

Wastewater Feasibility Study

WINERY WASTEWATER FEASIBILITY REPORT

GANDONA WINERY 1533 SAGE CANYON ROAD ST. HELENA, CALIFORNIA 94574

APN 032-010-079

PROPERTY OWNER:

Manuel Pires 1535 Sage Canyon Road St. Helena, CA 94558

Project# 4116034.0 February 10, 2017 **Revised: July 28, 2017**

TABLE OF CONTENTS

INTRODUCTION	_1
EXISTING PROCESS AND DOMESTIC WASTEWATER SYSTEM	1
DOMESTIC WASTEWATER CHARACTERISTICS	.2
CONCLUSION	2
<u>APPENDICES</u>	
1. VICINITY MAP & USGS SITE MAP	
2. REDUCED USE PERMIT PLAN SET	
3. PRESSURE DISTRIBUTION WASTEWATER DISPOSAL SYSTEM PLANS AND PROCESS &	

SANITARY WASTEWATER SEPTIC SYSTEM DESIGN REPORT

INTRODUCTION

The Owner is applying to the County of Napa for a modification to a Use Permit for an existing winery. This modification is to add a building for office and barrel storage, and increase marketing activities. The existing permit allows a production of 20,000 gallons per year. The property is a 114.72 ± acre parcel located at 1535 Sage Canyon Road, St. Helena (APN 032-010-079). Access to the property is an existing driveway connection to Sage Canyon Road.

The parcel is located south of Lake Hennessy. Access to the winery is from Sage Canyon Road, opposite the Lake Hennessy boat launch. An existing private driveway extends approximately 1 mile from Sage Canyon Road to the project site. Two wells exist on the parcel and are available for domestic and wine production purposes. All wells are located well beyond the required 100 foot septic system setback. The proposed winery facility will add two offices, a meeting space, an employee break-room and bathroom and a dry-goods storage area. Appendix 1 contains a Site Location Map showing the parcel boundary, topography, and other features. Appendix 2 contains a reduced set of Civil Use Permit plans for the proposed expansion.

This report will evaluate the existing wastewater disposal facilities and necessary modifications for the proposed expansion.

EXISTING PROCESS AND DOMESTIC WASTEWATER SYSTEM

The existing winery wastewater system was designed in 2009 by Riechers Spence & Associates, and installed under permit E09-00209. Domestic wastewater flows to a 1,200 gallon septic tank, then to a combined Orenco pre-treatment system. Process wastewater flows to a 2,000 gallon septic tank, then to a second 2,000 gallon tank for pre-aeration, before entering the combined pre-treatment system. Pre-treatment consists of two Orenco AX-100 pods and a 2,000 gallon recirculation tank. Pre-treated effluent is stored in a 2,000 gallon dosing tank with duplex pumps, and is dispersed in a two-zone, 432 LF pressure distribution system. A 100% reserve area exists on site. This system is designed to accommodate a peak domestic wastewater flow of 333 GPD, and a peak process wastewater flow of 667 GPD (274 GPD average). Appendix 3 contains copies of the existing wastewater disposal system plans and design report.

Two of the pressure distribution lines on the north side of the proposed building will be relocated further north to maintain required 10 foot setback from the proposed stormdrain. The system will maintain all of its treatment capacity and this shift will not impact the adequacy of the system to treat and dispose of wastewater from the proposed winery expansion.

DOMESTIC WASTEWATER CHARACTERISTICS

The proposed domestic wastewater flows for the Winery Use Permit Modification are shown in Table 2 below. The number of visitors and employees is based on information provided by the owner. The projected flow is based on Napa County Environmental Management guidelines. The following is a summary of the estimated flows from the proposed winery.

Table 2

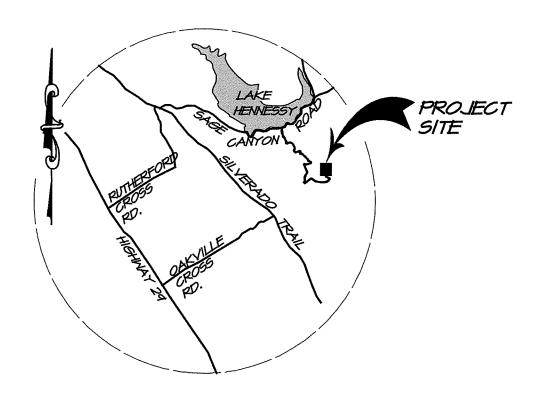
Use	Source	Number	Projected Flow (gpd)	Total Flow No Event Day (gpd)	Total Flow Event Day (gpd)
	Full-time employees	4	15	60	60
₩	Part-time employees	1	15	15	15
WINERY	Harvest employees	1	15	15	15
>	Visitors	12	3	36	36
	Private Event w/ meals (offsite catered)	25	10	0	250
W	inery Subtotals			126	376
Pr	ocess Wastewater			667	273
Gı	rand Total	Total Peak Flow	793	649	

The number of visitors is based on a <u>maximum</u> expected daily visitor count. Any combination of events where the expected total guest count exceeds 37 persons in a single day will require the use of portable sanitation facilities.

Peak wine production operations will not occur on event days, but some production may still take place, so the average daily production level was used to calculate wastewater production for event days.

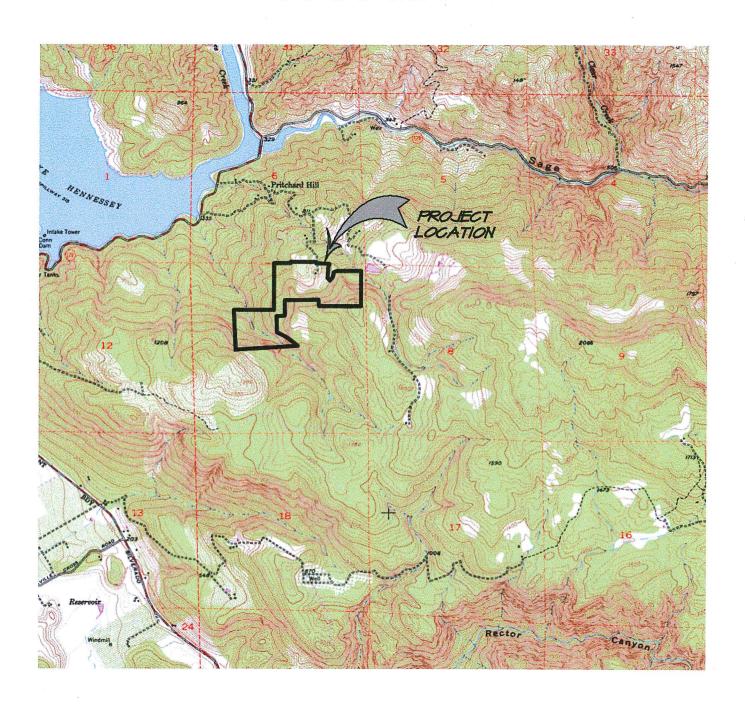
CONCLUSION

The winery will be able to dispose of all sanitary and process wastewater on-site. This report demonstrates that the existing process and domestic wastewater system can adequately treat and dispose of wastewater from the proposed winery expansion. The existing system meets the design standards of Napa County, Environmental Management Department, ASTS Design guidelines and the system manufactures requirements.


Appendix 1

Vicinity Map & USGS Site Map

GANDONA WINERY VICINITY MAP


NAPA COUNTY

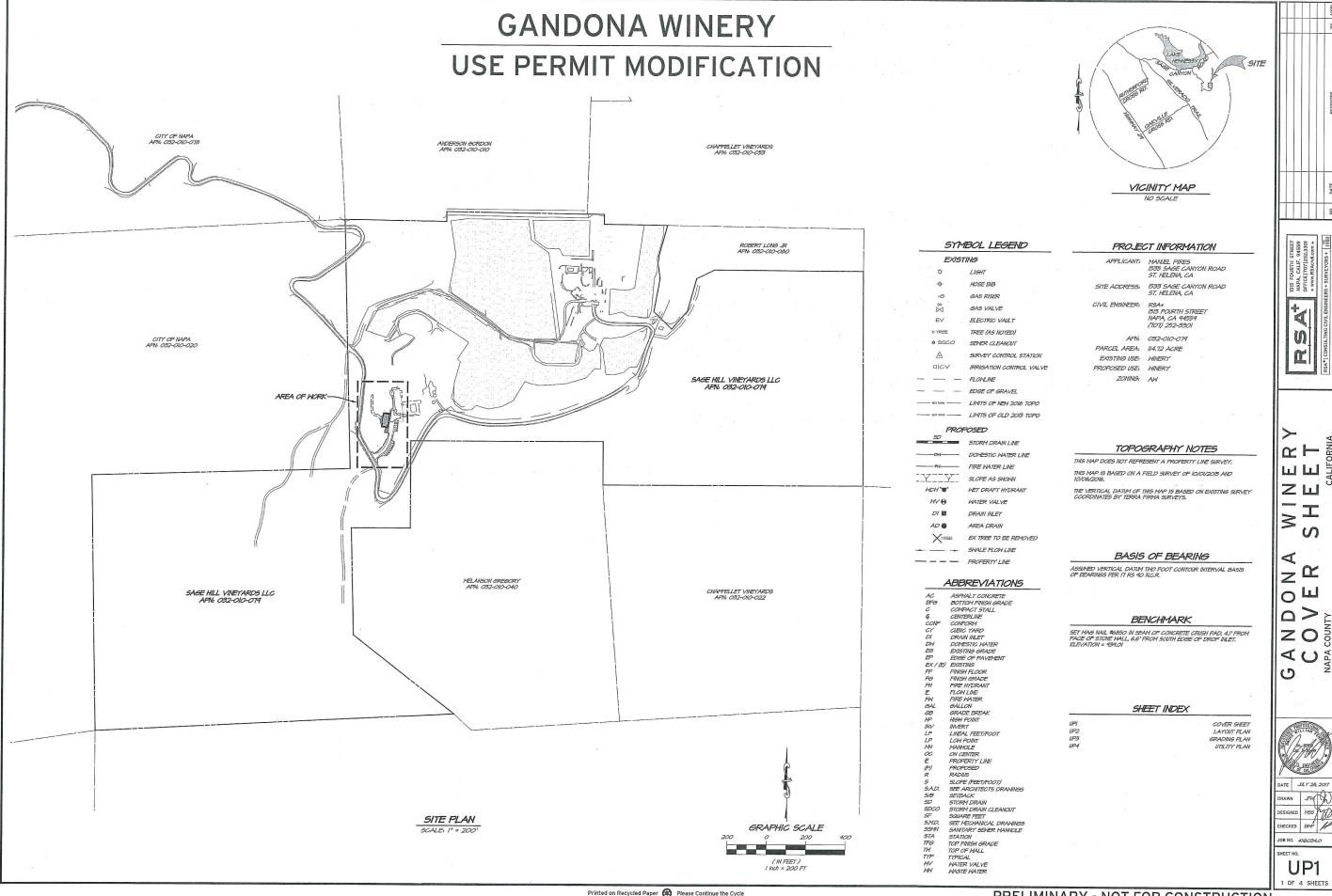
CALIFORNIA

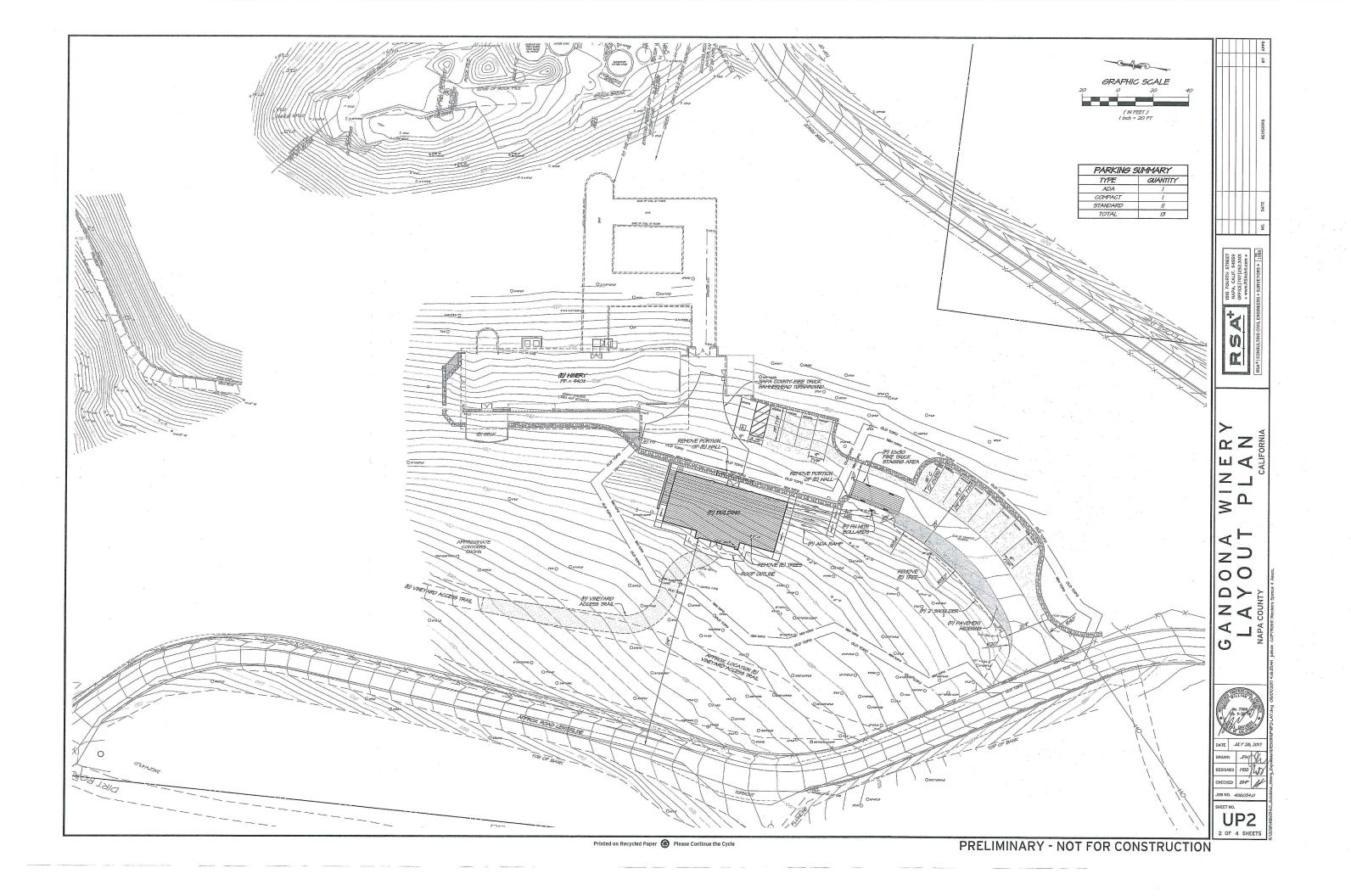
1515 FOURTH STREET NAPA, CALIF. 94559 OFFICE|707|252.3301 + www.RSAcivil.com +

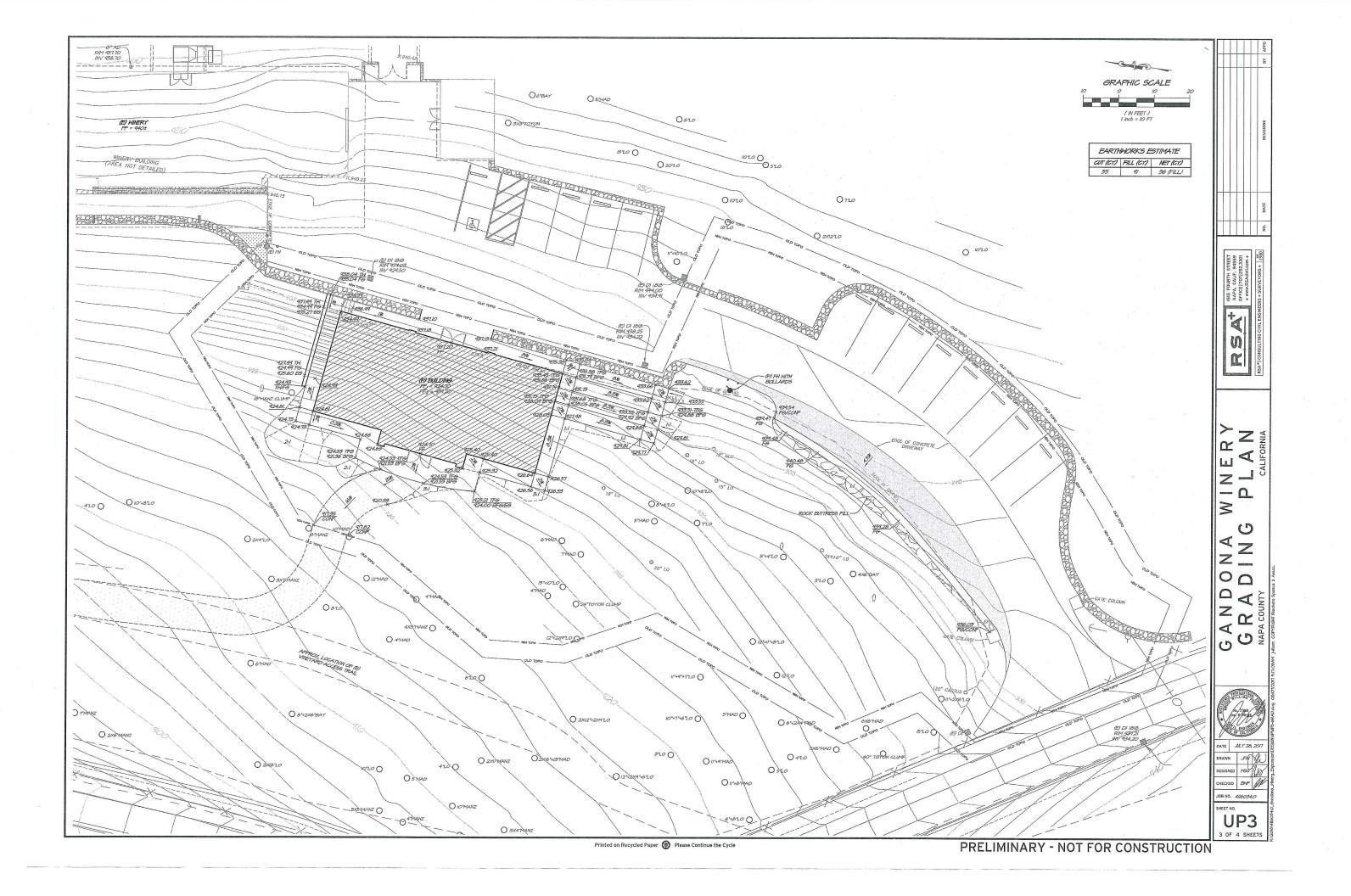
GANDONA WINERY USGS MAP

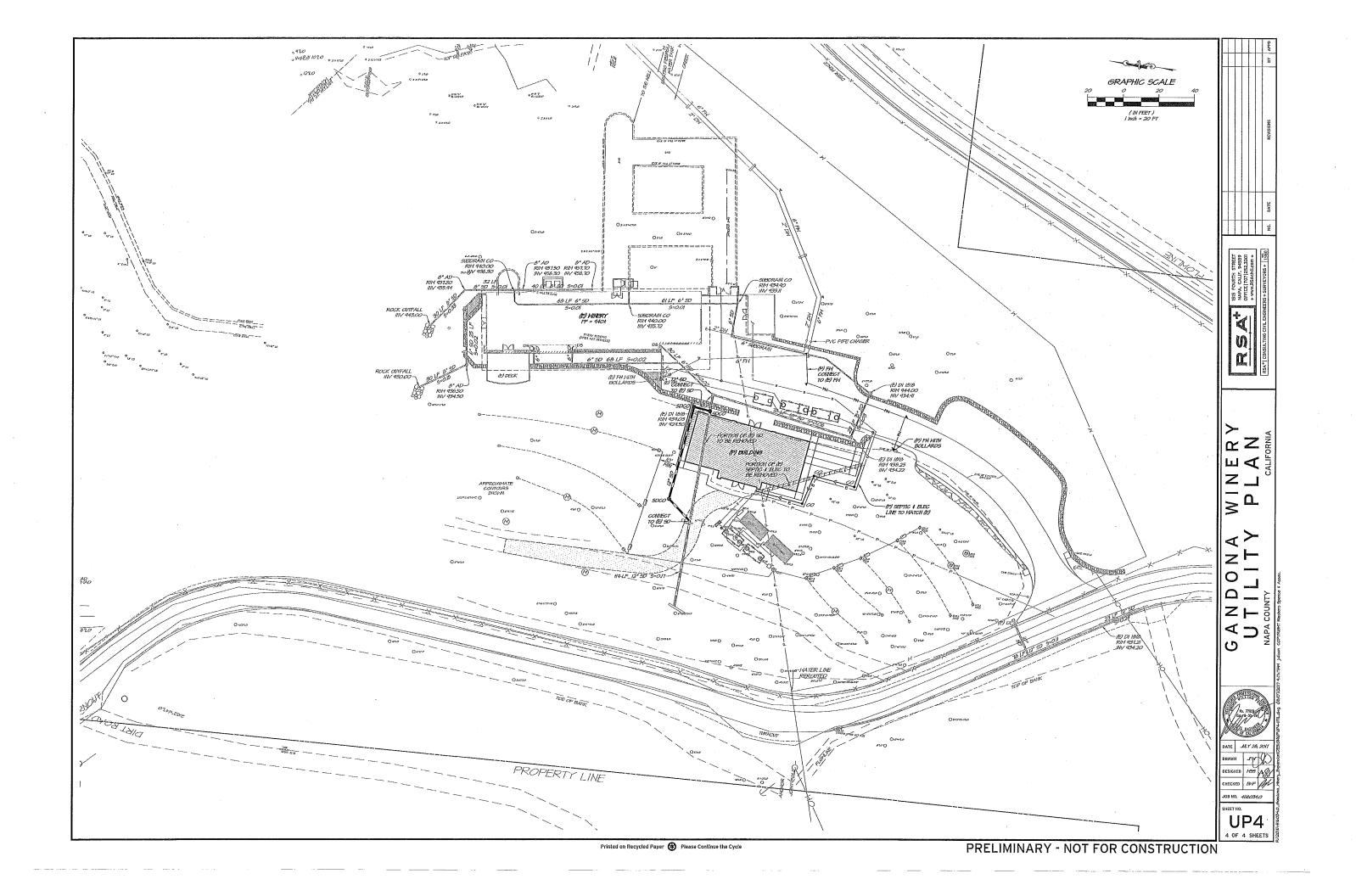
1515 FOURTH STREET NAPA, CALIF. 94559 OFFICE | 707 | 252.3301 + www.RSAcivil.com +

RSA+ CONSULTING CIVIL ENGINEERS + SURVEYORS + 1980


Appendix 2


Reduced Use Permit Plan Set




Appendix 3

Pressure Distribution Wastewater Disposal System Plans and Process & Sanitary Wastewater Septic System Design Report

SAGE HILL WINERY, LLC

PRESSURE DISTRIBUTION WASTE WATER DISPOSAL SYSTEM

SEPTIC AND SUMP TANK NOTES

L GENERAL

A ALL SEPTIC TANKS SHALL BE ACCEPTED BY LAPMO AS MEETING STANDARD PS-L

B ALL SEPTIC TANKS SHALL BE OF TWO COMPARTMENT CONSTRUCTION. THE FIRST
SHALL BE THOSE THE CAPACITY OF THE SECOND AND SEPARATED BY A BAFFLE.

C. TANKS MUST HAVE A STRENGTH CAPACLE OF WITHSTANDING ANTICIPATED LOADS

2. MATERIALS
A. THE ENGINEER ASSUMES A CONCRETE SEPTIC AND SUMP TANK IN THESE CALCULATIONS,
IF THE CONTRACTOR DESIRES TO USE A TANK MATERIAL OTHER THAN CONCRETE,
THEN THE CONTRACTOR MIST SUPPLY TO THE ENGINEER THE SPECIFICATIONS FOR

- ANCHORING AND BALLASTING. B. METAL OR WOODEN TANKS ARE PROHIBITED.
- B. METAL OR WOODEN TANES ARE PROHBITED.
 C. IF SETTIC OR SUPP TANES ARE PROHBITED.
 C. IF SETTIC OR SUPP TANES ARE MADE FROM HIGH DENSITY POLITETHYLENE (NOTE) OR
 FIBERELASS, THEN TANES MIST BE ANCHORED TO PREVENT HEAVING OR BLUTANT FORCES.
 D. IF SETTIC OR SUMP TANES ARE MADE FROM HOPE OF FIBERELASS, THEN PROPER
 SIDEWALL PROTECTION MUST BE INSTALLED TO PREVENT SIDEWALL FAILURE.
 SUFFICIENT PROTECTION MUST BE INSTALLED TO PREVENT VEHICLES FROM
 CROSSING OVER THE TOP OF THE HOPE OR FIBERELAS TANES.
 E. ALL SETTIC AND PUMP TANES SHALL BE HATER TIGHT. CONCRETE TANES SHALL BE A
 MONOLITHIC CASTING OR JOINTS SEALED SEALED WITH THOROPLUS OR OTHER APPROVED
 SEALANTS. CONCRETE SIMPS SHALL BE PROTECTED WITH "XYPPEX", "THOROSEAL" OR
 'ULTRA-BLOC" ON THE INSIDE. ASPHALT EMILSON OR TAR SHALL NOT BE USED AS JOINT
 SEALANTS.

3<u>. PLACEMENT</u>
A. SEPTIC AND PIMP TANKS SHALL BE INSTALLED FER MANUFACTURER'S SPECIFICATION.
B. THE TANK SHALL BE INSTALLED ON A SOLID LEVEL BED.
C. SOIL ARQUID THE TANK MIST BE COMPACTED; SAND MIST BE JETTED.

- 4. ACCESS RUSERS
 A ACCESS TO EACH SETTIC TANK COMPARTMENT MIST BE PROVIDED BY A MANHOLE AT
 LEAST THENTY INCHES IN DIAMETER AND HAVING A DURABLE HANDLE TO FACILITATE
 REMOVAL TO ALLOH ACCESS FOR INSPECTION AND HAINTENANCE OF THE TANK AND OF
 SUFFICIENT SIZE FOR REMOVAL OF THE MANHOLE COMER.
- SUFFICIENT SUFFICIENT SUFFICIENT CONTROL OF THE MANHOLLE COVER. B. A RISER MUST EXTEND FORM EACH MANHOLLE COVER TO OR ABOVE THE SURFACE OF THE GROUND. THE RISER MUST BE OF A SUE LARRER THAN THE MANHOLLE COVER, BE BOTH GAS AND WATERIAL AND SHOULD BE CAPABLE OF NITHISTANDING ANTICIPATED LOADS FROM SOLL BACKFILL.
- C. CONCRETE RISERS SHALL BE SEALED WITH XYPEX OR APPROVED EQUAL. D. ALL RISERS SHALL BE FITTED WITH ARRIGHT DURABLE LIDS THAT HAVE A LOCKING MECHANISH TO PREVENT UNHANTED ENTRY, AND PREVENT INSECTRODENT ACCESS.

- 5. <u>SEPTIC TANK CONNECTIONS</u>
 A. ALL CONNECTIONS PROM BUILDINGS TO SEPTIC TANKS SHALL BE MADE IN ACCORDANCE WITH THE MOST RECENT EDITION OF THE CALIFORNIA PLUMBING CODE. B. GRAVITY LINES FOR SEWAGE DISPOSAL SYSTEMS MUST BE FOUR INCHES IN DIAMETER. . FOR ALL GRAVITY LINES, INSTALL CLEANOUTS ON ALL ELLS AND EVERY 100 FEET ON
- D. ALL SOLID PIPE JOINTS AND CONNECTIONS MUST BE GLUED, CEMENTED, OR MADE WITH
- D. ALL SOLID PIPE JOINIS AND CONNECTIONS PAST DE EXUEU, CEPTENIEU, OR MADE MITH AN ELASTOMERIC SEAL SO AS TO BE MATERTIAHT. E. MHERE ENTERING THE TANK, A MINIMAM OF 4 INCH DIAMETER PVC SCHEDULE 40 STUB SHALL BE CAST IN PLACE OR SEALED WITH THOROPLUS OR OTHER WATERPROOF
- F. BRASS TYPE FITTINGS, VALVES, AND PIPING ARE PROHIBITED IN SEPTIC AND SUMP TANKS.
- 6. EFFLYENT FILTERS ARE TO BE USED IN ALL SEPTIC TANKS AND SHALL HAVE A FILTRATION OF NO GREATER THAN VO', OR AS SPECIFIED ON THE PLANS.

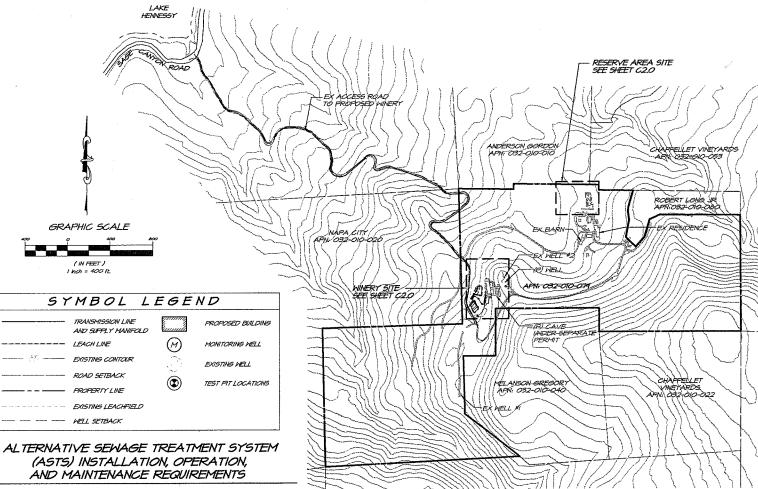
- 7. <u>ELECTRICAL CONNECTIONS</u>
 A. ALL ELECTRICAL CONDUITS AND FITTINGS ENTERING THE SUMP SHALL BE GAS TIGHT AND MATER TIGHT PVC. NETIALLIC GAS TIGHT FITTINGS ARE NOT ALLOWED.
 B. ALL MIRES SHALL BE INDIVIDUALLY SEALED AT THE LINCTION BOX OR ALAMYCONTROL.
 PANEL AS APPROPRIATE. GROUT OR ASSHALT BE BULSION IS NOT AN ACCEPTABLE SEALANT.
 G. THE PUMP POWER LEAD AND THE FLOAT SHITCH CONTROL WIRES SHALL NOT BE RUN IN A
- CONTROL CONTROLS FOR THE PUNP AND AUDIOMISUAL ALARM SHALL BE MOUNTED TO A SCHEDULE 40 PVC POLE MOUNTED INSIDE THE PUMP CHAMBER THAT CAN BE REMOVED
- I ON PAINTEMANCE. E CONTROL PLOATS SHALL BE ATTACHED TO PVC POLE WITH APPROVED CONNECTORS OR PLASTIC ITE STRAPS.

STAGES TO BE INSPECTED BY THE DESIGNER

CONTRACTOR IS REQUIRED TO HAVE ENGINEER AND NAPA COUNTY ENVIRONMENTAL MANAGEMENT DE PARTMENT INSPECT (FE CONSTRUCTION AT I FOLLOWING STAGES, FAILURE TO REQUEST THESE INSPECTIONS WILL RESULT IN THE CONTRACTOR HAVING TO UN-FAITH AND RE-DO THE WORK. THE CONTRACTOR SHALL GIVE 48-HOUR ADVANCE NOTICE TO THE ENGINEER FOR

- I. CHECK LAYOUT OF ALL TANKS BEFORE EXCAVATION. 2. CHECK LAYOUT OF ALL PRESSURE AND DISPERSAL LINES BEFORE TRENCHING
- FOR LEVEL AND SPACING. 3. WATERTIGHT TEST OF ALL TANKS BEFORE BACKFILL.
- 4. HYDRAULIC TEST OF PRESSURE AND DISPERSAL LINES IN TRENCH BEFORE COVER WITH GRAVEL OR CHAMBER
- 5. FINAL INSPECTION AND STARTUP AFTER PERMANENT POWER HOOK-UP.

SEWAGE TREATMENT SYSTEM CONSTRUCTION NOTES


SENERAL!

I. A STAMPED COPY OF THE PLANS FOR THE APPROVED SENAGE DISPOSAL SYSTEM MUST BE KEPT

AVAILABLE AT THE JOB SITE DURING SYSTEM INSTALLATION AND UNTIL THE SYSTEM PASSES FINAL

- . ייבול ג'ע ביר אין ייבול ג'ע אין אייבול אוי אייבול ג'ע אייבול ג'ע אייבול ג'ע אייבול ג'ע אייבול ג'ע אייבול ג'ע THIS CONDITION, THE ENGINEER SHALL BE NOTIFIED INMEDIATELY IN ORDER TO MAKE A DESIGN ADJUSTIENT. 2. THE SYSTEM LAYOUT SHALL CONFORM TO THIS PLAN. IF THE FIELD CONDITIONS DO NOT ALLOW FOR
- 3, THE CONTRACTOR SHALL OBTAIN CERTIFICATIONS FROM THE SUPPLIER FOR THE MATERIALS, STATING THAT THEY MEET THE SPECIFIED CRITERIA ON THE PLANS.
- 4. EQUIPMENT SUSCEPTIBLE TO FREEZING MUST BE ADEQUATELY PROTECTED TO PREVENT FREEZING
- 5. COMPLETE PROPER DRAINAGE WORK AND EROSION CONTROL MEASURES BEFORE FINAL INSPECTION.

NAPA COUNTY CALIFORNIA

I. ALL ALTERNATIVE SENAGE TREATMENT SYSTEMS (ASTS) ARE REQUIRED TO MAINTAIN

- 2. THE ASTS SHALL BE OPERATED AND MAINTAINED IN CONFORMANCE WITH THE CONDITIONS PRESCRIBED IN THE ANNUAL OPERATING FERMIT. ALL REQUIRED OPERATING, MAINTENANCE, AND MONITORING OF THE ASTS IS THE RESPONSIBILITY OF THE PERMIT HOLDER CONTACT THE DEPARTMENT OF ENVIRONMENTAL MANAGEMENT FOR INFORMATION ON CONDITIONS OF THIS PERMIT.
- 3, PRIOR TO ISSUANCE OF THE ASTS INSTALLATION PERMIT, THE OWNER OF THE PROPERTY SHALL APPLY FOR THE ANNUAL OPERATING PERMIT BY SUBMITTING TO THE NAPA COUNTY ENVIRONMENTAL MANAGEMENT DEPARTMENT A SIGNED AND NOTARIZED "SUPPLEARTIAL APPLICATION TO CONSTRUCT AND OPERATE AN ASTS," AND A "MASTER FILE RECORD". FORMS ARE AVAILABLE FROM THE DEPARTMENT.
- 4. ALL INSTALLERS OF AN ASTS MUST HAVE AN ACTIVE CALIFORNIA CLASS A GENERAL ENGINEERING CONTRACTOR, CLASS C-42 SANITATION SYSTEM CONTRACTOR, OR CLASS C-36 PLIMBING CONTRACTOR LICENSE.
- 5. PRIOR TO ISSUANCE OF THE ASTS OPERATING PERMIT, ALL INSPECTIONS SHALL BE COMPLETED (SEE SEPARATE INSPECTION SCHEDULE) AND THE ONNER OF THE PROPERTY SHALL SIENIT A COPY OF THE SIGNED SERVICE PROVIDER MAINTENANCE CONTRACT.
- . THE ASTS IS REQUIRED TO UNDERGO ONGOING INSPECTION AND MONITORING BY AN APPROVED SERVICE REVIDER REGISTERED HITH THE DEPARTMENT OF BUNKONHOTHAL MANASPHENT AT A FREQUENCY OF ONCE DURING EVERY ENVIRONMENTAL PERIOD. EACH SIX MONTH PERIOD IS DENOTED AS "NINTER SEASON" (NOVEMBER IST TO APRIL 30TH) AND "SIMMER SEASON" (MAY IST TO OCTOBER 3IST), THE THO INSPECTIONS SHALL BE PERFORMED A MINIMUM OF NINETY (90) DAYS APART.
- 7. CONTACT THE ENVIRONMENTAL MANAGEMENT DEPARTMENT FOR CURRENT INSPECTION REQUIREMENTS. THE INSPECTION AT A MINIMUM SHOULD EVALUATE THE FOLLOWING ITEMS AS APPLICABLE TO THIS ASTS.

 A. COMPITION AND OPERATION OF SEPTIC AND PUMP TANKS INCLUDING CHECKING SUDGE, GREASE, AND SOUM LEVELS AND CONDITION OF ALL EFFLUENT FILTERS.

 B. CONDITION AND OPERATION OF ANY PER-TREATMENT SYSTEM.
 C. CONDITION AND OPERATION OF PURGE VALVES, BALANCING VALVES, DISTRIBUTION VALVES, AND ALL OTHER CONTROL VALVES.
 D. CONDITION OF THE DISPERSAL FIELD GROUND COVER.
 E. CONDITION MOVEMENT, AND STABILITY OF ANY FILL IN THE DISPERSAL FIELD AREA.

 - CONDITION OF EROSION CONTROL MEASURES. FLOW METER AND/OR PUMP COUNTER MEASUREMENTS AND COMPARISON
 - FULL OPERATIONAL PERFORMANCE TEST OF ALL INSTALLED COMPONENTS (PUMPS, CONTROL PANELS, VALVES, ETC.)

ABBREVIATIONS

AD	AKEA DKAIN	ויויזס	CALLONS FLA FINDIL
AC	ASPHALT CONCRETE	HP	HIGH POINT
AB	AGGREGATE BASE	INV	INVERT
APN	ASSESSORS PARCEL NUMBER	IP	IRON PIPE
BC	BEGIN CURVE	P	JOINT POLE
BM	BENCHMARK	ĹF	LINEAL FEET/FOOT
BO	BLONOFF	MAX	MAXIMUM
<i>BS</i>	BOTTOM SLOPE	MH	MANHOLE
BW	BOTTOM OF WALL	MIN	MINIMUM
CB	CATCH BASIN	O.C.	ON CENTER
Œ	CENTERLINE	PIV	POST INDICATOR VALVE
00	CLEANOUT .	E	PROPERTY LINE
a	CUBIC	arr	QUANTITY
CV	CHECK VALVE	PVC	POLYVINYL CHLORIDE
DCV	DOUBLE CHECK VALVE	RCP	REINFORCED CONCRETE PIPE
DI	DROP INLET	RD .	ROAD
DIA	DIAMETER	RECIRC	RECIRCULATION
DW	DOMESTIC WATER	RW	RECLAIMED WATER
EC	END OF CURVE	5	SLOPE (FEET/FOOT)
ECP	EROSION CONTROL PLAN	SCH	SCHEDULE
EMER	EMERGENCY	SD	STORM DRAIN
EX(E)	EXISTING	55	SANITARY SEMER
FC	FACE OF CURB	SPECS	SPECIFICATIONS
FDC	FIRE DEPT, CONNECTION	STA	STATION
FF	FINISHED FLOOR	50	SQUARE
F G	FINISH GRADE	10	TOP OF CURB
FH	FIRE HYDRANT	TP	TEST PIT TOP OF WALL
FM	FORCE MAIN	TN TYP	TYPICAL
FT	FEET	V	VOLT
F	FIRE SERVICE	W	WITH
Æ	FLOW LINE	WM	WATER METER
GAL	GALLON	w	WATER VALVE
68	COADE BOEAY		

SITE PLAN

4 <i>D</i>	AREA DRAIN	6PM	GALLONS PER MINUTE
46	ASPHALT CONCRETE	HP	HIGH POINT
4 <i>B</i>	AGGREGATE BASE	/MV	INVERT
4 <i>PN</i>	ASSESSORS PARCEL NUMBER		
4PN 86	BEGIN CURVE	IP	IRON PIPE
5C 3M	BENCHMARK	æ	JOINT POLE
307 30	BLOWDFF	LF	LINEAL FEET/FOOT
		MAX	MAXIMUM
35	BOTTOM SLOPE	MH	MANHOLE
3W	BOTTOM OF WALL	MIN	MINIM
<i>B</i>	CATCH BASIN	0.6.	ON CENTER
50	CENTERLINE	PIV	POST INDICATOR VALVE
	CLEANOUT	E_	PROPERTY LINE
20	CUBIC	arr	QUANTITY
V	CHECK VALVE	PVC	POLYVINYL CHLORIDE
XV	DOUBLE CHECK VALVE	RCP	REINFORCED CONCRETE PIPE
21	DROP INLET	RD .	ROAD
2/4	DIAMETER	RECIRC	RECIRCULATION
7W	DOMESTIC WATER	RH	RECLAIMED WATER
.0	END OF CURVE	5	SLOPE (FEET/FOOT)
CP	EROSION CONTROL FLAN	SCH	SCHEDULE
MER	EMERGENCY	SD .	STORM DRAIN
EX/E)	EXISTING	55	SANITARY SEWER
と	FACE OF CURB	SPECS	SPECIFICATIONS
DC	FIRE DEPT, CONNECTION	STA	STATION .
7-	FINISHED FLOOR	<i>50</i>	SOVARE
6	FINISH GRADE	TC	TOP OF CURB
7/	FIRE HYDRANT	TP.	TEST PIT
71	FORCE MAIN	<i>TW</i>	TOP OF WALL TYPICAL
7	FEET	TTP V	VOLT
=	FIRE SERVICE	W	WITH
F	FLOW LINE	WM	WATER METER
AL	GALLON	w	WATER VALVE
8	GRADE BREAK	717	7 V 172/2 F/ W F20

PROJECT INFORMATION

OWNER: OWNER ADDRESS:	MANUEL PIRES 1535 SAGE CANYON ROAD ST. HELENA, NAPA COUNTY CALIFORNIA
CIVIL ENGINEER	RIECHERS SPENCE & ASSOC. 1541 THIRD STREET NAPA, CALIF. 94559
SITE ADDRESS:	1535 SAGE CANYON ROAD ST. HELENA, NAPA COUNTY CALIFORNIA
PARCEL NO:	032-010-019
	1147 ACDE

EXISTING USE: WINERY PROPOSED USE: WINERY EXISTING ZONING: PROPOSED ZONING: GENERAL PLAN DESIGNATION: AW

USE PERMIT No.: POT-00348 AND POB-00880 CAVE PERMIT No.: WOS-01277, BO9-00072 SEPTIC PERMIT No.: E09-00039 (THIS PLAN SET)

SURVEY

THE TOPOGRAPHIC SURVEY SHOWN DOES NOT REPRESENT A PROPERTY LINE SURVEY, PROPERY LINES SHOWN HEREON ARE BASED ON RECORD DATA, AND MAY NOT REPRESENT THE TRUE POSITIONS OF THE LINES, BOUNDARY IS BASED ON A FIELD SURVEY OF MAY 22 AND 23, 2006.

SURVEYED BY: TERRA FIRMA SURVEYS, INC. P.O. BOX 533 ST. HELENA. CA 94574

BASIS OF BEARING

ASSUMED VERTICAL DATUM TWO FOOT CONTOUR INTERVAL BASIS OF BEARINGS PER IT RS 90 N.C.R.

BENCHMARK

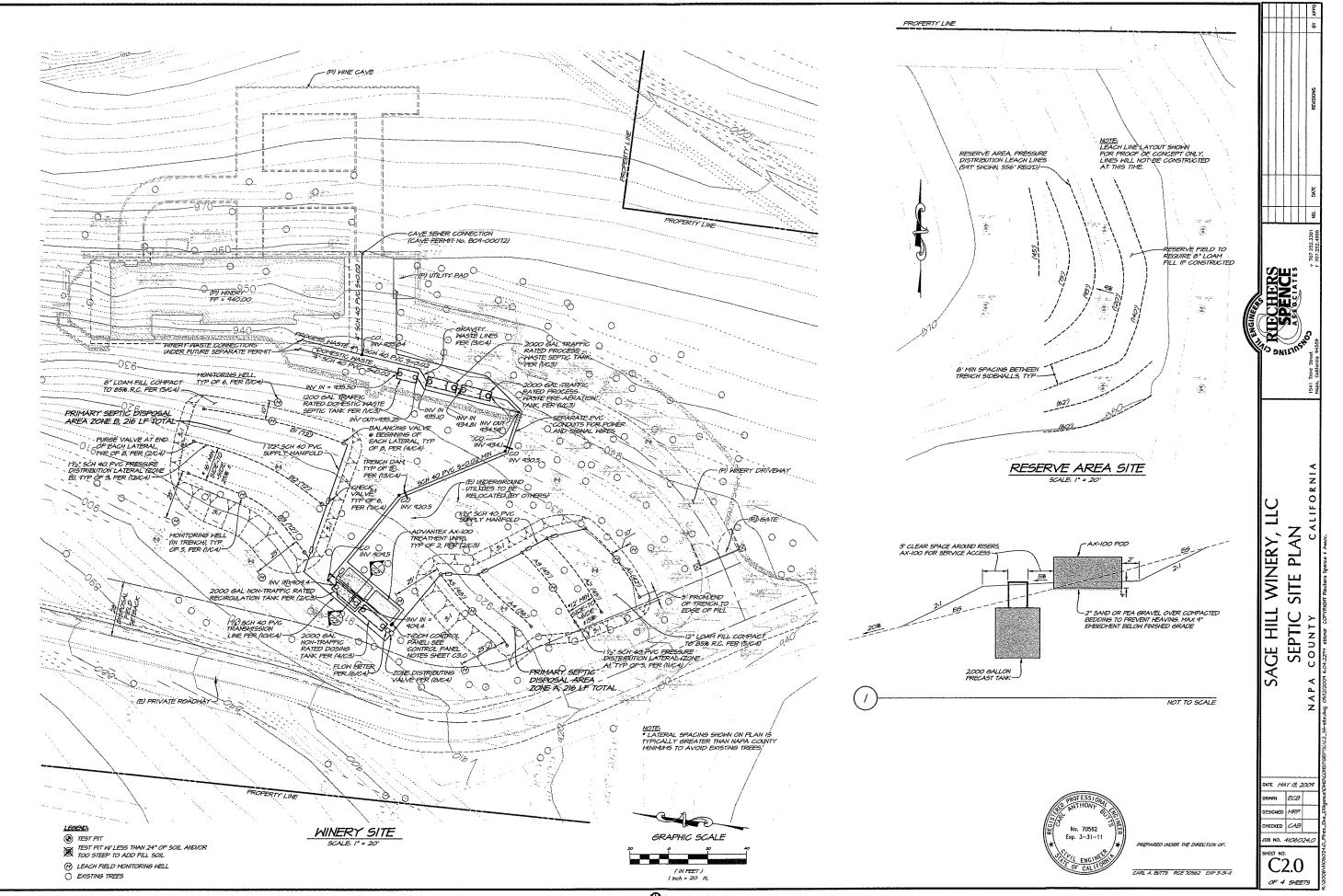
THE SECOND STORY FINISHED FLOOR OF THE MAIN RESIDENCE HALF A FOOT INSIDE THE FRONT DOOR. ELEVATION = 906,76'

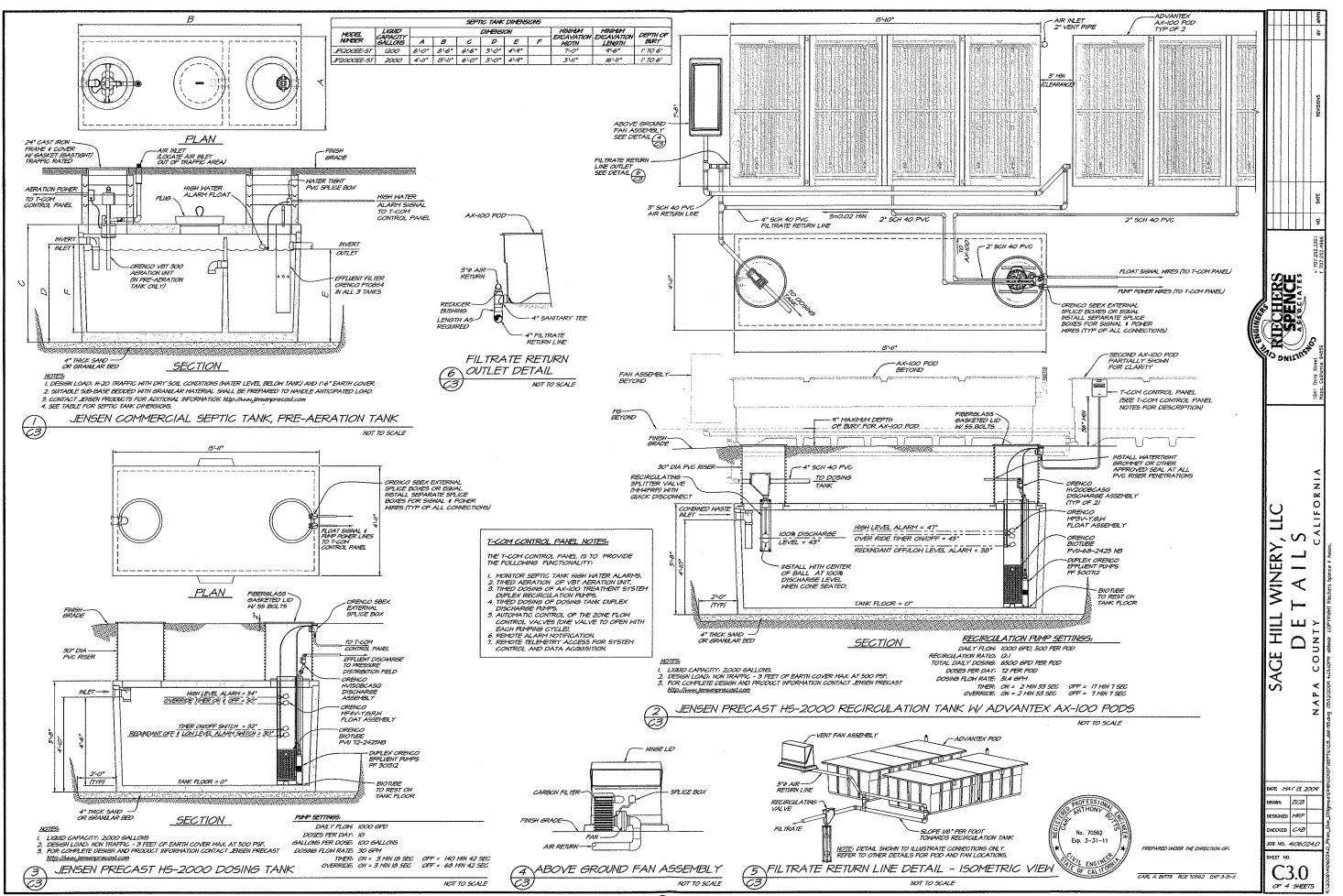
SHEET INDEX				
CI.0	COVER SHEET			
C2.0	SEPTIC SYSTEM LAYOUT PLAN			
C3.0	DETAILS			

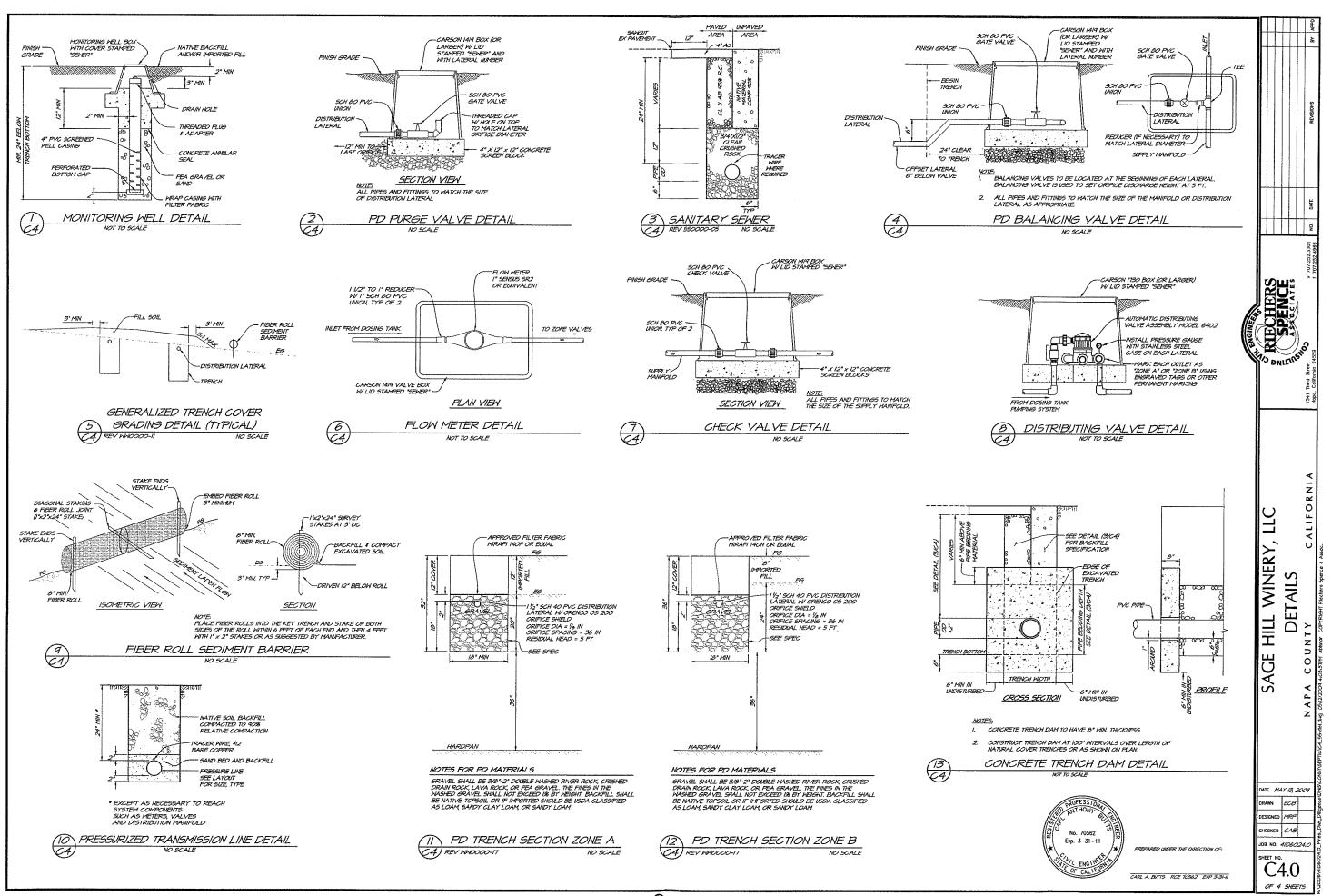
CALL USA REFORE EXCAVATING

48 HOURS IN ADVANCE

CARL A. BUTTS RCE TOS62 EXP 3-31-11


S \simeq \overline{Q} 0


> TE MAY 15, 200 IN ECB


ECKED CAB

C_{1.0}

NO. 4106024.0

SAGE HILL WINERY

Napa County, CA

PROCESS AND SANITARY WASTEWATER SEPTIC SYSTEM DESIGN REPORT

Project# 4106024.0 May 13, 2009

Prepared by

Riechers Spence & Associates 1541 Third Street Napa, CA 94559

(707) 252-3301 v

www.rsacivil.com -

(707) 252-4966 f

Introduction and Project Description

The owner of parcel APN 032-010-079 is proposing to build a 20,000 gallon per year winery (8,300 cases). This report accompanies a set of wastewater system construction plans and describes the design of the proposed wastewater system for the winery. The proposed system will combine and treat all sanitary waste and winery process waste followed by subsurface disposal in a pressure distribution system.

Site Description

The 115+/- acre parcel is located south of Lake Hennessey. The winery entrance is located along Sage Canyon Road near the Lake Hennessey boat docks. A private road continues about 1 mile from Sage Canyon Road to the subject property. Although there are some relatively flat areas on the property, much of the site is sloped above 20%. Two water wells exist on the parcel and are available for domestic and wine production purposes. A third well is proposed. All wells are located well beyond the required 100 foot septic system setback. The winery facility will consist of wine production areas, a wine cave, offices, and a tasting and sales area. Appendix A contains a Site Location Map showing the parcel boundary, topography, and other features. These features are also shown on the construction plans accompanying this report.

Site Evaluations

Riechers Spence & Associates, in conjunction with Napa County, conducted three septic site evaluations on the subject parcel. All three site evaluations were conducted by Riechers Spence and Associates and inspected by Darrell Choate of Napa County Environmental Management. Appendix B contains a test pit location map and test pit logs for each of the three site evaluations.

Site Evaluation 1 – March 21, 2007:

Six of ten test pits were acceptable with depths up to 60 inches. Soil was classified as Clay Loam.

Site Evaluation 2 – November 7, 2007:

Seven of eight test pits were acceptable with depths up to 48 inches. Soil was classified as Loam and Clay Loam.

Site Evaluation 3 – January 16, 2008:

Seven of twelve test pits were acceptable with depths up to 60 inches. Soil was classified as Loam and Sandy Clay Loam.

A representative soil sample was collected during each site evaluation and a soil texture analysis by Bouyoucos Hydrometer Method was performed on each sample by RGH Consultants Inc. These test results are also included in Appendix B.

Process and Sanitary Wastewater Characteristics

Wastewater will leave the winery in two separate streams for sanitary and winery process wastewater. Flow volume and constituent strength estimates for the design are provided for each type of waste.

Process Wastewater Flow Volume

Based on a winery producing 20,000 gallons per year of wine, peak daily process wastewater flow is estimated as follows using current Napa County guidelines.

$$Peak Day Flow = \frac{Annual \ production(gallons) \times 1.5}{45 \ Day \ Harvest \ Period}$$

$$Peak Day Flow = \frac{20,000 \ gallons \ x1.5}{45 \ Day \ Harvest \ Period} = 667 \ gpd$$

Sanitary Wastewater Flow Volume

The projected peak daily sanitary waste flow has been estimated from the projected peak number of visitors and employees as originally described in the Septic Feasibility Report submitted as part of the Use Permit application. This data is summarized in Table 2. Rates for each type of occupancy are taken from Table 4 of the Napa County Alternative Treatment System Design Guidelines. From Table 2 the total projected sanitary flow is 333 gallons per day. The Use Permit allowed for a commercial kitchen to be installed in the winery for preparing food for

special promotional events, however due to space limitations the kitchen has been deleted from the final plans. Without a kitchen the total flow volume will presumably be reduced from that predicted in the feasibility report, however to be conservative we are still designing to the original flow estimate.

Table 2: Projected Sanitary Wastewater Flow

Type of Occupancy	· Number	Rate	Total Flow
Full-time employees	1	15 gpd / person	15 gpd
Part-time employees	1	15 gpd / person	. 15 gpd
Part-time harvest employees	4	15 gpd / person	60 gpd
Tasting room visitors	6	3 gpd / person	18 gpd
Promotional event visitors	15	15 gpd / person	225 gpd
	333 gpd		

Combined Waste Flow Volume

During the primary treatment phase each flow will be treated separately, however they will be combined for secondary treatment and disposal. The total combined flow from process and sanitary waste sources is 1000 gpd.

Wastewater Strength

Process wastewater strength varies over a wide range depending on the day-to-day winery activities, with reported values of biochemical oxygen demand (BOD) ranging from 300-12,000 being typical¹. Based on previous experience with similar wineries, for design purposes we have assumed average process wastewater strength as shown in Table 3.

¹Waiver of Waste Discharge Requirements for Small Food Processors, Including Wineries, Within the Central Valley Region, Central Valley RWQCB Resolution R5-2003-0106.

Table 3. Average Waste Strength

	Estimated W	aste Strength
Constituent	Process Waste	Sanitary Waste
BOD ² (20° C, 5-day)	6000 mg/L	300 mg/l
TSS ³	2500 mg/L	330 mg/l

No kitchen is proposed for this facility therefore sanitary wastewater strength is assumed to be comparable to typical residential waste strengths. The USEPA reports typical sanitary waste strength as shown in Table 3⁴. To be conservative this design does not consider any dilution and reduction in BOD or TSS due to combining the stronger process waste with the weaker sanitary waste, and the process waste strengths given in Table 3 were used for the design.

Proposed Wastewater System Design

The sanitary and process waste streams will first undergo primary treatment in septic tanks before being combined to undergo secondary treatment in an Orenco Systems Advantex pretreatment system. Final disposal will be to a subsurface pressure dispersal (PD) system. The treatment goal is to produce final treated effluent within Napa County discharge limits for discharge of septic tank effluent to a PD system, which are 150 mg/l BOD₅ and 150 mg/l TSS.

Primary Treatment

Primary treatment will be accomplished with standard septic tanks. Separate process waste and sanitary waste lines will drain by gravity to separate septic tanks for each waste stream. The septic tanks will be located in the paved parking lot below the winery.

Per Napa County Code, the sanitary waste septic tank is sized for three days hydraulic retention time (HRT). Based on a sanitary flow of 333 gpd, this equates to a tank volume of 999 gallons. The design provides a 1200 gallon septic tank, which is the minimum tank size allowed under

² BOD = 5-day, 20° Celsius, Biochemical Oxygen Demand

³ TSS = Total Suspended Solids

⁴ Onsite Wastewater Treatment Systems Manual, U.S. Environmental Protection Agency, 2002. BOD 155 – 286 mg/l, TSS 155 – 330 mg/l.

Napa County Code. Earlier winery designs included a kitchen however this has been removed from the plans and therefore a grease interceptor will not be installed at this time. If a kitchen is installed in the future a grease interceptor will be required.

The process waste septic tank is similarly sized, resulting in a 2000 gallon septic tank for 667 gpd of process waste flow. Orenco Systems recommends that winery process waste systems incorporating their Advantex treatment system be provided with a second primary treatment tank to provide addition detention time and that this second tank also be equipped with an aeration unit to "pre-aerate" the wastewater before it enters the recirculation tank. This design incorporates a 2000 gallon pre-aeration tank after the initial septic tank.

All septic tanks will be equipped with effluent filters and high water alarms will be installed on each tank to guard against flooding caused by a clogged effluent filter. The high water alarms will be tied to a centralized Orenco T-Com control panel that will control and monitor the entire wastewater system. This panel will be equipped with a telemetry system which will provide remote notification of alarms to the designated service provider.

Septic tanks can be expected to provide over 50% reduction in BOD and TSS. Average removal efficiencies of 64% of BOD and 91% TSS are reported for septic tanks equipped with effluent filters⁵. This design assumes a 50% reduction in BOD and a 75% reduction in TSS will occur in the septic tanks, giving septic tank effluent of about 3000 mg/l BOD₅ and 600 mg/l TSS.

Secondary Treatment

Effluent from the septic tanks will flow to the treatment system, consisting of two (2) Orenco Advantex AX-100 treatment pods and a 2000 gallon pre-cast concrete recirculation tank. Wastewater flows into the recirculation tank where it is then pumped to the AX-100 treatment pods (dosing alternates between the two pods with each pump cycle). Treated effluent drains from the AX-100 pods to a recirculation splitter valve that, depending on the water level in the

⁵ Bounds, T.R., 1997, "Design and Performance of Septic Tanks", <u>Site Characterization and Design of Onsite</u>
<u>Septic Systems ASTM STP1324-EB</u>, M.S. Bedinger, J.S. Fleming, A.I. Johnson, Eds., American Society for Testing and Materials, Philadelphia, 1997.

recirculation tank, either returns the effluent to the recirculation tank for further treatment or routes it to a dosing tank for final dispersal to the PD system.

To achieve the desired treatment, wastewater in the processing tank will be recirculated several times each day through the AX-100 treatment pods. The system is designed with a recirculation ratio of 12:1, meaning that, on average, wastewater will pass through the treatment pods 12 times before being discharged to the PD dispersal field dosing tank.

To achieve the treatment goal of 150 mg/l BOD₅ and 150 mg/l TSS from septic tank effluent strength of about 3000 mg/l BOD₅ and 600 mg/l TSS, Orenco recommends a maximum hydraulic loading of no more 5 gpd/ft² to the AX-100 treatment pods. For a flow of 1000 gpd this equates to a need for about 200 ft² of treatment area. Each pod has 100 ft² of treatment area, therefore 2 pods are required.

The recirculation tank has been sized based on recommendations from Orenco Systems. The tank will be equipped with duplex pumps for recirculation to the AX-100 pods. With duplex pumps there is no minimum storage required above the high water alarm, however this design still provides about ½ day's flow in storage. Control of the recirculation pumps will be provided by the same Orenco T-Com telemetry control panel monitoring the septic tank high water alarms. Control float settings and pump timer calculations for the Advantex system are included in Appendix C

For optimal treatment the pH of the wastewater entering the Advantex system should be between 6.0 and 9.0. Winery process waste pH will generally range between 4 and 6. Although this is below the optimal level, we anticipate this will be partly neutralized by the sanitary waste and influent pH will be acceptable for treatment. If necessary, a pH control system can be added to the recirculation tank at a later date.

Dosing Tank and Pressure Distribution System

Treated effluent from the AX-100 pods will flow to a 2000 gallon precast concrete holding tank for final dosing to a pressure distribution dispersal field. For consistent dosing the holding tank has been sized to allow a working volume sufficient to avoid activating the pump override cycle under typical daily flow surges. The tank also allows for nearly one day of emergency storage above the high water alarm, and for redundancy is also equipped with duplex alternating dosing pumps. The dosing pumps will be controlled by the same T-Com telemetry panel controlling the Advantex treatment system. A flow meter will be installed to measure the volume of flow discharged to the PD system. Calculations for dosing pump sizing, control float settings, and pump timer settings are included as part of the PD calculations in Appendix D.

The primary PD dispersal field will be located on the slope below the proposed winery facility, at the location of site evaluation number three. A reserve area has been designated at the location of site evaluation number one. These areas are shown on sheets C1 and C2 of the construction plans. These areas were chosen because they had deeper soils (up to 60") than were found at the location of site evaluation number two (up to 48"). Even though the area of site evaluation number two had shallower soil, it is still a feasible reserve disposal field location; however using this area would require the waste to undergo additional treatment beyond that proposed in this design.

The primary PD field is sized for the full day's flow of 1000 gallons. The field is to be divided into two equal zones, "A" and "B". The dispersal trench design consists of 12" of cover soil over a 20" deep rock filled dispersal zone. The 20" deep dispersal zone has 2" of rock cover over the PD dispersal lateral and 18" of rock below the top of the dispersal lateral, which gives a total usable sidewall depth of 18" per side, or 3 square feet per lineal foot of trench. When discharging "septic tank effluent", 36" of acceptable soil is required below the trench bottom. This gives a total required soil depth of 68" (12" + 20" + 36"). As seen in the site evaluation data, the soil is only 60" deep in the septic field area (see pits # 2, 3, 7, 8), therefore import fill will be placed to make up the balance.

The hydraulic loading rate to the dispersal trench sidewall is based on the soil in the horizon containing the trench sidewall. In dispersal zone "B" 8" of import fill will be used as part of the 12" cover soil layer. This places the top of the dispersal zone sidewall 4" below existing grade and the bottom of the 20" deep trench 24" below the existing grade. The hydraulic loading rate for zone "B" is therefore based on the top 24" of existing soil. Referring to table 10 of Napa County Alternative Sewage Treatment System Design Guidelines, the hydraulic loading rate for "septic tank effluent" discharged to the loam soil in this horizon is 0.8 gallons per day per square foot. A detail of the trench section is shown on Sheet 4 of the construction plans included with this report.

In Zone "A" the conditions are slightly different. In this zone, and specifically at pit #2, the upper soil horizon is only 20" deep. In order to keep the sidewall entirely in this upper soil horizon, the full 12" thickness of the cover soil layer will be import fill. This raises the bottom of the dispersal trench to 20" below existing grade and allows the same 0.8 gpd/SF application rate as used in Zone "B".

Using this application rate gives a total leach line length of 417 feet (full calculations are included in Appendix D).

Leach Line Length =
$$\frac{1000 \text{ gpd}}{0.8 \text{ gpd}/\text{SF} \times 3 \text{SF}/\text{LF}}$$
 = 417 linear feet

The reserve area leach line length is calculated in a similar manner. The Clay Loam soil found during site evaluation number one has a hydraulic loading rate of 0.6 gpd/ft², which results in a reserve leach line length of 556 feet. Although the reserve area will not be constructed at this time, a leach line layout is shown on the plans for proof of concept.

As mentioned above, the total leach line length in the primary dispersal area will be divided into two equal zones "A" and "B". Distribution between the two zones will be accomplished using

an Orenco Automatic Distributing Valve which will automatically alternate dosing to each zone with each successive pump run cycle.

Each zone will be composed of several distribution laterals. Each lateral will have 1/8" orifices drilled at 36" on center down the length of the lateral. Balancing valves located at the beginning of each lateral will allow the flow to each lateral to be adjusted to achieve even distribution over the entire field. This is accomplished by adjusting each balancing valve to equalize the residual head ("squirt height") at the end of each lateral to the design head of 5 feet. Purge valves will be located at the end of each lateral to allow for line flushing. Check valves will be installed below each lateral to prevent dispersal laterals at higher elevations from draining to the lower lines.

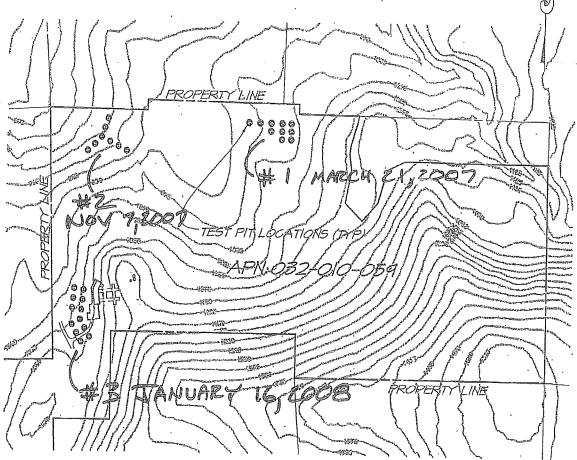
Monitoring wells will be installed up-slope and down-slope from the field as shown on the plans. In addition, every other dispersal lateral will have a monitoring well installed in the trench gravel section.

Conclusions

Based on the information contained in this report, we conclude that that the estimated volume of sanitary and process wastewater generated by the winery can be successfully treated by the proposed Orenco Advantex treatment system to meet the applicable Napa County discharge limits for final discharge to the proposed subsurface pressure distribution system.

Appendix A

SAGE HILL WINERY, LLC USGS - VICINITY MAP 1" = 1000'


NOV. 20, 2008 USGS

4106024.0

NO SCALE

Appendix B

SAGE HILL WINERY, LLC SITE EVALUATION LOCATIONS NAPA COUNTY, CALIFORNIA /"= 400'

WINERY CALIFORNIA トスラのひ MANCEL < 4 < Z

1541 Third Street Mes. Napa, California 94559

APN: 032-010-079 ADDRESS: 1535 SAGE CANYON ROAD

SITE EVALUATION DATE: MARCH 21, 2007

SAINT HELENA, CA ENV. HEALTH INSPECTOR: DARRELL CHOATE

MARCH 21, 2007

4106024.0

v 707.252.5301 f 707.252.4966

W

btestpit.dwg

4106024.0

Site Evaluation Results

Date: 3.21.07

Page | of |

BHS:

Permit # 507-0010

Site Evaluator:_

10 374

	Site A	ddress:	222	SP4	300	1. 20	· '5	n+	APN	: 032	-010-	-079
	Test Pit#	Horizon Depth	Boundary	% Rock	Texture	Structure	T	Consistence	•	Pores	Roots	Mottling
	ļ	(inches)		0-15 🛘			Side Wali	Pad	Wei	1		
X.	<u> </u>	0.27	<u>\</u>	15-30 E 30-50 D >50 D	FILL	CEM.						
		27-64	2	15-30 [] 30-50 [] >50 []	CI	55B	,5	FPB	5	CM	NO	70
	2	0.60		0-15 *Q* 15-30 [] 30-50 [] >50 -I] ·	نستات	558	-5	FEB	5	CM	MM.	140
K	3	0.12	A	0-12 2-1 12-30 12-1 0-12 13-1 0-15 13-1	TILL	CEM						
		12-60.		15-30 [] 30-50 [] >50 []	a.	SSB.	\$.	FP13	5	CM	MM	110
	4	S:AMEA	5 2	0-13 [] 15-30 [] 30-50 [] >50 []			,		·			
¥	5	SAMB A	3 3	0-15 15-30 30-50	_	•					-	
	6	SAMBA	5+2	0-15'							•	
	7	SAME	3 [#] 2.	0-15 [] 15-30 [] 30-50 []								
· *	B	0.30		>50 □ 0-15 □ 15-30 □ 30-50 □ >50 □	ce.	55B	5	FOR	5	MM	FM	NO.
		304		0-15 [] 15-30 []	POCK			:				
	9	SAME,	A5#2	0-15								
	10	SAME	43 [#] 2.	1.5-30 [] '30-50 [] >50 []								
				0-1,5 [] .15-30 [] 30-50 [] >50 []					• •			
		•	<u>'</u>		·	-				L		

A-Z-Didy A-Z-Didy	ores Roots ntity: Quantity:	Mottling Ouantity:
Clay CL=Clay CL=Clay	ommon C=Common M=Many Size: Very VF=Very Fine F=Fine Gedium M=Medium	F=Few C=Cotomon M=Many Size: F=Fine M=Medium C=Coarse

3/26/07 89 1/3

Geotechnical Geological And Laboratory Services

 R_{GH}

CONSULTANTS, INC.

April 26, 2007 File: 9187.1

Riechers Spence Associates 1541 Third Street Napa, CA 94559

Subject:

Laboratory Test Results
Soil Texture Analysis by
Bouyoucos Hydrometry Method
PIRES RESIDENCE

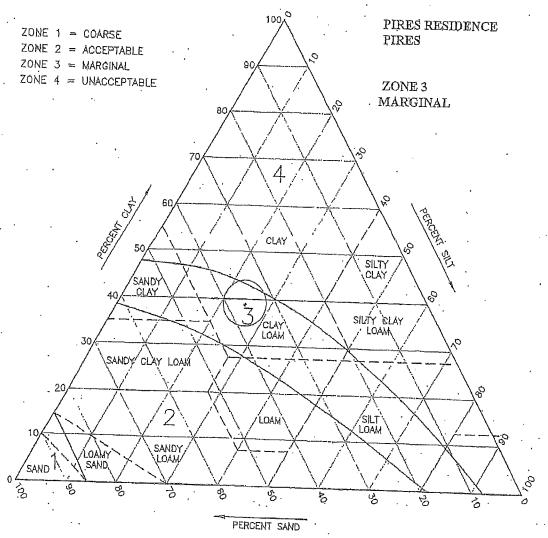
Dear Mr. Koldis:

This letter transmits the results of our laboratory testing performed for the subject project. Your personnel delivered the sample on April 20, 2007

We performed a Soil Texture Analysis by the Bouyoucos Hydrometery Method with the following results:

+#10 Sieve	. 38.0 %
Sand	.30.0 %
Clay	38.6 %
Silt	. 31.4 %
Db g/cc	

We trust this provides the information required at this time. Should you have further questions, please call.


Yours very truly,

RGH GEOTECHNICAL

Tarance E. McCue Laboratory Manager 4106024.0

SOIL PERCOLATION SUITABILITY CHART

3/26/07 892/3

Instructions:

- Plot texture on triangle based on percent sand, slit, and clay as determined by hydrometer analysis.
- 2. Adjust for coarse fragments by moving the plotted point in the sand direction an additional 2% for each 10% (by volume) of fragments greater than 2mm in
- 3. Adjust for compactness of soil by moving the plotted point in the clay direction an additional 15% for soils having a bulk-density greater than 1.7 gm/cc.

For soils falling in sand, loamy sand or sandy loam classification bulk density analysis will generally not affect suitability and analysis not neccesary.

JH CONSULTANTS

FAX NO. :7075441082

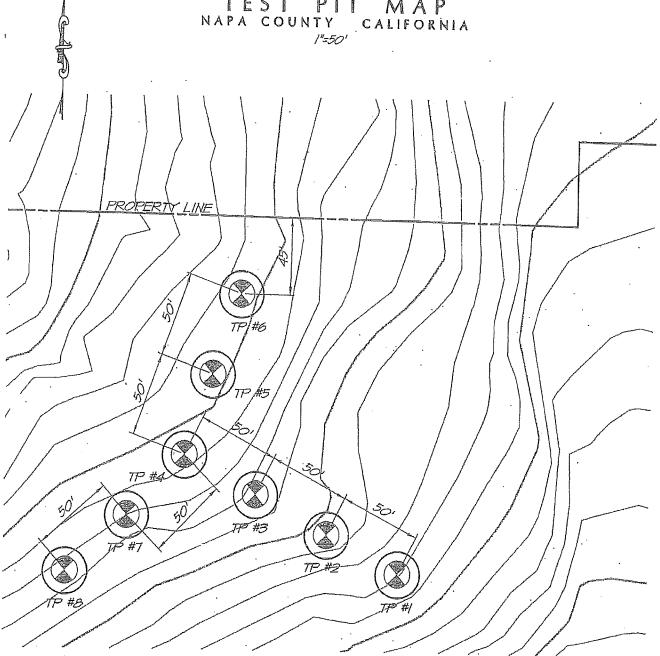
Apr. 26 2007 01:34PM P8/8

3/26/07 19-3/3

Geotechnical Geological And Laboratory Services

RGH

4106024.0


CONSULTANTS, INC.

BOUYOCOUS HYDROMETER

CLIENT Riecher	1 SPENCE	LOCATION Dans	Anna Jaran I. Karan	
CLIENT Riecher	(3)	- in our out white	les (N) im by center	OB#
SAMPLE NUMBER	Pies	Minbut	(f)	
DEPTH		- HINDU	Wimbers	
A. Oven dry wt.	1		·	
(grams)	509	150g/1.	1/00/11	•
B. Starting Time		+++++	150 g/	
(hr: min: sec:)	16231	1/100/1	, Aciel	
C. Temp. @ 40 sec.		110 71	1/519/:	
(degrees F)	170,61	70.6	1 7/2 -	
D. Hydro reading	• .		70.7	
@ 40 sec. (gm/l)	141,01		1265	
E. Composite Corr.	1.1 0		1003	
(gm/l)	16.0	1-6.0	1-6/0	
F. True Density @.	ואים ואים ניים			
40 sec. (gm/l) D-E 6	35.0	[21,0]	120,1	. 1
7. Temp. @ 2 hrs.			- 101	
(degrees F)	1720	172/01	1.7211	1.
H. Hydro reading			100	
@ 2 hrs. (gm/l)	125.C)	1/3,6	L. HAN	
I. Composite Corr.	10			
(gm/l)	517	1-5/1	-5,7	
J. True Density @	10 2	121		
2 hrs. (gm/l) H-I. ♥	19.3	17/3	8,3	
K. % Sand = .	2.			
$100 - [(F/A) \times 100]$	30.0	15810	159.10	
. % Clay =	201			
$[(J/A) \times 100]$	38:6	174.4	16/6	. [
M. % Silt =	3114	27.4		
100-(K+L)	71° T	1011	1241411	
.v. %.No. 10 =	38.0			<u> </u>
1	70,0	10.2	8/5.	
Cup Number · '	HBP-Z]	A5P-18		
Dry Before Wash +		TAPPER	AAP-4	
Tore	121.0	14/9:2	. 421.3	
Dry After Wash + Tare	336.8	19912		
	38412	350.0	168.8.	
Tare Weight	10(2.8	1816	P92,5	
	219:2		1/10118	
	210	1350,1	B19,5	
1	28.0	199.8	191,5	i
1	38.0	10.5	18,5	
				1

SITE EVALUATION # 2

SAGE HILL VINEYARDS, LLC TEST PIT MAP NAPA COUNTY CALIFORNIA /"=50"

SITE EVALUATION DATE: NOVEMBER 7, 2007 APN: 032-010-059

ADDRESS: 1535 SAGE CANYON ROAD ST. HELENA, NAPA COUNTY CALIFORNIA .

ENV. HEALTH INSPECTOR: DARREL CHOATE

1541 Third Street Napa, Calif. 94559 v 707.252.3301 f 707.252.4966

NOV 16, 2007 4106024.0 test plts.ding 2 of 2

PIRES.

Napa County Department of Environmental Management

SITE EVALUATION REPORT.

Flease attach an 8.5° x 11° plot map showing the locations of all test pits triangulated from perimanent landmarks or known property comers. The map must be drawn to scale and include a North arrow, surrounding geographic and lopographic features, direction and % slope, distance to drainages, water bodies, potential areas for floeding, unstable landforms, existing or proposed roads, structures, willifies, domestic water supplies, wells, ponds, existing wastewater treatment systems and facilities.

Permit#: 032-010-(County Use Only) Reviewed by: Date: //

PLEASE PRINT OR TYPE ALL INFORMATION	
Property Owner	
MANUEL PIRES Property Owner Malling Address	☑ New Construction ☐ Addition ☐ Remodel ☐ Relocation ☐ Other:
214 HOGS BACK ROAD	☐ Residential - # of Bedrooms: Design Flow: gpt
OXFORD CT . OKUNS	☐ Commercial – Type:
1535 SAGE CANYOU ROAD	Sanitary Waste: gpd Process Waste: gpd
ST. HELEWA, CA 94559	Senilary Waste: gpd Process Waste; gpd
Primary Area Acceptable Soll Depth; 42 in Test plt #'s: 4,5,6 Soll Application Rate (gal. /sq. ft. /day): System Type(s) Recommended;	Signature (ext) Engineer, R.E.Y.S), Gentalist, Soil Scientist) Telephone Kumber (707), 252-330 Date Evaluation Conducted 1 - 7 - 0 Expansion Area Acceptable Soil Depth: 28 in. Test pit = s: 1, 2, 7, 8 Soil Application Rate (gal: /sq. fi. /day): System Type(s) Recommended:
Slope: %. Distance in negreet works and an and an and an and and an and an an and an	Slope: %. Distance to nearest water source; ft. fydrometer test performed? No D Yes E (attach results)

632-010-059 (11-7-07)

Tesi Pir#

PLEASE PRINT OR TYPE ALL INFORMATION

Horizon	Boundary	%Bock	Taytura	D4	. (Consistenc	;e :	T	T	·
(Inches)			,	Structure .	Side Wall	·Ped·	Wet	Pores	Roots ;	Mottling
1	C	10	4	SAB.	SH	VFRB	22	c b		
28-43"		1.6	ROCK"	:					CII	
.					:		, ' · ·		•	•
;	. '			-					·	· · ·
	•	·			İ					
						.				: :
	Depth (Inches) 0-28" 28-43"	Depth (linches) 0-28" C 28-43"	Depth (Inches)	Depth (Inches) O-28" C 10 L 28-43" Rock"	Depth (Inches) O-28" C O L SAB 28-43" "Rock"	Depth (Inches) Structure Side Wall O-28" C 10 L SAB SH SH SAGE ROCK"	Depth (Inches) O-28" C 10 L SAB SH VFRB 28-43" '' Rock"	Depth (Inches) O-28" C O L SAB SH UFRB SS 28-43" Network Texture Structure Slde Ped Wet Wall Ped Wet Network Texture Structure Slde Ped Wet Network Texture Structure Slde Ped Wet Network Network Texture Structure Slde Ped Wet Network Texture Texture Structure Slde Ped Wet Network Texture Tex	Depth (Inches) O-28" C O L SAB SH UFRB SS Ch 28-43" "Rock"	Depth (Inches) Color Col

Test Pit # 2

Horizon	Boundary	%Rock	Texture			Consistend	>e .	T -	T	, '
Depth (Inches)		·	I extrate	Structure	. Slde Wall	Ped	Wet	Pores	Roots ·	Mottling
0-43"	<u> </u>	2.0	<u> </u>	SAB.	SH	UFRI3.	SS	CM	0.1	ļ
43-51"		." Rod	K"				-	-11	CM	
	•									
<u> </u>										
							٠.			•
, .					.		: -	-		

Horizon Depth	Boundary	%Rock	Texture	Structure		Consisten	се	1.	· · · · ·	
(Inchés)		•		, or gointe	Side. Wall	Ped	Wet	Pores	Roots	Mottling
0-6"	C	40.	Ļ	SAB.	SH	UFRB	S5 .	CM.	CA	
6"-36"	· · · C	20	<u> </u>	WM.	·.UH·	VF	Vs	ËF.	I CM	
36-56"	.	· · · RC	CK"					-		<u> - =</u>
						,	:		·:	
			.						.	
			,]							•

Test Plt#

PLEASE PRINT OR TYPE ALL INFORMATION

Horizon Depth (Inches)	Boundary	%Rock	Texture	Structure	Side Wall	Consisten Ped	Ce :	Pores	Roots	Mottling
0-42		20	ÇL	MSB.	SH	FRB	S	chi.	-CM	
42-46	C	20	Ċ	WM	VH	UF	VS.	FK	F.F	
			, .		;					
				·	_ · [

Test Pit # 5

Harizon	Boundary	%Rock	Tanadaria	1		Consisten	ce.	T .	T	· ·
Depth (Inches)			Texture	Structure	. Side Wall	Ped	Wet	Pores	Roots ·	Mottling
0-(6.	ζ.	. 10	. L.	SAB	SH	VFRB	55	CIT	CM	. `
16-45".	· C -	. 10	CL	MS13.	SH	FRB	Ş	CM.	CM .	
45-48"	<u> </u>	10	Ċ	Wn.	VH	VF.	Vs.	FF	FF.	
<u> </u>								, 1 1	1	
			·				• .		.	
	<u> </u>	•		-		.		-,	·	:

Horizon	Boundary	%Rock	Texture	Structure		Consisten	ce	Τ,	T.:	
Depth (Inches)			, évinia		Side. Wall	Ped	Wet	Pores	Roots	Mottling
0-48"	<u> </u>	20	L	SAB.	SH	VFRB	\$5.	CM	CM	<u> </u>
48-50"			" R	ocks"				1		
		'							, · .	
	.				•					
.	:				.					• • •

`PLEASE PRINT OR TYPE ALL INFORMATION

Horizon Depth (Inches)	Boundary .	%Rock	Texture	Structure	Side	Consisten	ce Wet	Pores	Dont	· · · · · ·
1		, ,	<u> </u>		Wall	,	YVET	10163	Roots	Mottling
0-22"	C	20		SAB	SH	VFRIS	55	CM.		<u> </u>
22-43		20 1	ċ١	MSB				1517	CM	
100 -04				1(31)	SH	FRIS	S	CM	F.F	
43-50"	<u> </u>	.20	<u> </u>	WM	UH:	VF !	VS ·	FF	·FF.	
		.					<u> </u>		1-1-	,
								1	.	•
						:			E	
· . ' .				1					1	<u>.</u> .
<u> </u>			<u> </u>	·	. [

Test Pit# 8

. Horizon Depth	Boundary	%Rock	Texture	Structure		Consisten	ce.	T	1	1.
(Inches)				odaciase	. Slde Wall	Ped	Wet	Pores	Roots ·	Mottlin
0-43"	<u> </u>	20		SAB	SH	VERRS	SS	Cia		
]				1 4 (1:0)	133	I. CW	CM	<u> </u>
.			٠. ١	,						
		.,								
		·	.		•	•			-	
· · ·				:			··			:
	<u>· </u>		,		- '	. 1				

Horizon Depth	Boundary.	%Rock	Texture	Structure		Consister	1ce	T	· 	
(Inchés)			12311315	. Ottocinia	Side. Wall	Ped	. We't	Pores	Roots	Mottline
						1.		 	1	
			,	<u>'</u> -		 	 • • • • • • • • • • • • • • • • • • •			
	::	1				<u> </u>	. •			
					• • • •	1	ļ		·	
·					·	. ,	· .	•	٠:	
								,		•
			.].						

FROM : RGH CONSULTANTS

FAX NO. :7075441082

Nov. 15 2007 08:56AM P3/4

11/15/07 193/4

Geotechnical Geological And Laboratory Services

 R_{GH}

CONSULTANTS, INC.

November 15, 2007

File: 9187.19

Riechers Spence Job Number: 4106024.0

Riechers Spence Associates 1541 Third Street Napa, CA 94559

Subject:

Laboratory Test Results Soil Texture Analysis by

Bouyoucos Hydrometry Method

Pirus Due Dillegence

Dear Mr. Bray:

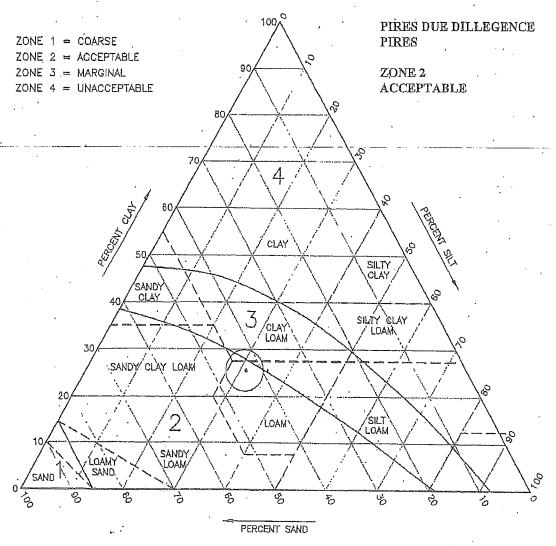
This letter transmits the results of our laboratory testing performed for the subject project. Your personnel delivered the sample on November 13, 2007

We performed a Soil Texture Analysis by the Bouyoucos Hydrometery Method with the following results:

	PRES 2
+ #10 Sieve	26.6 %
Sand	38.2 %
Clay	26.2 %
Silt .	35.6 %
Db g/cc	hw

We trust this provides the information required at this time. Should you have further questions, please call.

Yours very truly,


RGH-GEOTECHNICAL

Tarance E. McCue

Laboratory Manager

SOIL PERCOLATION SUITABILITY CHART

11/15/07 194/4

Instructions:

- Plot texture on triangle based on percent sand, silt, and clay as determined by / hydrometer analysis.
- Adjust for coarse fragments by moving the plotted point in the sand direction an additional 2% for each 10% (by volume) of fragments greater than 2mm in digmeter.
- 3. Adjust for compactness of soil by moving the plotted point in the clay direction an additional 15% for soils having a bulk—density greater than 1.7 gm/cc.

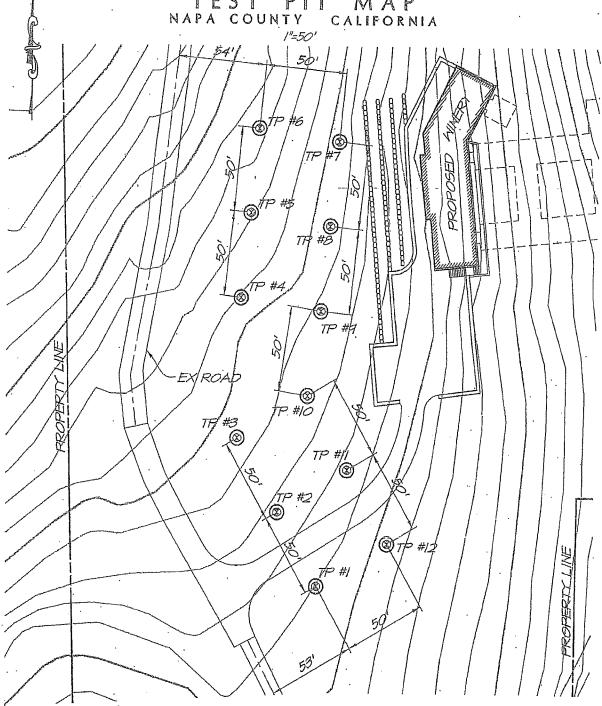
Note:

For soils falling in sand, loamy sand or sandy loom classification bulk density analysis will generally not affect suitability and analysis not neccessary.

 R_{GH}

11/15/07 /9 4/4

Geotechnical Geological And Laboratory Services


CONSULTANTS, INC.

FOUYOCOUS HYDROMETER

CLIENT Rioche	<u> केश्यक्</u> 11	LO	CATION Pi	ret Due Di	1 legence	JOB#	9187.19
	(T)				Ų	410	60240
SAMPLE NUMBER .	Pirus					.]	
DEPTH							
A. Oven dry wt.	50						
(grams)	150g						
B. Starting Time	11111				j		
(hr: min: sec:)	1407		<u> </u>				
C. Temp. @ 40 sec.	1200	•					
(degrees F)	70.2		<u> </u>	-	ļ · · · · ·	J	
D. Hydro reading	127M			1.		1 .	
@ 40 sec. (gm/l)	- 3 ()		1	+	}	ļ · · · _ · · · · · · · · · · · · · · ·	
E. Composite Corr. (gm/l)	61						
F. True Density @	<u> </u>	<u> </u>	 		 		
40 sec. (gm/l) D-E	30,9						
G. Temp. @ 2 hrs.				 	<u> </u>	,	
(degrees F)	70.9	,					
H. Hydro reading			<u> </u>			 	-
@ 2 hrs. (gm/l)	190				•		
I. Composite Corr.	1/01				<u> </u>	-	
(gm/l)	1-517	٠		٠.			1
J. True Density @	12/				· · · · · · · · · · · · · · · · · · ·	 	-
2 hrs. (gm/l) H-l	13,/						
K.' % Sand =	2027		1			ļ	
$100 - [(F/A) \times 100]$	38,2					ļ.:	
L % Clay =	50 0				τ .		
[(J/A) x 100]	26.2			,			
M. % Silt =	1200						
100±(K+L)	35,5						
N. % No. 10 =	26.60	'			•		
•	66.47					,	
Cup Number	Auste 1		T			· · · · · · · · · · · · · · · · · · ·	
Dry Before Wash +	1						
Tare	248.7				,		
Dry After Wash + Tare	129,1	7					
Dry Wi. Passing #10	119.60						<u> </u>
Tare Weight	PS.8		<u> </u>				
Dry Wt. Before Wash	162.9						
% Passing #10	73:4						-
% #10	20.0						ļ
, , , , , ,	MAD CVI		1	- 4	(, .

SITE EVALUATION #3

SAGE HILL VINEYARDS, LLC TEST PIT MAP NAPA COUNTY CALIFORNIA

SITE EVALUATION DATE: JANUARY 16, 2008 APN: 032-010-059

ADDRESS: 1535 SAGE CANYON ROAD ST. HELENA, NAPA COUNTY

CALIFORNIA

ENV. HEALTH INSPECTOR: DARREL CHOATE

1541 Third Street Napa, Calif. 94559 v 707.252.3301 f 707.252.4966

SITE EVALUATION REPORT.

Page 1 of 5

lease attach an 8.5" x 11" plot map showing the locations of all test pits langulated from permanent landmarks or known property corners. The map must be drawn to scale and include a North arrow, surrounding geographic and topographic features, direction and % slope, distance to drainages, water bodies, potential areas for flooding, unstable landforms, existing or proposed roads, structures, utilities, domestic water supplies; wells goods, existing wastewater treatment systems and facilities.

Permit.#:			,	
APN:	032	2-010-079	· ·	
(County Use Reviewed I	Only) by:	Date:		-

wells, ponds, existing wastewater treatment systems and facilities.	Reviewed by: Date:
PLEASE PRINT OR TYPE ALL INFORMATION	
Property Owner	
Manuel Pires Property Owner Mailing Address	D Other: □ Addition □ Remodel □ Relocation
City: Hogs Back RJ.	☐ Residential - # of Badrooms: Design Flow: gpd
OXFORD CT. 06478	☐ Commercial ~ Type:
1535 Sage Canyon Road	Sanitary Waste: gpd Process Waste: gpd □ Other:
St. Helen 2. CA 94559.	Sanitary Waste: gpd Process Waste: gpd
Evaluation Conducted By: Company Name Richer Stence & Association Rame Raddon Address Raddon Rame Rame Raddon Rame Signature (Civil Engineer, 25 H.S., Geologist, Soil Scientist)	
Lailing Address: 1541 Third St. City State Zip	Telephone Harriber (70.7) 2.52 - 3.71
	1/13/08
Primary Area	Expansion Area
Acceptable Soll Depth: 60 in. Test plt#s: 1236,78 Soll Application Rate (gal. /sq. ft. /day): 0.5	Acceptable Soll Depth; in. Test plt #'s: Soil Application Rate (gal: /sq. ft. /day);
System Type(s) Recommended: P \(\)	· · · · · · · · · · · · · · · · · · ·
Slope: 3/1% Distance to accordance of 1/1	System Type(s) Recommended: Slope: %. Distance to peace two to a control of the
intydrometer lesi nerformed?	Lindant day of the land of the
Bulk Density lest parformed?	Hydrometer test performed? No □ Yes □ (attech results)
Groundwater Monitoring Performed? No X Yes II (attach results)	Bulk Density test performed? No D Yes D (attach results) Groundweler Monitoring Performed? No D Yes D (attach results)
Site constraints/Recommendations:	to Do Hear Height (escrites)

Sage Hill 1/16/08 PLEASE PRINT OR TYPE ALL INFORMATION

	%Rock	Teyture	. Consistence					T	· · ·	
'(Inches)				. Structure	Side . Wall	Ped	Wet	Pores,	Roots	Mottling
0-24	·	5.	L	SSB.	L	VFRR	60	Ni 12	10.1	<u> </u>
24-5.6		40	SCL		2	FLR	0	CIM.	MM	
56-68		.40	C	MSR	SH:	FRR	· · · · · · · · · · · · · · · · · · ·	FE	T. F	
	-					1 1/2	13	11	·T.F	<u> </u>
		-			•					
		• •								: ;
	Depth (Inches) 0-24 24-56	Depth (Inches)	Depth (Inches) %Rock 0-24	Depth (Inches) Boundary %Rock Texture 0-24 C 5 L 24-56 C 40 SCL	Depth (Inches) 0-24 C S L SSB. 24-56 C 40 SCL MSB	Depth (Inches) Bouldary %Rock Texture Structure Side Wall 0-24 C S L SSB L 24-56 C 40 SCL MSB S 56-68 C 40 C MSB S#:	Depth (Inches) 0-24 C S L SSB. L VFRB 24-56 C 40 SCL MSB S FRB 56-68 C 40 C MSB SH: FRB	Depth (Inches) O-24 C S L SSB. L VFRB SS 24-56 C 40 SCL MSB S FRB S 56-68 C 40 L MSB SH: FRB VS	Depth (Inches) Ped Wet Pores, O-24 C 5 L SSB. L VFRB SS MM. 24-56 C 40 SCL MSB S FRB S. CF 56-68 C 40 C MSB SH: FRB VS FF	Depth (Inches) 0-24 C 5 L SSB L VFRB SS MM MM 24-56 C 40 SCL MSB S FRB S CF FF 56-68 C 40 C MSB SH FRB VS FF FF

Test Pit # 2.

et Pores	-	Mottling
SMM	1111	1 .
3 1/4//	MM	
MF	1/0/01	
1/017.	1.11	
- `	 	
	-	
		:

Test Pil #

Horizon	Boundary	%Rock	Texture	la:		Consistenc	Se	 T		
Depth (Inchés)		·	textrife	Structure	Side. Wall	Ped	Wet.	Pores	Roots	Mottling
0-36	Gi.	10	L	222	4	VFRR	CC	MM	MM.	
36-60	: G	30	SCL!	MSB.	2	FRR	VC 1	MF	FF	
						1 1	-12	7-(1	1 /	
					· .		:		.:	
-										

SAGE HILL WINERY 1/16/08 PLEASE PRINT OR TYPE ALL INFORMATION

Horizon	Boundary .	%Rock	Texture	Ctwitter	. 0	Consisten	: :	T		Mottling
Depth (Inches)		<u>, , , , , , , , , , , , , , , , , , , </u>	·	Structure	Side Wall	Ped	Wet	Pores	Roots	
	Lock				11011	• • •	· · ·	<u>. </u>		
			:						,	
							 .			
			-				·			
	· · · · · ·					-				
			··· ·							
			.		,					

Test Pit # 5.

			1.	, ,						
. Horizon Depth	Boundary	%Rock	Texture	Structure.		Consisten	≎e.		T	, '
(Inches)		,	, rextile	Strucțure	. Side Wall	Ped	Wet	Pores	Roots	Mottling
0-12	(.	10	1	C CD	AASII	-0-	ļ ·			
,		10	· <u></u>	97/R.		FRB.	22	MM	FF	
12-60!	LOCK									ļ
						<u></u>				,
				.						
1	٠	,					- '	• •		
			·			-		,		
			. '	. [- 1	1				
,	· T			:			, , .			<u> </u>
	· 					[.	-	. [1	

Horizon Depth	Boundary	%Rock	Texture	Structure.	[Consistend	e	j	· 	
(Inches)		·		Structure	Side. Wall	Ped	Wet	Pores	Roots	Mottling
0-60	Ç.	45:	SL	SSB	L	VFRR	<u>S</u>	ME	100	<u> </u>
	· ·				1	11177	· · ·	7/1	IT	
, .					•	,				
		1					÷			
						-			•:	
		•								·
								,	•	· ·

SAGE ITLL WINERY 1/16/08 PLEASE PRINT OR TYPE ALL INFORMATION

	{		7					•			
	Horizon Depth	Boundary	%Rock	Texture	Structure		Consisten	ce :	Ţ		·
	(Inches)				- CHACIDIE	. Side . Wall	Ped	Wet	Pores	Roots	Mottling
.	0-48	C	10	4	SCR	/	VFKB	60	11.5		
- 1	48-60		40	Cici	1100			77	MF		
-	10 00	,	70	366	1988	<u>S</u>	FRR.	:2:	FF	FF	
L				·		:				1. 1	
	. :	:					·				
T		•				-					
1							7				
Ĺ	<u> </u>		.						$\overline{}$		-
		,			<u></u>	<u>_</u>		.	. 1	1	

Test Pil#

Horizon Depth	Boundary	%Rock	Texture	Structure		Consistend	ce,		Ţ	
(Inches)				-daoiale	. Side Wall	Ped	Wet	Pores	Roots .	Mottling
0-60	\mathcal{L}	20	C//	CCD.	7 7 11	1.00-	0	· .		1 .
		20	300	-7742 .		VFRB.	7.	MF	FF	
							,	1		
] .].			-			ļ.				
			·			. 1		-		,
,	• • •	. 1	.	·				·	· · · · · · · · · · · · · · · · · · ·	
					[٠.	-		
,		.								- : [
	` +					[•	1	.	}	

Horizon Depth	Boundary	%Rock	Texture	Structure		Consisten	Ge	T.:	<u>.</u> : , :	·
(Inchés)		٠.		03 00 10 19	Side. Wall	Ped	Wet	Pores	Roots	Mottling.
0-38	C	20	7	SSR	1	1. FRR	35.	MM	CC	
38-42	- RA	CK-				· · · · · · · ·	. 00.	1/0//01	IFF	
		•		· .						
		1	,		· · · · · · · · · · · · · · · · · · ·		÷	,		
						_ ,	·	· · ·	•:	
							_	,		
						1	1			

SAFHILL WINERY 1/16/08 PLEASE PRINT OR TYPE ALL INFORMATION

	,					•					
	Horizon Depth	Boundary .	%Rock	Texture	Structure		Consisten	ce :	T .		·
	(Inches)					Side Wall	Ped	Wet	Pores	Roots	Mottling
٠ [0-14	· · _ C	5	4	372	7	VFKB	1/0	MIA		ļ
	14-68	- ROC	<i>-</i>				11177	1/0	1.4 M.	MM	
Ç	100	NUC		·							
-				.		:					
-	<u> </u>	<u>'</u>									· .
							-				
F			· · · · · · · · · · · · · · · · · · ·								
L_				<u> </u>	<u> </u>			.	1		

Test Pit# //

, Horizon Depth	Boundary	%Rock	Texture	Structure		onsistend	e.			·
(inches)		,		Stariate	. Slde Wall	Ped	Wet	Pores	Roots ·	Mottling
5-72	-Ro	CK							,	
			· · · · ·	•	-					
		- 1					·			
						.				
			.						·	· · ·
.		-								
				:					.	;
	·		.						-	

Horizon Depth	Boundary	%Rock	Texture	Structure		Consistenc	е	1.	T	T
(Inchés)			, seeding	OTTOPEDIE	Side. Wall	Ped	Wet	Pores	Roots	Mottlin
772	- PD	r			11.011			<u> </u>		
	- 100	<u></u>				•		-	1.	<u> </u>
	.	·				 	· · · ·	 		
				· [·	٠. ١					
ļ		,	. 1						÷	
						1	. 1			
]		' f	.						
		· .			·			_	•:	
			1							
	1		+							
<u> </u>		.]	.]			}	1.		1	

FROM : RSH CONSULTANTS

FAX NO. 17875441080

Jan. 24 2008 10:10AM Pir6

JAN 2 4 2008

/29/8 Pg//b

Geotechnical Geological And Laboratory Services

CONSULTANTS, INC.

GEOTECHNICAL LABORATORY

FACSIMILE COVER SHEET

TO: RANGEL GONZALES

REG SAGE HILL SITE

FAX# 152-496

PROM: TERRY MECLA

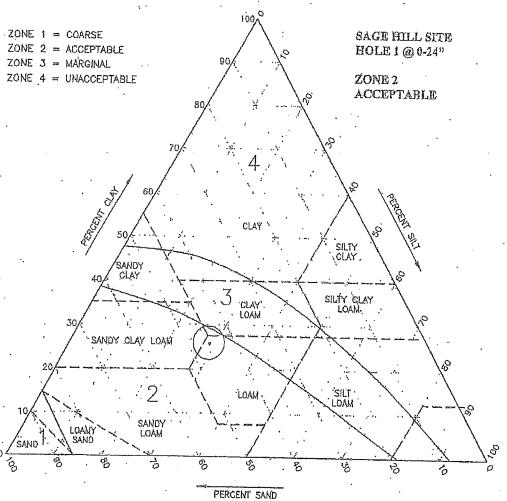
JOB NUMBER:

4106024

COMMENTS:

THANKS

TOTAL PAGES INCLUDING THIS COVER SHEET_


HARD COPY TO BE SENT BY MAIL: ____NO

YES

RGH 1305 NORTH DUTTON, SANTA ROSA, CALIFORNIA 95401
PHONE: 707-544-1072 FAX: 707-544-1082
E-mail tmccne@rgligeo.com

SOIL PERCOLATION SUITABILITY CHART

1/24/08

Instructions:

- 1. Plot texture on triangle based on percent sand, silt, and clay as determined by hydrometer analysis.
- 2. Adjust for coarse fragments by moving the plotted point in the sand direction on additional 2% for each 10% (by volume) of fragments greater than 2mm in diameter.
- 3. Adjust for compactness of soll by moving the plotted point in the clay direction an additional 15% for solls having a bulk-density greater than 1.7 gm/cc.

Note:

For salls falling in eand, loamy sand or sandy loam classification bulk density analysis will generally not affect sullability and analysis not necessary.

FROM : RGH CONSULTANTS

FAX NO. :7075441082

Jan. 24 2008 10:11AM P3/6

1/24/08

Geotechnical Geological And Laboratory Services

 R_{GH}

CONSULTANTS, INC.

January 24, 2008 File: 9187.20

Riechers Spence Job Number:

Riechers Spence Associates 1541 Third Street Napa, CA 94559

Subjects

Laboratory Test Results
Soil Texture Analysis by
Bouyoucos Hydrometry Method
SAGE HILL SITE

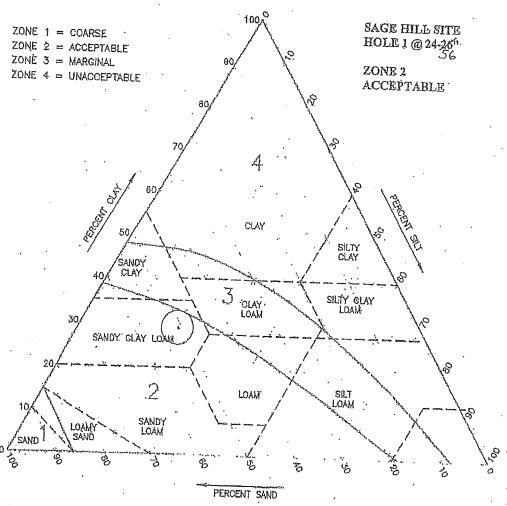
Dear Mr. Bray:

This letter transmits the results of our laboratory testing performed for the subject project. Your personnel delivered the sample on January 18, 2007

We performed a Soil Texture Analysis by the Bouyoucos Hydrometery Method with the following results:

SE SECONOMINA SE	
+#I0 Sieve	[Tallendar State Tallendar Tallendar
	62.7 %
Sand	34.6 %
Clay	. 25.4 %
Silt	40.0 %
Db g/cc	***

We trust this provides the information required at this time. Should you have further questions, please call.


Yours very truly,

RGH GEOTECHNICAL

\ Orawe E. McCue

Laboratory Manager

SOIL PERCOLATION SUITABILITY CHART

Instructions:

- 1. Plot texture on triangle based on percent sand, silt, and clay as determined by
- Adjust for coarse fragments by moving the plotted point in the sond direction an additional 2% for each 10% (by volume) of fragments greater than 2mm in
- 3. Adjust for compactness of soil by moving the plotted point in the clay direction an additional 15% for soils having a bulk-density greater than 1.7 gm/cc.

For soils falling in sond, loamy sand or sandy loam classification bulk density analysis will generally not affect suitability and analysis not neocessary.

1/24/08

Geotechnical Geological And Laboratory Services

CONSULTANTS, INC.

January 24, 2008 File: 9187.20 Ricchers Spence Job Number:

Riechers Spence Associates 1541 Third Street Napa, CA 94559

Subject:

Laboratory Test Results Soil Texture Analysis by Bouyoucos Hydrometry Method SAGE HILL SITE

Dear Mr. Bray:

This letter transmits the results of our laboratory testing performed for the subject project. Your personnel delivered the sample on January 18, 2007

We performed a Soil Texture Analysis by the Bonyoucos Hydrometery Method with the following results;

***************************************	•
+#10 Sieve	41.3 %
Sand	44.0 %
Clay	. 27.4 %
Silt	28.6 %
Db g/cc	

We trust this provides the information required at this time. Should you have further questions, please call.

Yours very truly,

RGH GEOTECHNICAL

Tarance E. McCue

Laboratory Manager

1/24/08 201echnical 6/6

Geotechnical
Geological
And Laboratory Services

KGH

CONSULTANTS, INC.

BOUYOCOUS HYDROMETER

CLIENT Reych	este (milenca)	LOCATION	5 mm 11 mm		•	0,000 ==
	(Red	O R	DAGE HILL		JOB#_	9187,20
SAMPLE NUMBER	Hula 1	I hale I	-	1,		
DEPTH ·	24-264	5-14	73	+	ļ	
A. Oven dry wt.	1 "			 		
(grams)	500	500	1			1 1
B. Starting Time	1001			1		
(hr: min: see:)	1341	1339				
C. Temp. @ 40 sec.	641	1 ' -				
(degrees F) D. Hydro reading	1014	63:8				
@ 40 sec. (gm/l)	3.2.2					
E. Composite Corr.	1 23 m, t 7	90.0	<u> </u>		•	1
(gm/l)	7.3	1 -7.3				
F. True Density @						I I
40 sec: (gm/l) D-E @	28,0	132,7		1		
G. Temp. @ 2 hrs.			·			
(degrees F)	164.0	8.29		1		
A. Hydro reading	. 1.	(27 1X				
@ 2 hrs. (gm/I)	21,0	200	1	1		
I. Composite Corr.			 			
(gm/i)	1-7.3	-7,3		.		
Ji True Density @	1.0		·			
2 hrs, (gm/l) H-I	13,7:	112,7		ļ.		
K. % Sand =						
$100 - [(F/A) \times 100]$	144,0	34,6		1		
L. % Clay =	27.1/					
[(J/A) x 100]	27.4.	25.4				.
M. % Silt =	28.6	1/2				
100-(K+L) N. % No. 10 =	(40.0				
14' \ \(\) 140' \(\) =	41.3	62.7				
	1:11/2	16217				<u>'</u> .
Cup Number	A-31	A-11				
Dry Before Wash +	1					
Tare Dry After Wash + Tare	296,2	329./		1		
A	186.7	1236.9				
Dry Wt. Passing #10	10915	92.2				
Tore Weight	109:6	187.9				
Dry Wt. Before Wash	186.	1242.2			·	
% Passing #10	53.7.					
% #10 .	41.3	137.3				
		1041+1	N			

Appendix C

Advantex AX-100 Treatment System Calculations

Sizing Calculation for AX-100

- Peak daily flow = 1,000 gpd
- Based on Orenco recommendations for winery process waste, the maximum allowable
 loading per square foot of AX-100 pod footprint area = 5.0 gpd / sf
- Minimum required treatment area = 1,000 gpd / 5.0 gpd / sf = 200 sf
- Each AX-100 pod has a footprint of 100 square feet.
- Number of AX-20 pods required = 200 sf / 100 sf = 2 pods
- Orenco specifies a PF500712 pump for the AX-100 system. One pump will be installed for each pod and the pods will be dosed simultaneously. A pump curve is attached for reference.

Timer Setting Calculation for the AX-100

- Peak daily flow = 1,000 gpd
- Recirculation Ratio = 12
- Total AX-100 flow through = $(12 + 1) \times 1000 = 13,000$ gpd
- Total flow per pod = 13,000 / 2 = 6,500 gpd
- Number of cycles per day = 72 (3 doses per hour to prevent drying of the textile)
- Total flow per dose = 6,500 gallons / 72 doses = 90.3 gallons per dose
- Design pump flow rate = 31.4 gpm (from Orenco pump specs, attached)
- On time per dose = 90.3 gallons per dose / 31.4 gpm = 2.88 minutes (2 minute 53 seconds).
- Off time per dose = 17 minutes 7 seconds
- Override off time = 7 minutes 7 seconds (doubles number of doses per hour)

Recirculation Valve and Float Setting Calculations for AX-100 Recirculation Tank

Per Orenco recommendations, the recirculation tank will be 2000 gallons.

• Tank Data:

Jensen HS-2000 non-traffic rated holding tank Capacity to Inlet = 2,000 gallons Inside Height to Invert = 54" Overall Inside Height = 60" Gallons per inch = 2,000 gallons / 54" = 37.0" gpi

(Note: Reference datum for all float settings is the tank bottom, at 0")

• 100% Discharge Level / Float Ball Center = 43"

This design uses a model MM4FRP Recirculation Ball Valve. This valve is to be installed so the center of the float ball is at the desired 100% discharge water level, which is the water level when the cone, lifted by the float ball, becomes fully seated in the valve body and prevents flow from recirculating back to the tank, forcing all flow to discharge. (See diagram on attached product data sheet)

Orenco recommends the 100% discharge level be set to allow a specific amount of emergency tank storage (typically 1 day's flow) or alternatively, in the absence of specific storage requirements it can be set at a level equal to about 80% of the tank volume to the inlet invert. This design incorporates duplex pumps therefore emergency storage is not a governing factor in the design and the 80% volume level is used for the design.

54" (invert) x
$$80\% = 43.2$$
" (set at 43")

• Override timer = 45"

This float is set 2" above the 100% discharge level. Orenco recommends this 2" clearance to allow surge capacity and reduce the frequency of pump override cycles, which will allow the system to provide more consistent treatment.

$$43$$
" (100% discharge) + 2" (Clearance) = 45 "

High Level Alarm = 47"

This float is set 2" above the override timer float. This 2" clearance reduces the chance of nuisance high water alarms.

$$45$$
" (override float) + 2" (Clearance) = 47 "

Note: Per Napa County regulations, the 1-day storage capacity above the high water alarm is waived for the processing tank as long as the system features duplex (redundant) pumps. This design still provides the following storage above the high water alarm to the inside tank top:

60" (inside height)
$$-47$$
" (high level) = 13"

13" (storage height) x 37.0 gpi = 481 gallons (about ½ day's flow)

• Redundant off / low level alarm = 38"

This float is set far enough below the 100% discharge level to allow for normal tank drawdown during dosing cycles without causing nuisance low level alarms. Orenco recommends a minimum of about 5" clearance:

Note that this is also above the pump minimum liquid level of 22".

Pump Selection for a Pressurized System

Project: AX100 -

Input Parameters

Orifice Size 5/32 inches
Residual Head at Last Orifice
Orifice Spacing 2.0 feet
Number of Laterals per Cell
Lateral Length 7.0 feet Lateral Line Size 1.00 inches Lateral Pipe Class/Schedule Distributing Valve Model None Manifold Length Manifold Line Size Manifold Pipe Class/Schedule **1.25** Inches 40 5.0 feet Lift to Manifold Lift to Manitoid 5.0 reet 20,0 feet 20,0 feet 20,0 inches Transport Line Size 40 inches Transport Pipe Class/Schedule Discharge Assembly Size Flow Meter None inches 'Add-on' Friction Losses 40.0 feet

Calculations

Minimum Flow Rate per Orifice
Number of Orifices per Zone
Total Actual Flow Rate
Number of Lines per Zone
% Flow Differential 1st and Last Orifice
Lift to Manifold
5.0 feet 0.1 % 5.0 feet 10.5 feet Residual Head at Last Orifice Head Loss in Laterals
Head Loss Through Distributing Valve
Head Loss in Manifold
Head Loss in Transport Pipe
Head Loss Through Discharge 0.0 feet 0.0 feet 0.2 feet 0.3 feet Head Loss Through Flow Meter
'Add-on' Friction Losses
'Add-on' Friction Losses
'Add-on' Friction Losses

Total Flow Rate 31.4 gpm TDH 58.1 feet

Orenco Systems' Incorporated

814 AIRWAY AVENUE

SUTHERLIN, OREGON

97479

TOLL FREE:

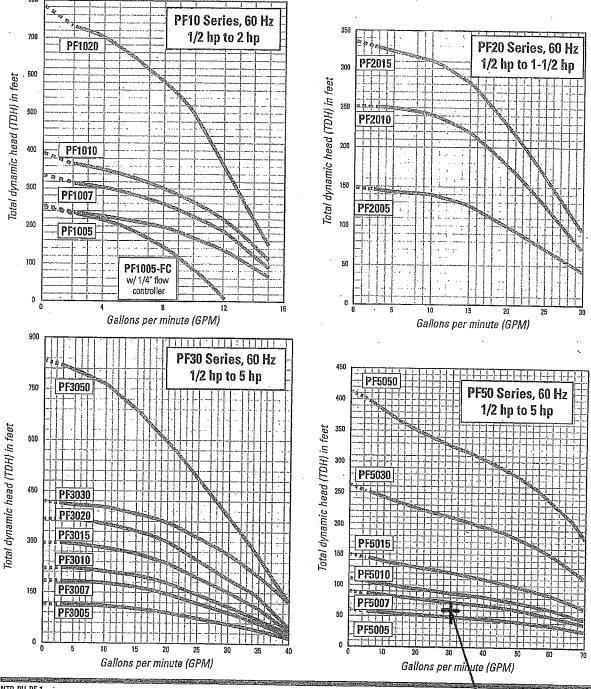
(800) 348-9843

· TELEPHONE:

(541) 459-4449

FACSIMILE:

(541) 459-2884


www.orenco.com

PF Series High-Head Effluent Pumps (continued)

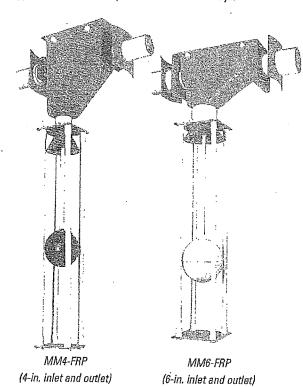
Using a Pump Curve

A pump curve helps you determine the best pump for your system. Pump curves show the relationship between flow (gpm or L/sec) and pressure (total dynamic head, or TDH), providing a graphical representation of a pump's optimal performance range. Pumps perform best at their nominal flow rate — the value, measured in gpm (or L/sec), expressed by the first two numerals in an Orenco pump nomenclature. At low flow rates, TDH varies from pump to pump, so it is represented as a dashed line in the pump curves. For most accurate pump specification, use Orenco's PumpSelect** software.

60 Hz Models

NTD-PU-PF-1 Rev. 1.6, © 7/08 Page 4 of 6

© 2008 Orenco Systems® Inc.


131.40pme SB.DTDH

NM_-FRP Recirculating Ball Valve

Teehnical Data Sheet

Applications

The MM_-FRP Recirculating Ball Valve controls the circulation of effluent from the AdvanTex pod to the processing tank. When the liquid in the tank rises to a predetermined maximum bypass level, the valve closes, diverting effluent past the processing tank. When the liquid level is low, the valve remains open, allowing effluent to return to the processing tank for recirculation. As the liquid level approaches the maximum bypass level, effluent splits and flows both ways.

Features/Specifications

To specify this product, require the following:

- Capability of being adjusted in the field to maintain desired tank water level
- · Corrosion-resistant construction
- Capacity for flows up to 125 gpm (MM4-FRP) or 225 gpm (MM6-FRP)
- Design that allows installation in a 30-in. PVC riser (MM6-FRP) or either a 24-in. or 30-in. riser (MM4-FRP)

Standard Models

MM4-FRP, MM6-FRP

Physical Specifications

imensions	
MM4-FRP	MM6-FRP
71 in. (1807 mm)	77.5 in. (1970 mm)
49 in. (1243 mm)	57 in. (1456 mm)
17.375 in. (441 mm)	25.375 in. (644 mm)
4 in. Sch. 40 PVC	6 in. Sch. 40 PVC
	71 in. (1807 mm) 49 in. (1243 mm) 17.375 in. (441 mm)

Materials of Construction

	NW4-FRP	MM6-FRP
Body and cone	Fiberglass-reinforced polyester	Fiberglass-reinforced polyester
Float	Polyethylene	ABS
Float cage	Fiberglass-reinforced polyester plates and PVC pipe	Fiberglass-reinforced polyester plates and PVC pipe
Float cage and bar	PVC	. PVC
Quick-disconnect mounting brackets	ABS	PVC and fiberglass- reinforced polyester
Latches	. No latches	Stainless steel

Orenco Systems'

Changing the Way the World Does Wastewater

1-800-348-9843 www.orenco.com

Appendix D

Pressure Distribution System Field Sizing Worksheet

Project Information	
RSA Project Number:	4106024.0
Job Description	Sage Hill Winery
Prepared By:	Marc Foster
Date:	March 24, 2006

A. System Design Flow	
A1 Total wastewater flow for field design (333 SW + 667 PW)	1000 gpd

B. Primary Dispersal Field Sizing Calculation (Gravel French)

Part 1, Trench Infiltration Area Calculation

Calculates the trench infiltration area per lineal foot based on the available soil depth to a limiting condition and the proposed trench dimensions. Infiltration area is defined as the total sidewall from the top of the lateral to the bottom of the gravel.

B1	Enter available native soil depth (from site evaluation data)	60:0 in
	Site evaluation date: 16-Jan-08	Please considering a considering
	Pit numbers: 2, 3, 7, 8	
B2	Enter depth of fill to be imported (12" maximum)	12-0 in
В3	Enter depth of separation to limiting condition (min. 24" for PTE or 36" for STE)	36:0 in
B4	Enter depth of soil cover over gravel (12" minimum, 18" maximum)	1270 in
B5	Enter depth of gravel cover over lateral (2" minimum)	2.0 in
В6	Total available sidewall depth $(=B1 + B2 - B3 - B4 - B5)$	22.0 in
B7	Usable sidewall depth (18" maximum)	18.0 in
B8	Total available infiltration area per lineal foot of trench (both sides)	3.0 sf/lf

Part 2. Total Lateral Length Calculation

Calculates the required lateral length from the total flow and the application rate for the given soil type.

		· -
B9	Depth of native soil from original grade to bottom of trench	20.0 in
B10	Enter sidewall soil type and structure (use soil type within depth B9)	SCL/SSB, L/SSB, SL/SSB
B11	Enter application rate per SF of sidewall (From Napa Co. Guidelines Table 5)	0.8 gpd/sf
B12	Application rate per lineal foot of trench $(= B8 \times B11)$	2.4 gpd/lf
B13	Total primary dispersal field lateral Length $(=A1/B12)$	417 ft

Part 3, Total Field Area Calculation

Calculates the approximate field footprint area based on the total lateral length and trench spacing. Note that this is just an estimate, and the final footprint may be larger or smaller depending on the actual distribution lateral layout.

<u> </u>		
B14	Enter trench width	18.0 in
B15	Enter maximum slope in primary dispersal field	30%
B16	Enter maximum side-to-side trench spacing (from Napa Co. Guidelines Table 8)	16.0 A
	Approximate primary dispersal field footprint area $(=B13 \times (B14 + B16))$	7292 sf
Motors		

12" fill to be placed over pit 2, which only has 20" of native soil suitable for the 0.8 gpd/sf application rate. In all other pits the sidewall soil layer is deeper and only requires 8" of fill to maintain the same application rate. In those pits the application rate is based on soil within the top 24" of native soil.

Pressure Distribution System Field Sizing Worksheet

C. (Optional) Reserve Dispersal Area Lateral Length Calculation (Gravel Trench)			
Part 1, Trench Infiltration Area Calculation Calculates the trench infiltration area per lineal foot based on the available soil depth to a limiting condition and the proposed trench dimensions. Infiltration area is defined as the total sidewall from the top of the lateral to the bottom of the gravel.			
C1 Enter available native soil depth (from site evaluation data)	60.0 in		
Site evaluation date: 21-Mar-07			
Pit numbers: 2, 4, 6, 7			
C2 Enter depth of fill to be imported (12" maximum)	8.0 in		
C3 Enter depth of separation to limiting condition (minimum 24" PTE or 36" STE)	36.0 in		
C4 Enter depth of soil cover over gravel (12" minimum, 18" maximum)	25 - 12.0 in		
C5 Enter depth of gravel cover over lateral (2" minimum)	2.0 in		
C6 Total available sidewall depth $(=CI+C2-C3-C4-C5)$	18.0 in		
C7 Usable sidewall depth (18" maximum)	18.0 in		
C8 Total available infiltration area per lineal foot of trench (both sides)	3.0 sf/lf		
Part 2, Total Lateral Length Calculation Calculates the required lateral length from the total flow and the application rate for the given soil type.			
C9 Depth of native soil from original grade to bottom of trench	24.0 in		
C10 Enter sidewall soil type and structure (use soil type within depth C9)	CL/SSB		
C11 Enter application rate per SF of sidewall (From Napa Co. Guidelines Table 5)	0.6 gpd/sf		
C12 Application rate per lineal foot of trench (= C8 x C11)	1.8 gpd/lf		
C13 Total reserve dispersal field lateral Length (= A1 / C12)	556 ft		
Part 3, Total Field Area Calculation Calculates the approximate field footprint area based on the required trench spacing. Note that this is just an estimate and that trench spacing may vary due to varying slopes. The field size may also vary depending on the distribution lateral layout required to avoid obstructions.			
C14 Enter trench width	18.0 in		
C15 Enter maximum slope in reserve dispersal field	10%		
C16 Enter maximum center-to-center trench spacing (from Napa Co. Guidelines Table 8)	8.0 ft		
C17 Approximate reserve dispersal field footprint area $(=C13 \times (C14 + C16))$	5278 sf		

Pressure Distribution System Pump Sizing Worksheet

Project Information				
RSA Project Number:	4106024.0			
Job Description	Sage Hill Winery			
Prepared By:	. Marc Foster			
Date:	April 29, 2009			

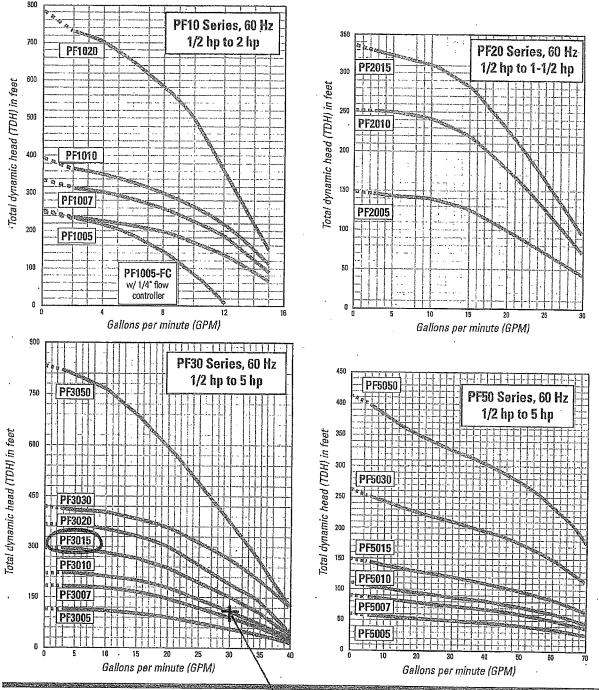
A. Distribution Lateral ripe Sizing
Calculates the lateral pipe size for a given orifice size and orifice spacing. Line size is selected to minimize head loss in the
longest lateral to about 0.5 feet to ensure even flow between all orifices. Head loss is calculated using Hazen Williams and
the flow of the hardward of the Internal This would be about the first CO ()

longest lateral to about 0.5 feet to ensure even flow between all orifices. Head loss is calculated using Hazen Williams and the flow at the beginning of the lateral. This result is reduced by a factor of 0.4 to compensate for the fact that the flow, and associated head loss, reduce with each successive orifice.

A1	Enter length of longest lateral	72.0 ft
A2	Enter lateral nominal diameter	1,50 în
A3	Actual lateral inside diameter (from pipe manufacturer data for SCH 40 PVC)	1.610 in
A4	Enter orifice spacing	36 in
A5	Number of orifices on longest lateral $(=A1/A4)$	24.0 orifices
A6	Enter orifice diameter	0.125 in
A7	Enter desired residual head at last orifice ("squirt height")	5,0 ft
A8	Flow at last orifice for given residual head (from orifice equation with $C_d = 0.63$)	0.43 gpm
A9	Total flow at beginning of lateral $(= A5 \times A8)$	10.4 gpm
· A10	Head loss in longest lateral (using Hazen-Williams, C=130, flow from A9, x 0.4 factor)	0.275 ft
A11	Final design lateral size	1.50 in

B. Dos	ing Volume and Timer Settings			
Calculai	es the dosing volume and pump timer settings so the dose volume is between the recommende	d minimum and		
maximui	n values.			
Recomn	nended minimum and maximum dose:			
B1	Total daily flow (from field sizing worksheet)	1000 gpd		
B2	Total lateral length (from field sizing worksheet)	417 ft		
B3	Enter number of zones	2		
B4	B4 Theoretical lateral length per zone $(=B2/B3)$			
B5	B5 Minimum recommended dose volume (= 5 x lateral pipe volume in one zone)			
В6	Maximum recommended dose volume (= 20% of daily flow to one zone)	100.0 gal		
Actual d	lesign dose:			
В7	B7 Total daily flow (from field sizing worksheet)			
B8	B8 Enter desired number of doses per day			
B9	Total volume per dose $(=B7/B8)$ 100 gals is compromise between min/max	100.0 gal		
Pump ti	mer settings:			
B10	Lateral length per zone (from line B4)	209 ft		
B11	Orifice spacing (from line A4)	36 in		
B12	Orifice flow rate (from line A8)	0.43 gpm		
B13	B13 Number of orifices per zone $(=B10/B11)$			
B14	Total dosing flow rate per zone $(=B12 \times B13)$	30.3 gpm		
B15	Total time to complete each full timer on/off cycle (= 1440 minutes per day / B8)	02:24:00 hh:mm:ss		
B16	Pump On Time per cycle $(=B9/B14)$	00:03:18 hh:mm:ss		
B17	Pump Off Time per cycle $(=B15 - B16)$	02:20:42 hh:mm:ss		

Pressure Distribution System Pump Sizing Worksheet


C He	ad Loss & Pump s	Sizion			V Visited and the processing of the con-
Calcula	tes the total dynamic	head loss as the sum of st	atio life and life I	osses, losses from compone	
meters.	and the desired resid	neua 1033 as me sum oj su hval head	анс нуг, ѕирргу те г	osses, losses from compone	ents such as flow
Static I		nur ness.			
C1	Enter height from p	nump to tank outlet			CONTROL OF THE PARTY OF THE PAR
C2		nge from tank outlet to fur	thest PD lateral (if	downhill enter (1)	7,0 ft
C3	Total static lift	ango arom tama outdot to tan	these I D lateral . (II	downmin enter 0)	12.0 ft
		s (Equivalent Length Me	thod)		19.0 ft
C4	Enter supply line n		thou)		A PAGE
C5		inside diameter (from pipe	manufacturer data)		1.50 m
C6	Supply line cross-se	ection area (calculated)	managaciarer aaaa)		. 1.610 in
C7	Dosing flow rate (fi		<u> </u>		0.017 sq ft
C8	Flow velocity (= C			,	30.3 gpm
C9		oly line from pump to end	of farthest lateral		4.0 ft/sec
C10	Enter equivalent ler	ngths of fittings (don't inclu	ude componente com	ated in next section	220 ft
	1	Fitting:	Otv:	Eq. len. of each.:	
-		deg elbow	<u> </u>	<u>Eq. 1en. 0f each.:</u> 7.4	20.60
		deg elbow	6	2.1	29.6 ft
		ng valve (gate)		1.2	12.6 ft
	Control of the contro	eck valve	5	Section 1992 and 1992	1.2 ft
				三直5	30.0 ft
C11	Total equivalent len	gth of pipe and fittings (=	CO + all fittings line	-d+-C10)	
C12	Total supply line h	ead losses (using Hazen-W	Villiams C-120)	ea in C10)	293 ft
		pecific Components	vinianis, C=150)		20.3 ft
	Pump discharge ass		Orenço HV150B0		
	Flow meter		1.5" Sensus SR		3.0 ft
	Distribution valve		Orenco 6402		7.0:0
C16			Ordico 0902		70n
C17	。				
C18					
	Total head losses fo	om specific components			
ateral l	Losses	om specific components			17.0 ft
		lateral (from line A10)			
		d at last orifice ("squirt hei	ight") (from line 47)		0.3 ft
otal Dv	namic Head	ress strates (squart tier	Sur) (I OIN TIME A1)		5.0 ft
		$\int (=C3+C12+C19+C$	-20 + C211		
C22 Total Dynamic Head $(= C3 + C12 + C19 + C20 + C21)$ C23 Safety Factor				61.6 ft 1.25	
					77.0 ft
ump Da	nta (attach the pum	p performance curve)			·
	Manufacturer: Orenco Systems				
	Model #: PF301512				
	Hp: 1.5 Hp				
	Volts / # phases:	230 volt / 1 phase			

PF Series High-Head Effluent Pumps (continued)

Using a Pump Curve

A pump curve helps you determine the best pump for your system. Pump curves show the relationship between flow (gpm or L/sec) and pressure (total dynamic head, or TDH), providing a graphical representation of a pump's optimal performance range. Pumps perform best at their nominal flow rate — the value, measured in gpm (or L/sec), expressed by the first two numerals in an Orenco pump nomenclature. At low flow rates, TDH varies from pump to pump, so it is represented as a dashed line in the pump curves. For most accurate pump specification, use Orenco's PumpSelect[™] software.

60 Hz Models

NTD-PU-PF-1 Rev. 1.6, © 7/08 Page 4 of 6

77 TOH & 30 GM

© 2008 Orence Systems® Inc.

float should also be set far enough below the high water alarm float to prevent nuisance alarms (typically 2"-4" clearance).

The working volume is estimated as the difference between the inflow and outflow during the hours in which most of the facility's water use will occur. For this project this period is assumed to be a typical 8 hour working day.

Inflow = 1000 gallons (peak day flow)

Outflow = $8/24 \times 1000 \text{ gallons} = 333 \text{ gallons}$ (outflow over 8 hours)

Working volume = 1000 - 333 = 667 gallons

Working depth = 667 gallons / 37 gpi = 18"

Override = 32" (Timer On/Off) + 18" (Working depth) = 50"

• High Level Alarm = 54"

No minimum emergency storage is incorporated into this design for two reasons:

- 1. This design uses duplex pumps to allow continued operation if one pump fails.
- 2. In the event of a power failure, the upstream pumps will be inoperative and this tank will not receive any flow.

To warn of effluent backing up through the inlet, this float is set even with the tank inlet invert.

High level = 54" (Height to invert)

This level also provides adequate clearance above the override float to avoid nuisance alarms.