. In addition, historical count data from the City of Napa show that Friday has the highest volumes of any weekday, while Caltrans historical counts for SR 29 between St. Helena and Napa also show that weekday AM and PM peak hour volumes are higher on a Friday than on either a Wednesday or Thursday. Therefore, Friday and Saturday peak traffic conditions were evaluated in this study.

2. COUNT RESULTS

Friday 3:00 to 6:00 PM as well as Saturday 1:00 to 6:00 PM turn movement counts were conducted by Crane Transportation Group (CTG) in October 2016 at the Silverado Trail intersections with Yountville Cross Road, Oakville Cross Road and the Winery driveway. The peak traffic hours for the system were determined to be $3: 15$ to $4: 15$ PM on Friday and 3:30 to 4:30 PM on Saturday. Resultant October 2016 peak hour counts are presented in Appendix Figure A-1. It should be noted, however, that there were many hours on both days that had similar volumes.

3. SEASONAL ADJUSTMENTS

October 2016 peak hour traffic counts were seasonally adjusted to reflect 2016 September harvest conditions. Historical traffic count data from Caltrans PeMS system as well as past studies were used to determine that September weekday volumes are about 1.5 percent higher than October weekday volumes, while September weekend volumes are about 2 percent higher than October weekend volumes.

[^3]Resultant 2016 Friday and Saturday PM peak hour harvest volumes are presented in Figure 4. Overall harvest Friday PM peak hour two-way volumes along Silverado Trail at the winery entrance would be expected to be about 10 percent higher than Saturday PM peak hour volumes (1,825 vehicles on Friday versus 1,660 vehicles on Saturday).

C. ROADWAYS

Roadway descriptions are based upon the designation that Silverado Trail runs in a general north-south direction through the project area while Oakville Cross Road and Yountville Cross Road run in an east-west direction. The project site is along the west side of Silverado Trail.

Silverado Trail is an arterial roadway in the project vicinity that has two well-paved 12-foot travel lanes and wide paved shoulders that are utilized as Class II bicycle lanes. Left turn lanes are provided on the northbound Silverado Trail approaches to Oakville Cross Road, Yountville Cross Road and the Paraduxx Winery driveway. There is also a median acceleration area just north of the Yountville Cross Road intersection to assist left turns from the Yountville Cross Road to northbound Silverado Trail. The posted speed limit is 55 miles per hour.

Oakville Cross Road is a two-lane rural collector roadway extending westerly from Silverado Trail to the west of SR 29. It is stop sign controlled on its eastbound approach to Silverado Trail.

Yountville Cross Road is a two-lane collector roadway extending westerly from Silverado Trail to the community of Yountville and an indirect connection to SR 29. It is stop sign controlled on its eastbound approach to Silverado Trail.

D. INTERSECTION LEVEL OF SERVICE

1. ANALYSIS METHODOLOGY

Transportation engineers and planners commonly use a grading system called level of service (LOS) to measure and describe the operational status of the local roadway network. LOS is a description of the quality of a roadway facility's operation, ranging from LOS A (indicating free-flow traffic conditions with little or no delay) to LOS F (representing oversaturated conditions where traffic flows exceed design capacity, resulting in long queues and delays). Intersections, rather than roadway segments between intersections, are almost always the capacity controlling locations for any circulation system.

Unsignalized Intersections. For unsignalized (all-way stop-controlled and side-street stopcontrolled) intersections, the 2017 Highway Capacity Manual Version 6 (Transportation Research Board, National Research Council) methodology for unsignalized intersections was utilized. For side-street stop-controlled intersections, operations are defined by the level of service and average control delay per vehicle (measured in seconds), with delay reported for the stop sign controlled approaches or turn movements. For all-way stop-controlled intersections, operations are defined by the average control delay for the entire intersection (measured in seconds per vehicle). The delay at an unsignalized intersection incorporates delay associated
with deceleration, acceleration, stopping, and moving up in the queue. Table 1 summarizes the relationship between delay and LOS for unsignalized intersections.

2. MINIMUM ACCEPTABLE OPERATION

Napa County's currently minimum acceptable operating standard for unsignalized intersections is Level of Service D (LOS D) for side street stop sign controlled approaches at two-way stop intersections and for overall operation at all-way-stop intersections. It should be noted, however, that the Napa County Board of Supervisors recently approved a Napa County General Plan Update Circulation element establishing that LOS E is now acceptable for Silverado Trail in the project area. However, to provide a conservative analysis the LOS D criteria as minimum acceptable has been used.

E. ARTERIAL LEVEL OF SERVICE

1. ANALYSIS METHODOLOGY

The 2017 Highway Capacity Manual Version 6 arterial analysis methodology has been utilized for analysis of Silverado Trail. Analysis results are presented as a level of service, volume to capacity ratio and percent time following. Input includes directional volumes, road and shoulder widths, percent trucks and RVs, terrain characteristics, percent available passing distance, etc.

2. MINIMUM ACCEPTABLE OPERATION

Napa County's currently minimum acceptable operating standard for unsignalized arterials is Level of Service D (LOS D).

F. INTERSECTION SIGNAL WARRANTS

1. ANALYSIS METHODOLOGY

Traffic signals are used to provide an orderly flow of traffic through an intersection. Many times they are needed to offer side street traffic an opportunity to access a major road where high volumes and/or high vehicle speeds block crossing or turn movements. They do not, however, increase the capacity of an intersection (i.e., increase the overall intersection's ability to accommodate additional vehicles) and, in fact, often slightly reduce the number of total vehicles that can pass through an intersection in a given period of time. Signals can also cause an increase in traffic accidents if installed at inappropriate locations.

There are 10 possible tests for determining whether a traffic signal should be considered for installation. These tests, called "warrants", consider criteria such as actual traffic volume, pedestrian volume, presence of school children, and accident history. The intersection volume data together with the available collision histories were compared to warrants contained in the California Manual on Uniform Traffic Control Devices, 2014, Revision 3 (2014 CMUTCD Rev. 3). Section 4C of the 2014 CMUTCD Rev. 3 provides guidelines, or warrants, which may
indicate need for a traffic signal at an unsignalized intersection. As indicated in the 2014 CMUTCD Rev. 3, satisfaction of one or more warrants does not necessarily require immediate installation of a traffic signal. It is merely an indication that the local jurisdiction should begin monitoring conditions at that location and that a signal may ultimately be required.

Warrant 3, the peak hour volume warrant, is often used as an initial check of signalization needs since peak hour volume data is typically available and this warrant is usually the first one to be met. Warrant 3 is based on a logarithmic curve and takes only the hour with the highest volume of the day into account. For intersections in rural locations (with local area population less than 10,000 people or where the posted speed limit or 85 th percentile speed on the uncontrolled intersection approaches is greater than 40 miles per hour) a 70 percent warrant is applied. The regular and 70 percent warrants are typically referred to as the urban and rural peak hour warrants. Please see Appendix A-2 for the existing condition warrant charts.

G. PLANNED IMPROVEMENTS

There are no planned and funded improvements at any location evaluated in this study. ${ }^{5}$ The Silverado Trail/Yountville Cross Road intersection has recently been improved to provide a median acceleration lane on Silverado Trail just north of the intersection to facilitate left turn movements from Yountville Creek Road. In addition, Silverado Trail has recently been repaved in the project area.

VI. FUTURE HORIZON TRAFFIC VOLUME PROJECTIONS

Traffic analysis has been conducted for harvest existing (2016), year 2020 and cumulative (year 2030) horizons at County request. The 2030 cumulative horizon reflects the County General Plan Buildout year. Traffic modeling for the General Plan shows the following growths in two-way traffic between 2016 and 2030 for the following roadways.

Route $\quad \underline{2016}$ to 2030 Projected Growth in 2-Way PM Peak Hour Traffic
Silverado Trail PM peak hour $=12.5 \%$
Oakville Cross Road PM peak hour $=40 \%$
Yountville Cross Road PM peak hour $=18 \%$
Projecting straight line traffic growth for analysis purposes, this translates into the following growths in two-way traffic between 2015 and 2020 for the same roadways.

Route	$\underline{2016}$ to 2020 Projected Growth in 2-Way PM Peak Hour Traffic
Silverado Trail	PM peak hour $=3.6 \%$
Oakville Cross Road	PM peak hour $=12 \%$
Yountville Cross Road	PM peak hour $=5.2 \%$

[^4]Since traffic modeling projections were only available for weekday PM peak hour conditions and not for the Saturday PM peak hour, Saturday two-way PM peak hour volumes were increased by the percentages found for the weekday PM peak hour.

Resultant year 2020 harvest "Without Project" Friday and Saturday PM peak hour volumes are presented in Figure 5, while year 2030 harvest "Without Project" Friday and Saturday PM peak hour volumes are presented in Figure 6.

VII. OFF-SITE CIRCULATION SYSTEM OPERATION WITHOUT PROJECT

1. YEAR 2016 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

A. INTERSECTION LEVEL OF SERVICE - see Table 2 and Appendix A-3 for capacity worksheets

1) SILVERADO TRAIL/OAKVILLE CROSS ROAD
a) Friday PM Peak Hour

Unacceptable Oakville Cross Road stop sign controlled eastbound approach: LOS F
b) Saturday PM Peak Hour

Unacceptable Oakville Cross Road stop sign controlled eastbound approach: LOS E
2) SILVERADO TRAIL/YOUNTVILLE CROSS ROAD
a) Friday PM Peak Hour

Unacceptable Yountville Cross Road stop sign controlled eastbound approach: LOS E
b) Saturday PM Peak Hour

Acceptable Yountville Cross Road stop sign controlled eastbound approach: LOS C

3) SILVERADO TRAIL/PARADUXX WINERY DRIVEWAY

a) Friday PM Peak Hour

Acceptable Paraduxx Driveway eastbound approach: LOS D
b) Saturday PM Peak Hour

Acceptable Paraduxx Driveway eastbound approach: LOS C
B. ARTERIAL SEGMENT LEVEL OF SERVICE - see Table 3 \& Appendix A-4 for capacity worksheets

1) SILVERADO TRAIL JUST NORTH OF PARADUXX WINERY
a) Friday PM Peak Hour

Northbound - LOS E
Southbound - LOS E
b) Saturday PM Peak Hour

Northbound - LOS E
Southbound - LOS E
2) SILVERADO TRAIL JUST SOUTH OF PARADUXX WINERY
a) Friday PM Peak Hour

Northbound - LOS E
Southbound - LOS E
b) Saturday PM Peak Hour

Northbound - LOS E
Southbound - LOS E
C. SIGNAL WARRANT EVALUATION - Table $\mathbf{4 \&}$ Appendix Figure A-2

1) SILVERADO TRAIL/OAKVILLE CROSS ROAD
a) Friday PM Peak Hour

Volumes exceed peak hour signal Warrant \#3 urban and rural criteria.
b) Saturday PM Peak Hour

Volumes exceed peak hour signal Warrant \#3 urban and rural criteria.

2) SILVERADO TRAIL/YOUNTVILLE CROSS ROAD

a) Friday PM Peak Hour

Volumes exceed peak hour signal Warrant \#3 urban and rural criteria.
b) Saturday PM Peak Hour

Volumes exceed peak hour signal Warrant \#3 urban and rural criteria.

2. YEAR 2020 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

A. INTERSECTION LEVEL OF SERVICE - see Table 2

1) SILVERADO TRAIL/OAKVILLE CROSS ROAD
a) Friday PM Peak Hour

Unacceptable Oakville Cross Road stop sign controlled eastbound approach: LOS F
b) Saturday PM Peak Hour

Unacceptable Oakville Cross Road stop sign controlled eastbound approach: LOS E
2) SILVERADO TRAIL/YOUNTVILLE CROSS ROAD
b) Friday PM Peak Hour

Unacceptable Yountville Cross Road stop sign controlled eastbound approach: LOS E
b) Saturday PM Peak Hour

Acceptable Yountville Cross Road stop sign controlled eastbound approach: LOS D
3) SILVERADO TRAIL/PARADUXX WINERY DRIVEWAY
a) Friday PM Peak Hour

Acceptable Paraduxx Driveway eastbound approach: LOS D
b) Saturday PM Peak Hour

Acceptable Paraduxx Driveway eastbound approach: LOS C
B. ARTERIAL SEGMENT LEVEL OF SERVICE - see

Table 3

1) SILVERADO TRAIL JUST NORTH OF PARADUXX WINERY
a) Friday PM Peak Hour

Northbound-LOS E
Southbound-LOS E
b) Saturday PM Peak Hour

Northbound - LOS E
Southbound - LOS E
2) SILVERADO TRAIL JUST SOUTH OF PARADUXX WINERY
a) Friday PM Peak Hour

Northbound - LOS E
Southbound-LOS E
b) Saturday PM Peak Hour

Northbound - LOS E
Southbound - LOS E

C. SIGNAL WARRANT EVALUATION - see Table 4

1) SILVERADO TRAIL/OAKVILLE CROSS ROAD
a) Friday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.
b) Saturday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.
2) SILVERADO TRAIL/YOUNTVILLE CROSS ROAD
a) Friday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.
b) Saturday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.

3. YEAR 2030 (CUMULATIVE) HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

A. INTERSECTION LEVEL OF SERVICE - see Table 2

1) SILVERADO TRAIL/OAKVILLE CROSS ROAD
a) Friday PM Peak Hour

Unacceptable Oakville Cross Road stop sign controlled eastbound approach: LOS F
b) Saturday PM Peak Hour

Unacceptable Oakville Cross Road stop sign controlled eastbound approach: LOS F
2) SILVERADO TRAIL/YOUNTVILLE CROSS ROAD
a) Friday PM Peak Hour

Unacceptable Yountville Cross Road stop sign controlled eastbound approach: LOS F
b) Saturday PM Peak Hour

Acceptable Yountville Cross Road stop sign controlled eastbound approach: LOS D
3) SILVERADO TRAIL/PARADUXX WINERY DRIVEWAY
a) Friday PM Peak Hour

Acceptable Paraduxx Driveway eastbound approach: LOS D
b) Saturday PM Peak Hour

Acceptable Paraduxx Driveway eastbound approach: LOS C
B. ARTERIAL SEGMENT LEVEL OF SERVICE - see Table 3

1) SILVERADO TRAIL JUST NORTH OF PARADUXX WINERY
a) Friday PM Peak Hour

Northbound-LOS E
Southbound-LOS E
b) Saturday PM Peak Hour

Northbound - LOS E
Southbound - LOS E
2) SILVERADO TRAIL JUST SOUTH OF PARADUXX WINERY
a) Friday PM Peak Hour

Northbound - LOS E
Southbound-LOS E
b) Saturday PM Peak Hour

Northbound - LOS E
Southbound - LOS E
C. SIGNAL WARRANT EVALUATION - see Table 4

1) SILVERADO TRAIL/OAKVILLE CROSS ROAD
a) Friday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.
b) Saturday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.
2) SILVERADO TRAIL/YOUNTVILLE CROSS ROAD
a) Friday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.
b) Saturday PM Peak Hour

Volumes would exceed peak hour signal Warrant \#3 urban and rural criteria.

VIII. SIGNIFICANCE CRITERIA

A. COUNTY OF NAPA

The following criteria have recently been developed for traffic impact analyses in Napa County.
EXISTING + PROJECT CONDITIONS

A. ARTERIAL SEGMENTS

A project would cause a significant impact requiring mitigation if:

1. An arterial segment operates at LOS A, B, C or D during the selected peak hours without project trips, and deteriorates to LOS E or F with the addition of project trips, or
2. An arterial segment operates at LOS E or F during the selected peak hours without project trips, and the addition of project trips increases the total segment volume by one percent or more.

For the second criteria, the following equation should be used if the arterial operates at LOS E or F without the project:

Project Contribution \% = Project Trips \div Existing Volumes

B. SIGNALIZED INTERSECTIONS

A project would cause a significant impact requiring mitigation if:

1. A signalized intersection operates at LOS A, B, C or D during the selected peak hours without project trips, and deteriorates to LOS E or F with the addition of project trips, or
2. A signalized intersection operates at LOS E or F during the selected peak hours without project trips, and the addition of project trips increases the total entering volume by one percent or more.

For the second criteria, the following equation should be used if the signalized intersection operates at LOS E or F without the project:

Project Contribution \% = Project Trips \div Existing Volumes

Maintaining LOS D or better at all signalized intersections would sometimes require expanding the physical footprint of an intersection. In some locations around the County, expanding physical transportation infrastructure could be in direct conflict with the County's goals of preserving the area's rural character, improving safety, and sustaining the agricultural industry, making these potential improvements infeasible. The County's

Circulation Element lists intersections that are slated for improvement or expansion in unincorporated Napa County. ${ }^{6}$

Transportation studies should individually consider the feasibility of potential mitigation measures with respect to right-of-way acquisition, regardless of the intersection's place in the Circulation Element's identified improvement lists, and present potential alternative mitigation measures that do not require right-of-way acquisition. County staff would then review that information and make the decision about the feasibility of the identified potential mitigations.

For intersections that cannot be improved without substantial additional right-of-way according to both the Circulation Element and the individual transportation impact study, and where other mitigations such as updating signal timing, signal phasing and operations, and/or signing and striping improvements do not improve the LOS, LOS E or F will be considered acceptable and the one percent threshold would not apply. Analysis of signalized intersection LOS should still be presented for informational purposes, and there should still be an evaluation of effects on safety and local access, per Policy CIR18.

C. UNSIGNALIZED INTERSECTIONS (ALL WAY STOP AND SIDE STREET STOP SIGN CONTROLLED)

LOS for all way stop controlled intersections is defined as an average of the delay at all approaches. LOS for side street stop controlled intersections is defined by the delay and LOS for the worst case approach. The recommended interpretation of Policy CIR-16 regarding unsignalized intersection significance criteria is as follows:

1. An unsignalized intersection operates at LOS A, B, C or D during the selected peak hours without project trips, the LOS deteriorates to LOS E or F with the addition of project traffic, and the peak hour traffic signal warrant criteria should also be evaluated and presented for information purposes, or
2. An unsignalized intersection operates at LOS E or F during the selected peak hours without project trips and the project contributes one percent or more of the total entering traffic for all way stop controlled intersections, or 10 percent or more of the traffic on a side street approach for side street stop controlled intersections; the peak hour traffic signal warrant criteria should also be evaluated and presented for informational purposes.

All Way Stop Controlled Intersections

For the second criteria at an all way stop controlled intersection, the following equation should be used if the all way stop controlled intersection operates at LOS E or F without the project.

[^5]
Side Street Stop Controlled Intersections

For the second criteria at a side street stop controlled intersection, the following equation should be used if the side street stop controlled intersection operates at LOS E or F without the project.

Project Contribution \% = Project Trips \div Existing Volumes

Both of those volumes are for the stop controlled approaches only. Each stop controlled approach that operates at LOS E or F should be analyzed individually.

CUMULATIVE+ PROJECT CONDITIONS

A. ARTERIAL SEGMENTS, SIGNALIZED INTERSECTIONS AND UNSIGNALIZED INTERSECTIONS

A project would cause a significant cumulative impact requiring mitigation if:

1. The overall amount of expected traffic growth causes conditions to deteriorate such that any of the significance criteria described above for existing conditions are met, and
2. The project's contribution to a significant cumulative impact would be equal to or greater than five percent of the growth in traffic from existing conditions.

A project's contribution to a cumulative condition would be calculated as the project's percentage contribution to the total growth in traffic from existing conditions.

Project Contribution \% = Project Trips \div (Cumulative Volumes - Existing Volumes)

- If projected daily volumes on the project driveway in combination with volumes on the roadway providing access to the project driveway meet County warrant criteria for provision of a left turn lane on the approach to the project entrance.
- If sight lines at project access driveways do not meet Caltrans stopping sight distance criteria based upon prevailing vehicle speeds.

IX. PROJECT IMPACT EVALUATION

A. TRIP GENERATION

1. METHODOLOGY

Project trip generation was determined using one of the three possible methodologies recently approved by Napa County Public Works for transportation impact study analysis. As detailed in Public Works guidance, first perform a site-specific analysis by conducting actual daily trip counts at the driveway of the project on two Fridays and two Saturdays (for winery use permit modifications). Next, determine the increment of net new daily traffic due to the use permit modification proposed project using trip rates from the use permit Winery Traffic Information/Trip Generation sheets. Based upon the two Friday and two Saturday 24-hour winery driveway counts, determine which hour on each day had the highest combined inbound + outbound traffic and determine the percent of total traffic occurring during those hours in relation to the daily counts. Apply these percentages to the net new Friday and Saturday daily traffic increments for the project to determine the amount of project traffic that would be expected to occur during the winery's peak traffic hour. Finally, assume that the winery's peak hourly traffic will occur at the same time as the ambient peak traffic time on the adjacent roadway system.

It should be noted that this analysis methodology is very conservative since it assumes that winery and adjacent roadway PM peak traffic hours will overlap, even though that is not currently the case with Paraduxx Winery and Silverado Trail. However, should the winery's peak traffic hours ever align with those of Silverado Trail, the conservative analysis contained in this study would still be valid and meet CEQA requirements.

Twenty-four-hour traffic counts were conducted on the Paraduxx Winery driveway on Friday, February 22 and July 19, 2019 as well as on Saturday, February 23 and July 20, 2019 (see Appendix A-5). Counts on both Fridays and Saturdays showed the peak traffic hour of the afternoon was 2:00-3:00 PM. On the two Fridays the 2:00-3:00 PM hour had 14 percent of daily traffic in February and 16 percent of daily traffic in July. On the two Saturdays the 2:00-3:00 PM hour had 16 percent of daily traffic in February and 20 percent of daily traffic in July. The higher of the two percentages from the Friday and Saturday survey days was applied to the daily project traffic increment (as shown in Appendix A-6, County Use Permit Winery Trip Generation Sheets).

2. PROJECT VOLUMES

Table 5 shows that during the harvest Friday PM peak traffic hour there would be a projected 4 inbound and 8 outbound vehicles, while during the harvest Saturday afternoon peak traffic hour there would be a projected 6 inbound and 9 outbound vehicles. Virtually all net new traffic during the Friday and Saturday PM peak hours would be due to increased visitation.

B. TRIP DISTRIBUTION

Project traffic was distributed to Silverado Trail in a pattern reflective of existing distribution patterns at the Paraduxx driveway intersection. Most outbound visitor and employee traffic during both PM peak hours would be expected to travel to the south on Silverado Trail. During the Friday PM peak hour the majority of inbound traffic on Silverado Trail would come from the north, while during the Saturday afternoon peak hour it would come from the south.

The harvest Friday and Saturday project traffic increments expected on Silverado Trail during the times of ambient peak traffic flows are presented in Figure 7. Friday and Saturday "With Project" PM peak hour harvest volumes for year 2016 are presented in Figure 8; "With Project" PM peak hour harvest volumes for year 2020 conditions are presented in Figure 9, and "With Project" PM peak hour harvest volumes for cumulative (year 2030) conditions are presented in Figure 10.

C. OFF-SITE IMPACTS

1. EXISTING (2016) HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts along Silverado Trail or at the Silverado Trail intersections with Oakville Cross Road or Yountville Cross Road during either the Friday or Saturday PM peak traffic hours. Also, the Silverado Trail/Paraduxx Winery intersection would be operating at an acceptable level of service with the addition of project traffic. Less than significant.

b. 2016 INTERSECTION LEVEL OF SERVICE IMPACTS see Table 2

- Silverado Trail/Oakville Cross Road
- Friday PM Peak Hour

Operation of the stop sign controlled Oakville Cross Road intersection approach would remain an unacceptable LOS F with the addition of project traffic. The project would not increase volumes on the stop sign controlled Oakville Cross Road approach to Silverado Trail by 10 percent or greater (0.9%). ${ }^{7}$ Less than significant.

- Saturday PM Peak Hour

Operation of the stop sign controlled Oakville Cross Road intersection approach would remain an unacceptable LOS E with the addition of project traffic. The project would not increase volumes on the stop sign controlled Oakville Cross Road approach to Silverado Trail by 10 percent or greater (0%). ${ }^{7}$ Less than significant.

[^6]- Silverado Trail/Yountville Cross Road
- Friday PM Peak Hour

Operation of the stop sign controlled Yountville Cross Road intersection approach would remain an unacceptable LOS E with the addition of project traffic. The project would not increase volumes on the stop sign controlled Yountville Cross Road approach to Silverado Trail by 10 percent or greater (0\%). ${ }^{8}$ Less than significant.

- Saturday PM Peak Hour

Operation of the stop sign controlled Yountville Cross Road intersection approach would remain an acceptable LOS C with the addition of project traffic. Less than significant.

- Silverado Trail/Paraduxx Winery Driveway
- Friday PM Peak Hour

Operation of the Paraduxx Winery approach to Silverado Trail would remain an acceptable LOS D with the addition of project traffic.

- Saturday PM Peak Hour

Operation of the Paraduxx Winery approach to Silverado Trail would remain an acceptable LOS C with the addition of project traffic.

c. 2016 ARTERIAL SEGMENT IMPACTS - see Table 3

- Silverado Trail North of Paraduxx Winery
- Friday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.3%). ${ }^{8}$ Less than significant.

- Saturday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.3%). ${ }^{8}$ Less than significant.

- Silverado Trail South of Paraduxx Winery
- Friday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.4%). ${ }^{8}$ Less than significant.

- Saturday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.6%). ${ }^{8}$ Less than significant.

[^7]
d. 2016 SIGNAL WARRANT EVALUATION - see Table 4

Signal warrant information is provided for informational purposes only per County significance criteria.

- Silverado Trail/Oakville Cross Road
- Friday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Saturday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Silverado Trail/Yountville Cross Road
- Friday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Saturday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

2. YEAR 2020 HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts at the Silverado Trail intersections with Oakville Cross Road or Yountville Cross Road during either the Friday or Saturday PM peak traffic hours. Also, the Silverado Trail/Paraduxx Winery intersection would be operating at an acceptable level of service with the addition of project traffic. Less than significant.

b. 2020 INTERSECTION LEVEL OF SERVICE IMPACTS see Table 2

- Silverado Trail/Oakville Cross Road
- Friday PM Peak Hour

Operation of the stop sign controlled Oakville Cross Road intersection approach would remain an unacceptable LOS F with the addition of project traffic. The project would not increase volumes on the stop sign controlled Oakville Cross Road approach to Silverado Trail by 10 percent or greater (0.7%). ${ }^{9}$ Less than significant.

[^8]- Saturday PM Peak Hour

Operation of the stop sign controlled Oakville Cross Road intersection approach would remain an unacceptable LOS E with the addition of project traffic. The project would not increase volumes on the stop sign controlled Oakville Cross Road approach to Silverado Trail by 10 percent or greater (0\%). ${ }^{10}$ Less than significant.

- Silverado Trail/Yountville Cross Road

- Friday PM Peak Hour

Operation of the stop sign controlled Yountville Cross Road intersection approach would remain an unacceptable LOS E with the addition of project traffic. The project would not increase volumes on the stop sign controlled Yountville Cross Road approach to Silverado Trail by 10 percent or greater (0%). ${ }^{10}$ Less than significant.

- Saturday PM Peak Hour

Operation of the stop sign controlled Yountville Cross Road intersection approach would remain an acceptable LOS D with the addition of project traffic. Less than significant.

- Silverado Trail/Paraduxx Winery Driveway

- Friday PM Peak Hour

Operation of the Paraduxx Winery approach to Silverado Trail would remain LOS D with the addition of project traffic.

- Saturday PM Peak Hour

Operation of the Paraduxx Winery approach to Silverado Trail would remain LOS C with the addition of project traffic.

c. 2020 ARTERIAL SEGMENT IMPACTS - see Table 3

- Silverado Trail North of Paraduxx Winery
- Friday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.3%). ${ }^{10}$ Less than significant.

- Saturday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.3%). ${ }^{10}$ Less than significant.

- Silverado Trail South of Paraduxx Winery
- Friday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.4%). ${ }^{10}$ Less than significant.

[^9]- Saturday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase total segment volumes by 1 percent or more (0.6%). ${ }^{11}$ Less than significant.

d. 2020 SIGNAL WARRANT EVALUATION - see Table 4

Signal warrant information is provided for informational purposes only per County significance criteria.

- Silverado Trail/Oakville Cross Road
- Friday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Saturday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Silverado Trail/Yountville Cross Road
- Friday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Saturday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

3. CUMULATIVE (YEAR 2030) HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts at the Silverado Trail intersections with Oakville Cross Road or Yountville Cross Road during either the Friday or Saturday PM peak traffic hours. Also, the Silverado Trail/Paraduxx Winery intersection would be operating at an acceptable level of service with the addition of project traffic. Less than significant.

[^10]
b. 2030 INTERSECTION LEVEL OF SERVICE IMPACTS see Table 2

- Silverado Trail/Oakville Cross Road

- Friday PM Peak Hour

Operation of the stop sign controlled Oakville Cross Road intersection approach would remain an unacceptable LOS F with the addition of project traffic. The project would not change the increase in volumes from Existing to Cumulative conditions on the stop sign controlled Oakville Cross Road approach to Silverado Trail by 5 percent or greater (1.4\%). ${ }^{12}$ Less than significant.

- Saturday PM Peak Hour

Operation of the stop sign controlled Oakville Cross Road intersection approach would remain an unacceptable LOS F with the addition of project traffic. The project would not change the increase in volumes from Existing to Cumulative conditions on the stop sign controlled Oakville Cross Road approach to Silverado Trail by 5 percent or greater (0\%). ${ }^{12}$ Less than significant.

- Silverado Trail/Yountville Cross Road
- Friday PM Peak Hour

Operation of the stop sign controlled Yountville Cross Road intersection approach would remain an unacceptable LOS F with the addition of project traffic. The project would not change the increase in volumes from Existing to Cumulative conditions on the stop sign controlled Yountville Cross Road approach to Silverado Trail by 5 percent or greater (0\%). ${ }^{12}$ Less than significant.

- Saturday PM Peak Hour

Operation of the stop sign controlled Yountville Cross Road intersection approach would remain an acceptable LOS D with the addition of project traffic. Less than significant.

- Silverado Trail/Paraduxx Winery Driveway
- Friday PM Peak Hour

Operation of the Paraduxx Winery approach to Silverado Trail would remain LOS D with the addition of project traffic.

- Saturday PM Peak Hour

Operation of the Paraduxx Winery approach to Silverado Trail would remain LOS C with the addition of project traffic.

[^11]c. 2030 Arterial Segment Impacts - see Table 3

- Silverado Trail North of Paraduxx Winery
- Friday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2016 and 2030 by 5 percent or more (1.95\%). ${ }^{13}$ Less than significant.

- Saturday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2016 and 2030 by 5 percent or more (2.47\%). ${ }^{13}$ Less than significant.

- Silverado Trail South of Paraduxx Winery
- Friday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2016 and 2030 by 5 percent or more (2.73\%). ${ }^{13}$ Less than significant.

- Saturday PM Peak Hour

Operation would remain LOS E in both directions. The project would not increase the change in two-way segment volumes between 2016 and 2030 by 5 percent or more (4.95\%). ${ }^{13}$ Less than significant.

d. 2030 SIGNAL WARRANT EVALUATION - see Table 4

Signal warrant information is provided for informational purposes only per County significance criteria.

- Silverado Trail/Oakville Cross Road
- Friday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Saturday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

- Silverado Trail/Yountville Cross Road
- Friday PM Peak Hour

Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

[^12]- Saturday PM Peak Hour Volumes would be exceeding urban and rural peak hour signal warrant criteria with or without project traffic.

X. OTHER POTENTIAL PROJECT IMPACTS

A. SIGHT LINES AT PROJECT ENTRANCE

Sight lines at the Silverado Trail/project access driveway intersection are currently acceptable to the north and south along Silverado Trail (at more than 900 feet in each direction).

Sight line to the north along Silverado Trail (to see southbound vehicles) 900+ feet
Sight line to the south along Silverado Trail (to see northbound vehicles) $1,000+$ feet
The Caltrans Highway Design Manual (March 2014) states that stopping sight distance is the corner sight distance criteria to be utilized at private road connections to arterial roadways. The minimum required stopping sight distances based upon various vehicle speeds are as follows.

SPEED	MINIMUM REQUIRED STOPPING SIGHT DISTANCE
50 mph	430 feet
55 mph	500 feet
60 mph	580 feet

The posted speed limit at the project entrance is 55 miles per hour, and some vehicles were observed traveling higher than the posted limit during two field surveys by Crane Transportation Group. Based upon the 60 mile per hour criteria, resultant sight lines to the north and south along Silverado Trail from the project driveway would be acceptable. Less than significant.

B. LEFT TURN LANE AT PROJECT ENTRANCE

There is already a left turn lane on the northbound Silverado Trail approach to the Paraduxx Winery entrance as well as a median refuge area along Silverado Trail north of the driveway to assist left turn movements from the project site (see Figure 2). Less than significant.

C. MARKETING EVENTS

The number of marketing events will be reduced by 277 to 198 events, which will result in an approximate 4 percent reduction in visitors (from 8,105 down to 7,749 visitors).

	\# OF EVENTS	\# OF GUESTS	\# OF GUEST VEHICLES	DAYS OF THE WEEK
Small Events	156	$24 /$ event	$9-10$	Wed.-Sat.
Medium Events*	33	$60 /$ event	$20-23$	Wed.-Sat.
Large Events*	2	$400 /$ event	$143-154$	Wed.-Sat.
Industry Open House	5	$125 /$ event	45	Sat. or Sun.
Auctions	2	$300 /$ event	$108-116$	Fri.-Sun.
TOTAL	198	7,749 total		

* Only the 33 medium events (with up to 60 guests/event) and the two large events (with up to 400 guests/event) are considered new and are part of the use permit modification 2018. None of these new events would begin or end between 2:30 and 5:30 PM. Less than significant.

XI. MITIGATION MEASURES

No off-site access circulation system mitigation measures are required.

XII. CONCLUSIONS \& RECOMMENDATIONS

The project will result in no significant off-site circulation system operational impacts to Silverado Trail or to the Silverado Trail intersections with Oakville Cross Road, Yountville Cross Road or the winery access driveway based upon County of Napa significance criteria. It is important to note that study results are based upon a very conservative analysis wherein it assumes (based upon County methodology) that the Friday and Saturday PM peak traffic hours at the Paraduxx Winery occur at exactly the same time as the peak traffic hours along the adjacent Silverado Trail. Even though this is not the case, study results still show no off-site significant impacts and would still be valid even if the winery's peak afternoon traffic hours shift to be the same as those along Silverado Trail.

A left turn lane is already provided on the Silverado Trail northbound approach to the project driveway and a median refuge area is provided to the north of the winery driveway to assist left turn movements from the project site. In addition, sight lines at the project driveway connection to Silverado Trail are acceptable and meet Caltrans stopping sight distance criteria. The number of marketing events is being reduced from 277 down to 198 (with a reduction of about 355 yearly guests) with only 35 of the total remaining events not covered by the winery's existing use permit. For the 35 new events, none would start or end between 2:30 and 5:30 PM on a Friday or Saturday.

This Report is intended for presentation and use in its entirety, together with all of its supporting exhibits, schedules, and appendices. Crane Transportation Group will have no liability for any use of the Report other than in its entirety, such as providing an excerpt to a third party or quoting a portion of the Report. If you provide a portion of the Report to a third party, you agree to hold CTG harmless against any liability to such third parties based upon their use of or reliance upon a less than complete version of the Report.

Figures

Paraduxx Winery Use Permit Modification 2019 Traffic Study

ce

Tables

Table 1

UNSIGNALIZED INTERSECTION LOS CRITERIA

Level of Service	Description	Average Control Delay (Seconds Per Vehicle)
A	Little or no delays	≤ 10.0
B	Short traffic delays	10.0 to 15.0
C	Average traffic delays	15.0 to 25.0
D	Long traffic delays	25.0 to 35.0
E	Very long traffic delays	35.0 to 50.0
F	Extreme traffic delays with intersection capacity exceeded (for an all-way stop), or with approach/turn movement capacity exceeded (for a side street stop controlled intersection)	>50.0

Source: 2017 Highway Capacity Manual Version 6 (Transportation Research Board).

Table 2 (page 1 of 2)

INTERSECTION LEVEL OF SERVICE

YEAR 2016 HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:15-4:15 PM)		$\begin{aligned} & \text { SATURDAY PM PEAK HOUR } \\ & \text { (3:30-4:30 PM) } \end{aligned}$	
	W/O PROJECT	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$
Silverado Trail/Oakville Cross Road	F-81.5 ${ }^{(1)}$	$\begin{aligned} & \text { F-83.1 } \\ & (0.9 \%)^{*} \end{aligned}$	E-40.9	$\begin{aligned} & \text { E-41.4 } \\ & (0 \%) \end{aligned}$
Silverado Trail/Yountville Cross Road	E-40.2 ${ }^{(2)}$	$\begin{aligned} & \text { E-40.5 } \\ & (0 \%)^{*} \end{aligned}$	C-23.4	C-23.7
Silverado Trail/Project Driveway	D-27.4 ${ }^{(3)}$	D-28.2	C-20.1	C-20.5

YEAR 2020 HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:15-4:15 PM)		SATURDAY PM PEAK HOUR(3:30-4:30 PM)	
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \\ \hline \end{gathered}$
Silverado Trail/Oakville Cross Road	F-94.4 ${ }^{(1)}$	$\begin{aligned} & \text { F-94.4 } \\ & (0.7 \%)^{*} \end{aligned}$	E-45.8	$\begin{aligned} & \text { E-46.3 } \\ & (0 \%) \end{aligned}$
Silverado Trail/Yountville Cross Road	E-45.8 ${ }^{(2)}$	$\begin{aligned} & \text { E-46.2 } \\ & (0 \%)^{*} \end{aligned}$	D-25.2	D-25.5
Silverado Trail/Project Driveway	D-29.6 ${ }^{(3)}$	D-30.8	C-20.9	C-21.4

YEAR 2030 (CUMULATIVE) HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:15-4:15 PM)		$\begin{gathered} \text { SATURDAY PM PEAK HOUR } \\ \text { (3:30-4:30 PM) } \\ \hline \end{gathered}$	
	W/O PROJECT	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$
Silverado Trail/Oakville Cross Road	F-104.8 ${ }^{(1)}$	$\begin{aligned} & \hline \text { F-107.1 } \\ & (1.4 \%)^{* *} \end{aligned}$	F-66.4	$\begin{aligned} & \text { F-66.5 } \\ & (0 \%) \end{aligned}$
Silverado Trail/Yountville Cross Road	F-57.9 ${ }^{(2)}$	$\begin{aligned} & \text { F-58.6 } \\ & (0 \%)^{* *} \end{aligned}$	D-30.1	D-30.6
Silverado Trail/Project Driveway	D-33.0 ${ }^{(3)}$	D-34.2	C-23.1	C-23.7

(Footnotes on next page)

Table 2 (page 2 of 2)

INTERSECTION LEVEL OF SERVICE

${ }^{(1)}$ Unsignalized level of service - control delay in seconds: Oakville Cross Rd. stop sign controlled approach to Silverado Trail.
${ }^{(2)}$ Unsignalized level of service - control delay in seconds: Yountville Cross Rd. stop sign controlled approach to Silverado Trail.
${ }^{(3)}$ Unsignalized level of service - control delay in seconds: Project Driveway stop sign controlled approach to Silverado Trail.

* Percent increase in side street stop sign controlled traffic due to project. Less than a 10% increase is considered less than significant based upon Napa County significance criteria.
** Percent increase in the growth of side street stop sign controlled traffic (from 2016 to 2030) due to project. Less than a 5% increase is considered less than significant based upon Napa County significance criteria.

6th Edition Highway Capacity Manual (HCM) Analysis Methodology for unsignalized intersections (2017)
Source: Crane Transportation Group

Table 3

ARTERIAL LEVEL OF SERVICE

YEAR 2016 HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:15-4:15 PM)					$\begin{gathered} \hline \text { SATURDAY PM PEAK HOUR } \\ \text { (3:30-4:30 PM) } \\ \hline \end{gathered}$				
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \\ \hline \end{gathered}$		$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$		$\begin{gathered} \text { \% VOL } \\ \text { DUE TO } \\ \text { PROJECT } \\ \hline \end{gathered}$	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$		$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$		$\begin{gathered} \text { \% VOL } \\ \text { DUE TO } \\ \text { PROJECT } \\ \hline \end{gathered}$
	NB	SB	NB	SB		NB	SB	NB	SB	
Silverado Trail just north of Paraduxx Driveway	E. 33	E. 77	E. 33	E. 77	0.3\%*	E. 37	E. 73	E. 37	E. 73	0.3\%*
Silverado Trail just south of Paraduxx Driveway	E. 33	E. 78	E. 33	E. 78	0.4\%*	E. 38	E. 74	E. 38	E. 74	0.6\%*

YEAR 2020 HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:15-4:15 PM)					$\begin{gathered} \hline \hline \text { SATURDAY PM PEAK HOUR } \\ (3: 30-4: 30 \mathrm{PM}) \end{gathered}$				
	W/O PROJECT		WITH PROJECT		$\begin{gathered} \hline \text { \% VOL } \\ \text { DUE TO } \\ \text { PROJECT } \\ \hline \end{gathered}$	W/O PROJECT		WITH PROJECT		$\begin{gathered} \text { \% VOL } \\ \text { DUE TO } \\ \text { PROJECT } \end{gathered}$
	NB	SB	NB	SB		NB	SB	NB	SB	
Silverado Trail just north of Paraduxx Driveway	E. 34	E. 81	E. 34	E. 81	0.3\%*	E. 39	E. 76	E. 39	E. 76	0.3\%*
Silverado Trail just south of Paraduxx Driveway	E. 34	E. 81	E. 34	E. 82	0.4\%*	E. 39	E. 76	E. 39	E. 77	0.6\%*

YEAR 2030 (CUMULATIVE) HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:15-4:15 PM)					SATURDAY PM PEAK HOUR (3:30-4:30 PM)				
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$		$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$		$\begin{gathered} \text { \% VOL } \\ \text { DUE TO } \\ \text { PROJECT }^{(1)} \\ \hline \end{gathered}$	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$		$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$		$\begin{gathered} \text { \% VOL } \\ \text { DUE TO } \\ \text { PROJECT }^{(1)} \\ \hline \end{gathered}$
	NB	SB	NB	SB		NB	SB	NB	SB	
Silverado Trail just north of Paraduxx Driveway	E. 37	E. 89	E. 37	E. 89	1.95\%**	E. 41	E. 82	E. 42	E. 82	2.47\%**
Silverado Trail just south of Paraduxx Driveway	E. 37	E. 90	E. 37	E. 90	1.75\%**	E. 42	E. 83	E. 42	E. 83	4.95\%**

Level of service - volume/capacity ratio.
${ }^{(1)}$ Compared to 2016-2030 growth.

* Percent increase in total roadway segment volume due to project. Less than a 1% increase is considered less than significant based upon Napa County significance criteria.
** Percent increase in the growth of total roadway segment volume (from 2016 to 2030) due to project. Less than a 5% increase is considered less than significant based upon Napa County significance criteria.
Highway Capacity Manual, $6^{\text {th }}$ Edition (2017) analysis methodology. Compiled by: Crane Transportation Group

Table 4

INTERSECTION SIGNAL WARRANT EVALUATION

Do Volumes Meet Caltrans Peak Hour Warrant \#3 Volume Criteria Levels? (results presented for informational purposes only)

YEAR 2016 HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:15-4:15 PM)		$\underset{(3: 30-4: 30 ~ P M)}{\text { SATURDAY PM PEAR }}$	
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$	WITH PROJECT	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \\ \hline \end{gathered}$
Silverado Trail/Oakville Cross Road	Yes	Yes	Yes	Yes
Silverado Trail/Yountville Cross Road	Yes	Yes	Yes	Yes

YEAR 2020 HARVEST

LOCATION	$\begin{gathered} \hline \text { FRIDAY PM PEAK HOUR } \\ (3: 15-4: 15 \text { PM) } \end{gathered}$		$\begin{gathered} \text { SATURDAY PM PEAK HOUR } \\ (3: 30-4: 30 \mathrm{PM}) \end{gathered}$	
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \\ \hline \end{gathered}$	WITH PROJECT	\mathbf{W} / \mathbf{O} PROJECT	$\begin{gathered} \text { WITH } \\ \text { PROJECT } \end{gathered}$
Silverado Trail/Oakville Cross Road	Yes	Yes	Yes	Yes
Silverado Trail/Yountville Cross Road	Yes	Yes	Yes	Yes

YEAR 2030 (CUMULATIVE) HARVEST

	FRIDAY PM PEAK HOUR (3:15-4:15 PM)		SATURDAY PM PEAK HOUR (3:30-4:30 PM)	
	W/O PROJECT		WITH PROJECT	W/O PROJECT
POCATION	PROJECT			
Silverado Trail/Oakville Cross Road	Yes	Yes	Yes	Yes
Silverado Trail/Yountville Cross Road	Yes	Yes	Yes	Yes

Criteria: Caltrans Manual of Uniform Traffic Control Devices, Revision 3, 2018
Source: Crane Transportation Group

Table 5

PROJECT PM PEAK HOUR TRIP GENERATION

CRUSH FRIDAY

	DAILY 2- WAY TRIPS*	PM PEAK HOUR \%**	PM PEAK HOUR 2-WAY TRIPS
Existing	163		
Existing + Project	236		
Net Increase	73	16%	12

CRUSH SATURDAY

	DAILY 2- WAY TRIPS*	PM PEAK HOUR \%**	PM PEAK HOUR 2-WAY TRIPS
Existing			
Existing + Project	206		
Net Increase	72	20%	15

* Source: Paraduxx Winery Traffic Information/Trip Generation Sheet.
** Source: Paraduxx Driveway 24 -hour count results - maximum hourly inbound + outbound percent of daily volumes from two Fridays and two Saturdays.

Compiled by: Crane Transportation Group

Appendix 1

Appendix 2

Silverado Trail/Oakville Cross Road

PEAK HOUR VOLUME WARRANT \#3
 (Rural Area)

- Year 2016 Harvest Friday PM Peak Hour - Slverado Trail/Oakville Cross Road
= Year 2016 Harvest Saturday PM Peak Hour - Silverado Trail/Oakville Cross Road
* NOTE

100 VPH APPUESASTHELOWERTHRESHOLD VOLUMEFORA MINORSTRET APPROACH WITH TWO ORMORELANES AND 75 VPH APPUES ASTHELOWR
THRESHOD VOLUMEFORA MINORSTREIT APPROACHING WTH ONELANE

Figure A-2 - Figure 1
Year 2016 Harvest (without Project) Friday and Saturday PM Peak Hour Rural Signal Warrant \#3 Silverado Trail/Oakville Cross Road

Silverado Trail/Yountville Cross Road

PEAK HOUR VOLUME WARRANT \#3
 (Rural Area)

Friday PM Peak Hour and
Saturday PM Peak Hour
= Year 2016 Harvest Friday PM Peak Hour - Silverado Trail/Yountville CrossRoad
= Year 2016 Harvest Saturday PM Peak Hour - Silverado Trail/Yountville CrossRoad

* NOTE

100 VPH APPUESASTHELOWERTHRESHOLD VOLUMEFORA MINORSTRETT APPROACH WITH TWO ORMORELANES AND 75 VPH APPUESASTHELOWER
THRESHOLD VOLUMEFOR A MINORSTRETT APPROACHING WITH ONE LANE

Source: California Manual on Uniform Traffic Control Devices - 2014 Revisions 1,2 \& 3

Figure A-2 - Figure 2
Year 2016 Harvest (without Project) Friday and Saturday PM

Appendix 3

Intersection						

Intersection						
Int Delay, s/veh	3.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	$\mathbf{7}$		a	个	$\mathbf{7}$
Traffic Vol, veh/h	71	66	61	427	1218	203
Future Vol, veh/h	71	66	61	427	1218	203
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	4	4	4	1	2	4
Mvmt Flow	76	71	66	459	1310	218

Intersection						

Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	\mathbf{r}		$\mathbf{4}$	4	\mathbf{F}
Traffic Vol, veh/h	79	86	73	479	851	242
Future Vol, veh/h	79	86	73	479	851	242
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	83	91	77	504	896	255

Intersection						

Intersection						
Int Delay, s/veh	3.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	$\mathbf{7}$		a	个	$\mathbf{7}$
Traffic Vol, veh/h	73	69	66	437	1263	215
Future Vol, veh/h	73	69	66	437	1263	215
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	4	4	4	1	2	4
Mvmt Flow	78	74	71	470	1358	231

Intersection						

Intersection						
Int Delay, s/veh	4.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	$\mathbf{7}$	1	4	4	$\mathbf{7}$
Traffic Vol, veh/h	80	78	74	462	1373	243
Future Vol, veh/h	80	78	74	462	1373	243
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	4	4	4	1	2	4
Mvmt Flow	83	81	77	481	1430	253

[^13]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection						
Int Delay, s/veh	5.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		$\mathbf{7}$	1	4	e	$\mathbf{7}$
Traffic Vol, veh/h	56	103	58	579	1103	79
Future Vol, veh/h	56	103	58	579	1103	79
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	100	-	-	75
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	98	98	98	98	98	98
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	57	105	59	591	1126	81

Intersection						
Int Delay, s/veh	3.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	\mathbf{r}		$\mathbf{4}$	4	\mathbf{F}
Traffic Vol, veh/h	93	99	90	535	946	283
Future Vol, veh/h	93	99	90	535	946	283
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	97	103	94	557	985	295

Major/Minor	Minor2		Major1		Major2			
Conflicting Flow All	1730	985	1280	0	-	0		
Stage 1	985	-	-	-	-	-		
Stage 2	745	-	-	-	-	-		
Critical Hdwy	6.4	6.2	4.1	-	-	-		
Critical Hdwy Stg 1	5.4	-	-	-	-	-		
Critical Hdwy Stg 2	5.4	-	-	-	-	-		
Follow-up Hdwy	3.5	3.3	2.2	-	-	-		
Pot Cap-1 Maneuver	98	304	549	-	-	-		
Stage 1	365	-	-	-	-	-		
Stage 2	473	-	-	-	-	-		
Platoon blocked, \%				-	-	-		
Mov Cap-1 Maneuver	~81	304	549	-	-	-		
Mov Cap-2 Maneuver	203	-	-	-	-	-		
Stage 1	303	-	-	-	-	-		
Stage 2	473	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s	30.1		1.9		0			
HCMLOS	D							
Minor Lane/Major Mvmt		NBL	NBT EBLn1 EBLn2			SBT	SBR	
Capacity (veh/h)		549	-	203	304	-	-	
HCM Lane V/C Ratio		0.171	-	0.477	0.339	-	-	
HCM Control Delay (s)		12.9	-	37.9	22.8	-	-	
HCM Lane LOS		B	-	E	C	-	-	
HCM 95th \%tile Q(veh)		0.6	-	2.3	1.5	-	-	
Notes								
\sim : Volume exceeds cap	pacity	\$: Delay exceeds 300s				+: Computation Not Defined		*: All major volume in platoon

[^14]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.2 | | | | | |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | 1 | $\mathbf{7}$ | 1 | 4 | 个 | |
| Traffic Vol, veh/h | 4 | 10 | 9 | 620 | 1220 | 3 |
| Future Vol, veh/h | 4 | 10 | 9 | 620 | 1220 | 3 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | 25 | 0 | - | - | - |
| Veh in Median Storage, \# | 1 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 98 | 98 | 98 | 98 | 98 | 98 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 0 | 0 | 0 |
| Mvmt Flow | 4 | 10 | 9 | 633 | 1245 | 3 |

[^15]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	\mathbf{r}	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{7}$
Traffic Vol, veh/h	71	66	61	428	1223	204
Future Vol, veh/h	71	66	61	428	1223	204
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	4	4	4	1	2	4
Mvmt Flow	76	71	66	460	1315	219

Intersection						
Int Delay, s/veh	0.6					

Intersection						

Intersection						

Intersection						
Int Delay, s/veh	3.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	$\mathbf{7}$		a	个	$\mathbf{7}$
Traffic Vol, veh/h	73	69	66	438	1268	216
Future Vol, veh/h	73	69	66	438	1268	216
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	4	4	4	1	2	4
Mvmt Flow	78	74	71	471	1363	232

Intersection						

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		$\mathbf{7}$		a	个	$\mathbf{7}$
Traffic Vol, veh/h	80	78	74	463	1378	244
Future Vol, veh/h	80	78	74	463	1378	244
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	250	-	-	75
Veh in Median Storage, \#	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	4	4	4	1	2	4
Mvmt Flow	83	81	77	482	1435	254

[^16]

Major/Minor	Minor2		Major1		Major2			
Conflicting Flow All	1739	991	1287	0	-	0		
Stage 1	991	-	-	-	-	-		
Stage 2	748	-	-	-	-	-		
Critical Hdwy	6.4	6.2	4.1	-	-	-		
Critical Hdwy Stg 1	5.4	-	-	-	-	-		
Critical Hdwy Stg 2	5.4	-	-	-	-	-		
Follow-up Hdwy	3.5	3.3	2.2	-	-	-		
Pot Cap-1 Maneuver	~97	301	546	-	-	-		
Stage 1	362	-	-	-	-	-		
Stage 2	471	-	-	-	-	-		
Platoon blocked, \%				-	-	-		
Mov Cap-1 Maneuver	~ 80	301	546	-	-	-		
Mov Cap-2 Maneuver	202	-	-	-	-	-		
Stage 1	300	-	-	-	-	-		
Stage 2	471	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s	30.6		1.9		0			
HCMLOS	D							
Minor Lane/Major Mvmt		NBL	NBT EBLn1 EBLn2			SBT	SBR	
Capacity (veh/h)		546	-	202	301	-	-	
HCM Lane V/C Ratio		0.172	-	0.485	0.343	-	-	
HCM Control Delay (s)		13	-	38.5	23.1	-	-	
HCM Lane LOS		B	-	E	C	-	-	
HCM 95th \%tile Q(veh)		0.6	-	2.4	1.5	-	-	
Notes								
\sim : Volume exceeds cap	pacity	\$: Delay exceeds 300s				+: Computation Not Defined		*: All major volume in platoon

[^17]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.4 | | | | | |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | 1 | $\mathbf{7}$ | 1 | 4 | 个 | |
| Traffic Vol, veh/h | 7 | 16 | 13 | 620 | 1220 | 5 |
| Future Vol, veh/h | 7 | 16 | 13 | 620 | 1220 | 5 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | 25 | 0 | - | - | - |
| Veh in Median Storage, \# | 1 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 98 | 98 | 98 | 98 | 98 | 98 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 0 | 0 | 0 |
| Mvmt Flow | 7 | 16 | 13 | 633 | 1245 | 5 |

Appendix 4

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 549 veh/h
Opposing direction volume, Vo 1265 veh/h

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	566	pc / h	1304		pc / h
Base percent time-spent-following, (note-4	te-4) BPTSFd	d 64.4	\%		
Adjustment for no-passing zones, fnp		15.9			
Percent time-spent-following, PTSFd		69.2	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.33	
Peak 15-min vehicle-miles of travel, VMT15	212	veh-mi
Peak-hour vehicle-miles of travel, VMT60	824	veh-mi
Peak 15-min total travel time, TT15	5.7	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	$\mathrm{mi}^{27.4}$	mi / h
Average travel speed, ATSd (from above)	69.2	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 566.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.05
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	Existing without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 550 veh/h
Opposing direction volume, Vo 1276 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	567	pc/h	1315	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	64.4	$\%$	
Adjustment for no-passing zones, fnp		13.9		
Percent time-spent-following, PTSFd		68.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.33	
Peak 15-min vehicle-miles of travel, VMT15	113	veh-mi
Peak-hour vehicle-miles of travel, VMT60	440	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	36.8	mi
Average travel speed, ATSd (from above)	68.6		
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 567.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.05
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1265 veh/h
Opposing direction volume, Vo 549 veh/h

\qquad

Direction Analy	Analysis(d)		Opposing (o)		(0)	
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	1304	pc / h		566		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	81.7	\%			
Adjustment for no-passing zones, fnp		15.4				
Percent time-spent-following, PTSFd		92.4	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.77 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 489 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1898 | veh-mi |
| Peak 15-min total travel time, TT15 | 13.4 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	36.4	mi
Average travel speed, ATSd (from above)	92.4	E	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1304.1
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.47
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1276 veh/h
Opposing direction volume, Vo 550 veh/h

\qquad

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	1315	pc / h	567		pc / h
Base percent time-spent-following, (note-4	te-4) BPTSFd	81.9	\%		
Adjustment for no-passing zones, fnp		16.1			
Percent time-spent-following, PTSFd		93.1	\%		

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.78 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 263 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1021 | veh-mi |
| Peak 15-min total travel time, TT15 | 7.5 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1315.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.48
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 557 veh/h
Opposing direction volume, Vo 1088 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	636	pc / h	1236	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.3	mi/h	
Free-flow speed, FFSd		52.8	mi/h	
Adjustment for no-passing zones, fnp		0.9	mi/h	
Average travel speed, ATSd		37.4	mi/h	
Percent Free Flow Speed, PFFS		70.8	\%	

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	633	pc/h	1236	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	67.3	$\%$	
Adjustment for no-passing zones, fnp		17.0		
Percent time-spent-following, PTSFd		73.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	237	veh-mi
Peak-hour vehicle-miles of travel, VMT60	836	veh-mi
Peak 15-min total travel time, TT15	6.3	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 1.5 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 37.4 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 73.1 | |
| Level of service, LOSd (from above) | E | |

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 633.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.11
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	Existing without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 562 veh/h
Opposing direction volume, Vo 1095 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	642	pc / h	1244	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		0.6	mi/h	
Average travel speed, ATSd		36.8	mi/h	
Percent Free Flow Speed, PFFS		70.7	\%	

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	639	pc / h	1244		pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	67.6	\%		
Adjustment for no-passing zones, fnp		15.2			
Percent time-spent-following, PTSFd		72.8	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.38	
Peak 15-min vehicle-miles of travel, VMT15	239	veh-mi
Peak-hour vehicle-miles of travel, VMT60	843	veh-mi
Peak 15-min total travel time, TT15	6.5	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	36.8	mi
Average travel speed, ATSd (from above)	72.8		
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 638.6
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.11
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1088 veh/h
Opposing direction volume, Vo 557 veh/h

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.73	
Peak 15-min vehicle-miles of travel, VMT15	464	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1632	veh-mi
Peak 15-min total travel time, TT15	12.7	veh-h
Capacity from ATS, CdATS	1700	veh $/ \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$36.6 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	91.6	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1236.4
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.45
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	Existing w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1095 veh/h
Opposing direction volume, Vo 562 veh/h

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.74 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 249 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 876 | veh-mi |
| Peak 15-min total travel time, TT15 | 7.0 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1244.3
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.45
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 565 veh/h
Opposing direction volume, Vo 1325 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	582	pc/h	1366	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	65.6	$\%$	
Adjustment for no-passing zones, fnp		14.8		
Percent time-spent-following, PTSFd		70.0	$\%$	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.34 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 218 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 848 | veh-mi |
| Peak 15-min total travel time, TT15 | 5.9 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.8	mi / h	
Percent time-spent-following, PTSFd (from above)	70.0	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 582.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.06
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2020 without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 566 veh/h
Opposing direction volume, Vo 1336 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	584	pc/h	1377	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	66.1	$\%$	
Adjustment for no-passing zones, fnp		12.9		
Percent time-spent-following, PTSFd		69.9	$\%$	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.34 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 117 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 453 | veh-mi |
| Peak 15-min total travel time, TT15 | 3.2 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 583.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.06
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Rolling		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1325 veh/h
Opposing direction volume, Vo 565 veh/h

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.2		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			0.990		
Grade adjustment factor, (note-1) fg	1.00			0.97		
Directional flow rate, (note-2) vi	1366	pc / h		606		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	82.6	\%			
Adjustment for no-passing zones, fnp		14.0				
Percent time-spent-following, PTSFd		92.3	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.81 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 512 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1988 | veh-mi |
| Peak 15-min total travel time, TT15 | 14.3 | veh-h |
| Capacity from ATS, CdATS | 1671 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1671 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	35.7	mi / h	
Percent time-spent-following, PTSFd (from above)	92.3	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1366.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.50
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1336 veh/h
Opposing direction volume, Vo 566 veh/h

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	1377	pc / h		584		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	83.0	\%			
Adjustment for no-passing zones, fnp		14.9				
Percent time-spent-following, PTSFd		93.5	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.81 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 275 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1069 | veh-mi |
| Peak 15-min total travel time, TT15 | 7.9 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	34.8	mi
Average travel speed, ATSd (from above)	93.5		
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1377.3
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.50
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 579 veh/h
Opposing direction volume, Vo 1128 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	658	pc/h	1282	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	68.9	$\%$	
Adjustment for no-passing zones, fnp		16.1		
Percent time-spent-following, PTSFd		74.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	247	veh-mi
Peak-hour vehicle-miles of travel, VMT60	869	veh-mi
Peak 15-min total travel time, TT15	6.7	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 1.5 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | $76.8 \mathrm{mi} / \mathrm{h}$ | |
| Percent time-spent-following, PTSFd (from above) | 74.4 | |
| Level of service, LOSd (from above) | E | |

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 658.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.13
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2020 without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 584 veh/h
Opposing direction volume, Vo 1135 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	664	pc/h	1290	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	69.2	$\%$	
Adjustment for no-passing zones, fnp		14.4		
Percent time-spent-following, PTSFd		74.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	249	veh-mi
Peak-hour vehicle-miles of travel, VMT60	876	veh-mi
Peak 15-min total travel time, TT15	6.9	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.2	mi / h	
Percent time-spent-following, PTSFd (from above)	74.1	E	

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 663.6
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.13
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1128 veh/h
Opposing direction volume, Vo 579 veh/h

\qquad

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.76 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 481 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1692 | veh-mi |
| Peak 15-min total travel time, TT15 | 13.3 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	36.2	mi
Average travel speed, ATSd (from above)	91.7	E	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1281.8
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.46
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2020 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1135 veh/h
Opposing direction volume, Vo 584 veh/h

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.76	
Peak 15-min vehicle-miles of travel, VMT15	258	veh-mi
Peak-hour vehicle-miles of travel, VMT60	908	veh-mi
Peak 15-min total travel time, TT15	7.4	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1289.8
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.47
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class C	Class 1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	\% Trucks and buses	5	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$
Terrain type	Level		\% Recreational vehicles	2	\%
Grade: Length	-	mi	\% No-passing zones	85	\%
Up/down	-	\%	Access point density	9	/mi
Analysis directi	ion volume,	605	veh/h		
Opposing directi	ion volume,	- 1465	veh/h		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	234	veh-mi
Peak-hour vehicle-miles of travel, VMT60	908	veh-mi
Peak 15-min total travel time, TT15	6.6	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	72.5	mi / h	
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 623.7
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.10
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2030 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 606 veh/h
Opposing direction volume, Vo 1476 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	628	pc / h	1522	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		34.8	mi/h	
Percent Free Flow Speed, PFFS		66.9	\%	

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	625	pc / h	1522		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	68.9	\%		
Adjustment for no-passing zones, fnp		12.2			
Percent time-spent-following, PTSFd		72.5	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	125	veh-mi
Peak-hour vehicle-miles of travel, VMT60	485	veh-mi
Peak 15-min total travel time, TT15	3.6	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Directional Capacity

Passing Lane Analysis

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 624.7
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.10
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1465 veh/h
Opposing direction volume, Vo 605 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.1	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		0.995	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	151	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.3	mi/h	
Free-flow speed, FFSd		52.8	mi/h	
Adjustment for no-passing zones, fnp		1.6	mi/h	
Average travel speed, ATSd		34.5	mi/h	
Percent Free Flow Speed, PFFS		65.5	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.89	
Peak 15-min vehicle-miles of travel, VMT15	566	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2198	veh-mi
Peak 15-min total travel time, TT15	16.4	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	34.5	mi
Average travel speed, ATSd (from above)	94.9		
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1510.3
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.55
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1476 veh/h
Opposing direction volume, Vo 606 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.1	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		0.995	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	152	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		1.8	mi/h	
Average travel speed, ATSd		33.4	mi/h	
Percent Free Flow Speed, PFFS		64.3	\%	

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	1522	pc / h		625		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	85.4	\%			
Adjustment for no-passing zones, fnp		14.2				
Percent time-spent-following, PTSFd		95.5	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.90 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 304 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1181 | veh-mi |
| Peak 15-min total travel time, TT15 | 9.1 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	33.4	mi
Average travel speed, ATSd (from above)	95.5	E	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1521.6
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.55
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Rolling		\% Recreational vehicles	2	$\%$	
Grade: \quad Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 624 veh/h
Opposing direction volume, Vo 1223 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	0.99		1.00	pc/h
Directional flow rate, (note-2) vi	716	pc/h	1390	
Base percent time-spent-following, (note-4)	BPTSFd	72.2	$\%$	
Adjustment for no-passing zones, fnp		14.7		
Percent time-spent-following, PTSFd		77.2	$\%$	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.41 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 266 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 936 | veh-mi |
| Peak 15-min total travel time, TT15 | 7.5 | veh-h |
| Capacity from ATS, CdATS | 1671 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1671 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	35.4	mi / h	
Percent time-spent-following, PTSFd (from above)	77.2	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 709.1
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.16
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2030 without Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 629 veh/h
Opposing direction volume, Vo 1230 veh/h

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	715	pc / h		1398		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	72.2	\%			
Adjustment for no-passing zones, fnp		13.3				
Percent time-spent-following, PTSFd		76.7	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.42 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 143 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 503 | veh-mi |
| Peak 15-min total travel time, TT15 | 4.1 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 714.8
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.17
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.8	
Shoulder width		8.0	ft	\% Trucks and buses	5	\%
Lane width		12.0	ft	\% Trucks crawling	0.0	\%
Segment length		1.5	mi	Truck crawl speed	0.0	mi/hr
Terrain type		Spec	G	\% Recreational vehicles	2	\%
Grade: Length		0.25	mi	\% No-passing zones	70	\%
Up/down		3.0	\%	Access point density	9	/mi

Analysis direction volume, Vd 1223 veh/h
Opposing direction volume, Vo 624 veh/h

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	0.92		1.00
Directional flow rate, (note-2) vi	1511	pc/h	709
Base percent time-spent-following, (note-4)	BPTSFd	86.7	$\%$
Adjustment for no-passing zones, fnp		13.8	
Percent time-spent-following, PTSFd		96.1	$\%$

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.89 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 521 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1835 | veh-mi |
| Peak 15-min total travel time, TT15 | 14.9 | veh-h |
| Capacity from ATS, CdATS | 1692 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1564 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1564 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	35.0	mi / h	
Percent time-spent-following, PTSFd (from above)	96.1	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1389.8
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.50
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2030 w-o Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1230 veh/h
Opposing direction volume, Vo 629 veh/h
Average Travel Speed \qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.83	
Peak 15-min vehicle-miles of travel, VMT15	280	veh-mi
Peak-hour vehicle-miles of travel, VMT60	984	veh-mi
Peak 15-min total travel time, TT15	8.2	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1397.7
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.51
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 551 veh/h
Opposing direction volume, Vo 1268 veh/h

\qquad

Direction Ana	Analysis(d)		Opposing	(0)	
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	568	pc / h	1307		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	64.5	\%		
Adjustment for no-passing zones, fnp		15.8			
Percent time-spent-following, PTSFd		69.3	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.33	
Peak 15-min vehicle-miles of travel, VMT15	213	veh-mi
Peak-hour vehicle-miles of travel, VMT60	827	veh-mi
Peak 15-min total travel time, TT15	5.7	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	37.4	mi / h	
Percent time-spent-following, PTSFd (from above)	69.3	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 568.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.05
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 551 veh/h
Opposing direction volume, Vo 1282 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	568	pc/h	1322	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	64.5	$\%$	
Adjustment for no-passing zones, fnp		13.8		
Percent time-spent-following, PTSFd		68.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.33	
Peak 15-min vehicle-miles of travel, VMT15	114	veh-mi
Peak-hour vehicle-miles of travel, VMT60	441	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.7	mi / h	
Percent time-spent-following, PTSFd (from above)	68.6	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 568.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.05
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1268 veh/h
Opposing direction volume, Vo 551 veh/h

\qquad

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	1307	pc / h	568		pc / h
Base percent time-spent-following, (note-4	te-4) BPTSFd	81.5	\%		
Adjustment for no-passing zones, fnp		15.3			
Percent time-spent-following, PTSFd		92.2	\%		

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.77 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 490 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1902 | veh-mi |
| Peak 15-min total travel time, TT15 | 13.5 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	36.4	mi
Average travel speed, ATSd (from above)	92.2	E	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1307.2
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.47
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1282 veh/h
Opposing direction volume, Vo 551 veh/h

\qquad

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.78 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 264 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1026 | veh-mi |
| Peak 15-min total travel time, TT15 | 7.5 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	95.2	mi / h	
Percent time-spent-following, PTSFd (from above)	E.9.9		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1321.6
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.48
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co9
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 560 veh/h
Opposing direction volume, Vo 1090 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	640	pc / h	1239	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.3	mi/h	
Free-flow speed, FFSd		52.8	mi/h	
Adjustment for no-passing zones, fnp		0.9	mi/h	
Average travel speed, ATSd		37.3	mi/h	
Percent Free Flow Speed, PFFS		70.7	\%	

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	636	pc/h	1239	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	67.5	$\%$	
Adjustment for no-passing zones, fnp		17.0		
Percent time-spent-following, PTSFd		73.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	239	veh-mi
Peak-hour vehicle-miles of travel, VMT60	840	veh-mi
Peak 15-min total travel time, TT15	6.4	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	37.3 mi	
Average travel speed, ATSd (from above)	mi / h		
Percent time-spent-following, PTSFd (from above)	73.3		
Level of service, LOSd (from above)	E		

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 636.4
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.11
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 566 veh/h
Opposing direction volume, Vo 1101 veh/h

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	643	pc/h	1251	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	67.8	$\%$	
Adjustment for no-passing zones, fnp		15.1		
Percent time-spent-following, PTSFd		72.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.38	
Peak 15-min vehicle-miles of travel, VMT15	241	veh-mi
Peak-hour vehicle-miles of travel, VMT60	849	veh-mi
Peak 15-min total travel time, TT15	6.6	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.7	mi / h	
Percent time-spent-following, PTSFd (from above)	72.9	E	

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 643.2
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.11
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1090 veh/h
Opposing direction volume, Vo 560 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.1	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		0.995	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	124	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.3	mi/h	
Free-flow speed, FFSd		52.8	mi/h	
Adjustment for no-passing zones, fnp		1.5	mi/h	
Average travel speed, ATSd		36.6	mi/h	
Percent Free Flow Speed, PFFS		69.4	\%	

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	1239	pc / h		636		pc / h
Base percent time-spent-following, (note-4)	(e-4) BPTSFd	80.5	\%			
Adjustment for no-passing zones, fnp		16.5				
Percent time-spent-following, PTSFd		91.4	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.73	
Peak 15-min vehicle-miles of travel, VMT15	464	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1635	veh-mi
Peak 15-min total travel time, TT15	12.7	veh-h
Capacity from ATS, CdATS	1700	veh $/ \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Directional Capacity

Passing Lane Analysis

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1238.6
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.45
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	Existing with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1101 veh/h
Opposing direction volume, Vo 566 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.1	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		0.995	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	125	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		1.8	mi/h	
Average travel speed, ATSd		35.5	mi/h	
Percent Free Flow Speed, PFFS		68.2	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.74	
Peak 15-min vehicle-miles of travel, VMT15	250	veh-mi
Peak-hour vehicle-miles of travel, VMT60	881	veh-mi
Peak 15-min total travel time, TT15	7.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1251.1
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.45
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 567 veh/h
Opposing direction volume, Vo 1328 veh/h

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	585	pc/h	1369

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.34 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 219 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 851 | veh-mi |
| Peak 15-min total travel time, TT15 | 5.9 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.8	mi / h	
Percent time-spent-following, PTSFd (from above)	70.2	E	

Average Travel Speed with Passing Lane

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 584.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.07
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 567 veh/h
Opposing direction volume, Vo 1342 veh/h

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	585	pc/h	1384
Base percent time-spent-following, (note-4)	BPTSFd	66.2	$\%$
Adjustment for no-passing zones, fnp		12.8	
Percent time-spent-following, PTSFd		70.0	$\%$

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.34 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 117 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 454 | veh-mi |
| Peak 15-min total travel time, TT15 | 3.2 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.1	mi / h	
Percent time-spent-following, PTSFd (from above)	70.0	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 584.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.07
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1328 veh/h
Opposing direction volume, Vo 567 veh/h

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	1369	pc / h		585		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	82.9	\%			
Adjustment for no-passing zones, fnp		14.2				
Percent time-spent-following, PTSFd		92.8	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.81	
Peak 15-min vehicle-miles of travel, VMT15	513	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1992	veh-mi
Peak 15-min total travel time, TT15	14.3	veh-h
Capacity from ATS, CdATS	1700	veh $/ \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	35.8	mi
Average travel speed, ATSd (from above)	92.8		
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1369.1
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.50
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1342 veh/h
Opposing direction volume, Vo 567 veh/h

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.82 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 277 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1074 | veh-mi |
| Peak 15-min total travel time, TT15 | 8.0 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	34.7	mi / h	
Percent time-spent-following, PTSFd (from above)	93.5	E	

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1383.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.50
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 582 veh/h
Opposing direction volume, Vo 1130 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	665	pc / h	1284	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.3	mi/h	
Free-flow speed, FFSd		52.8	mi/h	
Adjustment for no-passing zones, fnp		0.8	mi/h	
Average travel speed, ATSd		36.8	mi/h	
Percent Free Flow Speed, PFFS		69.8	\%	

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	661	pc/h	1284	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	69.0	$\%$	
Adjustment for no-passing zones, fnp		16.0		
Percent time-spent-following, PTSFd		74.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	248	veh-mi
Peak-hour vehicle-miles of travel, VMT60	873	veh-mi
Peak 15-min total travel time, TT15	6.7	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 1.5 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | $76.8 \mathrm{mi} / \mathrm{h}$ | |
| Percent time-spent-following, PTSFd (from above) | 74.4 | |
| Level of service, LOSd (from above) | E | |

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 661.4
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.13
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 588 veh/h
Opposing direction volume, Vo 1141 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	672	pc / h	1297	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		0.6	mi/h	
Average travel speed, ATSd		36.1	mi/h	
Percent Free Flow Speed, PFFS		69.5	\%	

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	668	pc / h	1297		pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	69.4	\%		
Adjustment for no-passing zones, fnp		14.2			
Percent time-spent-following, PTSFd		74.2	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	251	veh-mi
Peak-hour vehicle-miles of travel, VMT60	882	veh-mi
Peak 15-min total travel time, TT15	6.9	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	36.1	mi
Average travel speed, ATSd (from above)	74.2	E	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 668.2
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.13
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1130 veh/h
Opposing direction volume, Vo 582 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.1	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		0.995	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	129	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.3	mi/h	
Free-flow speed, FFSd		52.8	mi/h	
Adjustment for no-passing zones, fnp		1.5	mi/h	
Average travel speed, ATSd		36.1	mi/h	
Percent Free Flow Speed, PFFS		68.5	\%	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.76 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 482 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1695 | veh-mi |
| Peak 15-min total travel time, TT15 | 13.3 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	36.1	mi
Average travel speed, ATSd (from above)	92.5	E	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1284.1
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.46
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2020 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1141 veh/h
Opposing direction volume, Vo 588 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.1	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		0.995	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	130	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		1.7	mi/h	
Average travel speed, ATSd		35.0	mi/h	
Percent Free Flow Speed, PFFS		67.3	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.77	
Peak 15-min vehicle-miles of travel, VMT15	259	veh-mi
Peak-hour vehicle-miles of travel, VMT60	913	veh-mi
Peak 15-min total travel time, TT15	7.4	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$95.0 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	E.7		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1296.6
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.47
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 607 veh/h
Opposing direction volume, Vo 1468 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	629	pc / h	1513	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.3	mi/h	
Free-flow speed, FFSd		52.8	mi/h	
Adjustment for no-passing zones, fnp		0.6	mi/h	
Average travel speed, ATSd		35.5	mi/h	
Percent Free Flow Speed, PFFS		67.3	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	235	veh-mi
Peak-hour vehicle-miles of travel, VMT60	911	veh-mi
Peak 15-min total travel time, TT15	6.6	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 1.5 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 35.5 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 73.1 | |
| Level of service, LOSd (from above) | E | |

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 625.8
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.10
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 607 veh/h
Opposing direction volume, Vo 1482 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	629	pc / h	1528	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		34.7	mi/h	
Percent Free Flow Speed, PFFS		66.8	\%	

\qquad

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	626	pc / h		1528		pc / h
Base percent time-spent-following, (note-4)	-4) BPTSFd	69.4	\%			
Adjustment for no-passing zones, fnp		12.2				
Percent time-spent-following, PTSFd		72.9	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	125	veh-mi
Peak-hour vehicle-miles of travel, VMT60	486	veh-mi
Peak 15-min total travel time, TT15	3.6	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	72.7	mi / h	
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 625.8
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.10
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	$\%$ Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1468 veh/h
Opposing direction volume, Vo 607 veh/h

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	1513	pc / h		626		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	86.1	\%			
Adjustment for no-passing zones, fnp		13.4				
Percent time-spent-following, PTSFd		95.6	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.89	
Peak 15-min vehicle-miles of travel, VMT15	568	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2202	veh-mi
Peak 15-min total travel time, TT15	16.5	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	34.5	mi
Average travel speed, ATSd (from above)	95.6		
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1513.4
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.55
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

```
HCS7: Two-Lane Highways Release 7.7
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Friday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.97	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1482 veh/h
Opposing direction volume, Vo 607 veh/h

\qquad

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.90 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 306 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1186 | veh-mi |
| Peak 15-min total travel time, TT15 | 9.2 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

\qquad Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	33.4	mi
Average travel speed, ATSd (from above)	96.3		
Percent time-spent-following, PTSFd (from above)	E		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1527.8
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.55
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	\% Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	85	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 627 veh/h
Opposing direction volume, Vo 1225 veh/h

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	713	pc / h		1392		pc / h
Base percent time-spent-following, (note-4)	(e-4) BPTSFd	72.1	\%			
Adjustment for no-passing zones, fnp		14.7				
Percent time-spent-following, PTSFd		77.1	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.42 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 267 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 941 | veh-mi |
| Peak 15-min total travel time, TT15 | 7.5 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 712.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.17
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail NB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	50	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 633 veh/h
Opposing direction volume, Vo 1236 veh/h

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1*		1.0	
PCE for RVs, ER	1.0*		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.995		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	723	pc / h	1405	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	3.0	mi/h	
Free-flow speed, FFSd		52.0	mi/h	
Adjustment for no-passing zones, fnp		0.6	mi/h	
Average travel speed, ATSd		34.9	mi/h	
Percent Free Flow Speed, PFFS		67.2	\%	

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	719	pc / h		1405		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	72.3	\%			
Adjustment for no-passing zones, fnp		13.2				
Percent time-spent-following, PTSFd		76.8	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.42 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 144 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 506 | veh-mi |
| Peak 15-min total travel time, TT15 | 4.1 | veh-h |
| Capacity from ATS, CdATS | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 719.3
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.17
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado North of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	70	$\%$	
	Up/down	-	$\%$	Access point density	9	$/ \mathrm{mi}$

Analysis direction volume, Vd 1225 veh/h
Opposing direction volume, Vo 627 veh/h

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | E | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.82 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 522 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 1838 | veh-mi |
| Peak 15-min total travel time, TT15 | 14.9 | veh-h |
| Capacity from ATS, CdATS | 1700 | veh $/ \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1700 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 1700 | $\mathrm{veh} / \mathrm{h}$ |

Directional Capacity

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	35.0	mi / m
Percent time-spent-following, PTSFd (from above)	94.0	E

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1392.0
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.51
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```

Phone:
Fax:
E-Mail:
\qquad

Analyst	DRR
Agency/Co.	CTG
Date Performed	$2019-08-06$
Analysis Time Period	Saturday PM Peak Hour
Highway	Silverado Trail SB
From/To	Silverado South of Project
Jurisdiction	Napa Co
Analysis Year	2030 with Project
Description Paraduxx Winery	

Input Data \qquad

Highway class	Class	1		Peak hour factor, PHF	0.88	
Shoulder width	8.0	ft	$\%$ Trucks and buses	5	$\%$	
Lane width	12.0	ft	\% Trucks crawling	0.0	$\%$	
Segment length	0.8	mi	Truck crawl speed	0.0	mi/hr	
Terrain type	Level		\% Recreational vehicles	2	$\%$	
Grade: Length	-	mi	\% No-passing zones	100	$\%$	
	Up/down	-	$\%$	Access point density	12	$/ \mathrm{mi}$

Analysis direction volume, Vd 1236 veh/h
Opposing direction volume, Vo 633 veh/h

Direction Ana	Analysis(d)		Opposing (o)			
PCE for trucks, ET	1.0			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	1.000			1.000		
Grade adjustment factor, (note-1) fg	1.00			1.00		
Directional flow rate, (note-2) vi	1405	pc / h		719		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	84.6	\%			
Adjustment for no-passing zones, fnp		15.0				
Percent time-spent-following, PTSFd		94.5	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.83	
Peak 15-min vehicle-miles of travel, VMT15	281	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	989	$\mathrm{veh}-\mathrm{mi}$
Peak 15-min total travel time, TT15	8.3	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	93.9	mi / h	
Percent time-spent-following, PTSFd (from above)	E .5		

Average Travel Speed with Passing Lane
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl - \%
____ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl
E
Peak 15-min total travel time, TT15

- veh-h
\qquad

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1404.5
Effective width of outside lane, We 28.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.51
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
        is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
* These items have been entered or edited to override calculated value
```


Appendix 5

PARADUXX WINERY DRIVEWAY

Friday TOTAL Trips

Friday, Februrary 22, 2019

Friday, Februrary 22, 2019

PARADUXX WINERY DRIVEWAY
Friday Hourly Percent of TOTAL Trips
\qquad

Friday, Februrary 22, 2019

PARADUXX WINERY DRIVEWAY

Saturday TOTAL Trips

Saturday, Februrary 23, 2019

PARADUXX WINERY DRIVEWAY
Friday TOTAL Trips
Friday, July 19, 2019

Friday, July 19, 2019

PARADUXX WINERY DRIVEWAY

Friday Hourly Percent of TOTAL Trips
Friday, July 19, 2019

Friday, July 19, 2019

PARADUXX WINERY DRIVEWAY Saturday TOTAL Trips
Saturday, July 20, 2019

Saturday, July 20, 2019

Saturday, July 20, 2019

Total In/Out - 234 Vehicles

Figure A-5 - Figure 4
Saturday Traffic Totals and Percentages Paraduxx Winery (by Hour) - July 20, 2019

Appendix 6

Appendix A-6

PARADUXX WINERY - EXISTING CONDITIONS

Winery Traffic Information / Trip Generation Sheet

Traffic during a Typical Weekday

Number of FT employees: \qquad x 3.05 one-way trips per employee \qquad daily trips.

Number of PT employees: \qquad 5×1.90 one-way trips per employee \qquad daily trips.

Average number of weekday visitors: 40 / 2.6 visitors per vehicle $\times 2$ one-way trips
$=32$ daily trips.
Gallons of production: $200,0001,000 \times .009$ truck trips daily ${ }^{3} \times 2$ one-way trips
$=\quad 4$ daily trips. Total

Number of total weekday trips X . 38
$=$ \qquad
54 PM peak trips.

Traffic during a Typical Saturday

Number of FT employees (on Saturdays): 20
\qquad x 3.05 one-way trips per employee

60	daily trips.
10	daily trips.
36	daily trips.
106	daily trips.
60	PM peak trips

Traffic during a Crush Saturday

Number of FT employees (during crush): \qquad x 3.05 one-way trips per employee
$=$
$=$
$=$
$=$
$=$
$=$
$=\frac{76}{10}$
$=$ daily trips. Number of PT employees (during crush): \qquad 5 1.90 one-way trips per employee

\qquad daily trips. Average number of Saturday visitors: $50 / 2.8$ visitors per vehicle $\times 2$ one-way trips

Number of total Saturday trips X . 57 \qquad PM peak trips

Largest Marketing Event - Additional Traffic

Number of event staff (largest event): \qquad x 2 one-way trips per staff person
$=$ \qquad trips.

Number of visitors (largest event): 500 / 2.8 visitors per vehicle $\times 2$ one-way trips trips. Number of special event truck trips (largest event): \qquad $x 2$ one-way trips $=$ \qquad

[^18]
Appendix A-6

PARADUXX WINERY - EXISTING CONDITIONS

Winery Traffic Information / Trip Generation Sheet

Traffic during a Crush Weekday

Number of FT employees: \qquad 36 x 3.05 one-way trips per employee
$=$ \qquad daily trips.

Number of PT employees: \qquad 5×1.90 one-way trips per employee
Average number of weekday visitors: $\underline{50} / 2.6$ visitors per vehicle $\times 2$ one-way trips Gallons of production: $200,0001,000 \times .009$ truck trips daily ${ }^{3} \times 2$ one-way trips Total

Number of total weekday trips X .57 *
=
\qquad daily trips.
\qquad daily trips.
\qquad 93 PM peak trips.

[^19]
Appendix A-6

Winery Traffic Information / Trip Generation Sheet

Traffic during a Typical Weekday

Number of FT employees: 31×3.05 one-way trips per employee	=	95	daily trips. daily trips.
Number of PT employees: 5 _ 51.90 one-way trips per employee	=	10	
Average number of weekday visitors: $5 \underline{0} / 2.6$ visitors per vehicle $\times 2$ one-way trips	=	38	daily trips.
Gallons of production: $\underline{300,000 ~ 1,000 \times .009 ~ t r u c k ~ t r i p s ~ d a i l y ~}{ }^{3} \times 2$ one-way trips	=	5	daily trips.
Total	=	148	daily trips.
Number of total weekday trips X . 38	=	57	PM peak tri

Traffic during a Typical Saturday

Number of FT employees (on Saturdays): $\underline{20} \times 3.05$ one-way trips per employee	$=$	60	daily trips.
Number of PT employees (on Saturdays): 5×1.90 one-way trips per employee	=	10	daily trips.
Average number of Saturday visitors: $120 / 2.8$ visitors per vehicle $\times 2$ one-way trips	=	86	daily trips.
Total	=	156	daily trips.
Number of total Saturday trips X . 57	=	89	PM peak trips.

Traffic during a Crush Saturday

Number of FT employees (during crush):
: 25×3.05 one-way trips per employee

$=$	76
$=$	daily trips.
$=$	$\frac{10}{}$ daily trips.
$=$	$\frac{105}{}$ daily trips.
$=$	daily trips.
$=$	daily trips
$=$	daily trips.
10	PM peak trips

Largest Marketing Event - Additional Traffic

Number of event staff (largest event): 18×2 one-way trips per staff person
Number of visitors (largest event): $400 / 2.8$ visitors per vehicle x 2 one-way trips

$=$	36	trips.
$=$	$\frac{286}{2}$	trips.
$=$	trips.	

[^20]
Appendix A-6

PARADUXX WINERY - EXISTING + PROJECT CONDITIONS

Winery Traffic Information / Trip Generation Sheet

Traffic during a Crush Weekday

Number of FT employees: 36×3.05 one-way trips per employee	=	110	daily trips.
Number of PT employees: 5 [51.90 one-way trips per employee	=	10	daily trips.
Average number of weekday visitors: $144 / 2.6$ visitors per vehicle $\times 2$ one-way trips	=	111	daily trips.
Gallons of production: $\underline{300,000 ~ 1,000 \times .009 ~ t r u c k ~ t r i p s ~ d a i l y ~}{ }^{3} \times 2$ one-way trips	=	5	daily trips.
Total	=	236	daily trips.
Number of total weekday trips X .57*	=	135	PM peak trips.

[^21]
[^0]: ${ }^{1}$ County of Napa significance criteria.

[^1]: ${ }^{2}$ County of Napa significance criteria.

[^2]: ${ }^{3}$ County of Napa significance criteria.

[^3]: ${ }^{4}$ Fehr \& Peers, December 8, 2014.

[^4]: ${ }^{5}$ Mr. Michael Hawkins, Napa County Public Works Department, March 2018.

[^5]: ${ }^{6}$ According to the Circulation Element dated June 8, 2008, the following intersections can be altered or expanded as a mitigation measure: SR-12/Airport Boulevard/SR-29, SR-221/SR-12/Highway 29, and several intersections along SR-29 and SR-128 north of Napa. The significance criteria shown above should apply to facilities where appropriate based upon the most recent Circulation Element chapter of the General Plan.

[^6]: ${ }^{7}$ County of Napa significance criteria.

[^7]: ${ }^{8}$ County of Napa significance criteria.

[^8]: ${ }^{9}$ County of Napa significance criteria.

[^9]: ${ }^{10}$ County of Napa significance criteria.

[^10]: ${ }^{11}$ County of Napa significance criteria.

[^11]: ${ }^{12}$ County of Napa significance criteria.

[^12]: ${ }^{13}$ County of Napa significance criteria.

[^13]: 2030 Friday PM Peak Hour
 without Project

[^14]: 2030 Saturday PM Peak Hour
 without Project

[^15]: 2030 Saturday PM Peak Hour
 without Project

[^16]: 2030 Friday PM Peak Hour
 Synchro 10 Report
 with Project
 Page 2

[^17]: 2030 Saturday PM Peak Hour
 with Project

[^18]: ${ }^{3}$ Assumes 1.47 materials \& supplies trips +0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).
 ${ }^{4}$ Assume 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).

[^19]: .57 rather than .38 factor requested by Public Works due to peak traffic hour on Friday afternoon along Silverado Trail occurring from $3: 15$ to $4: 15$, peak activity time at the winery.
 ${ }^{3}$ Assumes 1.47 materials \& supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).
 ${ }^{4}$ Assume 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).

[^20]: ${ }^{3}$ Assumes 1.47 materials \& supplies trips +0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).
 ${ }^{4}$ Assume 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).

[^21]: * .57 rather than .38 factor requested by Public Works due to peak traffic hour on Friday afternoon along Silverado Trail occurring from $3: 15$ to $4: 15$, peak activity time at the winery.
 ${ }^{3}$ Assumes 1.47 materials \& supplies trips +0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).
 ${ }^{4}$ Assume 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).

