"G"

Wastewater Feasibility Study

WASTEWATER FEASIBILITY STUDY

BOYD FAMILY VINEYARDS

4042 Big Ranch, Napa, California APN 036-190-003

Project No. 2017120 October 20, 2017

TABLE OF CONTENTS

	ROJECT OVERVIEW	
٧	VINERY PROCESS WASTEWATER MANAGEMENT SYSTEM	1
	PROCESS WASTEWATER CHARACTERISTICS	1
	PROCESS WASTEWATER DESIGN FLOWS	3
	SOIL INVESTIGATION RESULTS	
	PROCESS WASTEWATER CONVEYANCE, TREATMENT, AND DISPOSAL	4
S	OLID WASTES	8
	SANITARY SEWAGE CHARACTERISTICS	9
	WINERY SANITARY SEWAGE DESIGN FLOWS	
	WINERY SANITARY SEWAGE CONVEYANCE, TREATMENT AND DISPOSAL	10
0	THER CONSIDERATIONS	11
	ODOR CONTROL	11
	GROUNDWATER CONTAMINATION	12
	PROTECTION	12
	ALTERNATIVE COURSES OF ACTION	12

LIST OF ENCLOSURES

Enclosure A:

Vicinity Map

Overall Site Plan (UP2) Wastewater Site Plan (UP4) Wastewater System Schematic

Enclosure B:

Sanitary Sewage Flow Estimates

Process Wastewater Flow Estimates

PD & Subsurface Drip Disposal Field Sizing

Irrigation Holding Tank Sizing

Irrigation Balance Climate Data

Enclosure C:

Site Evaluation Data

PROJECT OVERVIEW

Boyd Family Vineyards is applying for a Use Permit for the Boyd Family Vineyards new winery facility to be located at 4042 Big Ranch Road, in Napa (APN: 036-190-003). The project site is located approximately 0.3 miles southwest of the Napa River, and 1.7 miles northeast of Highway 29/128. The project site extends over a gently sloping terrain along the valley floor, sloping northeast at approximately 3% or less towards the Napa River.

Boyd Family Vineyards is made up of a single 20.88 acre parcel, with approximately 13.68 acres of existing vineyard. The parcel has an existing residence with a guest cottage and garage, a barn, a shed, and a well pump house with a water supply tank. The Use Permit Application includes the construction of a new 4,200 square foot winery with a production capacity of 30,000 gallons per year. The new winery will require 2 full-time employees, with 6 full-time employees during crush and marketing events, and anticipates 15 maximum visitors per day with an average of 40 visitors per week. The existing sanitary sewer leach field system will continue to be used for disposal of the sewer from the exiting residence and guest house on the site. Summit Engineering has prepared the following Wastewater Feasibility Study outlining the process wastewater (PW) and sanitary sewage (SS) flows from the proposed winery and the associated treatment and disposal systems.

WINERY PROCESS WASTEWATER MANAGEMENT SYSTEM

To accommodate a proposed annual production of 30,000 gallons of wine, the new PW management system will include a gravity collection system with screens on floor drains for solids removal, a PW pump station, and treatment and disposal through one of the following alternatives:

- 1. PW Hold and Haul, with SS disposal through a pressure distribution (PD) leachfield.
- 2. Primary treatment and disposal through a PD leachfield (combined with SS).
- 3. Treatment through package treatment system and in-ground disposal via a subsurface drip dispersal system (combined or not with SS).
- 4. Treatment through a high rate package treatment system, storage of treated PW, and surface reuse for vineyard irrigation.

The PW management system will be designed and installed in accordance with the memorandum of understanding and all necessary Napa County Planning, Building and Environmental Services (PBES) and Regional Water Quality Control Board (RWQCB) criteria and permits.

PROCESS WASTEWATER CHARACTERISTICS

Process wastewater will consist primarily of wastewater collected at floor drains and trenches within the winery, receiving, crush, tank, and wash down areas. All exterior tank and process areas will be covered and graded to preclude stormwater from entering the PW collection system. No distillation will occur at the facility; hence there will be no stillage waste. Typical winery wastewater characteristics are as summarized below:

PROCESS WASTEWATER DESIGN FLOWS

Based on typical flow data from wineries of similar size and characteristics and corresponding process wastewater (PW) generation rates, projected flows are calculated as follows:

Annual Volume

Annual Production	=	30,000	gal wine/year
Generation Rate (assumed) ^a	= .	165	gal wine/ton grapes
Tons Crushed	=	181	tons grapes/year
Process Wastewater (PW) Generation Rate ^b	=	6.00	gal PW/gal wine
Annual PW Flow	=	<u>180,000</u>	gal PW/year
Average Day Flow	=	<u>493</u>	gal PW/day
Napa County Peak Day Flow			
Peak Harvest Day Flow (45 day harvest)	=	<u>1,000</u>	gal PW/day

Average, Day Peak Harvest Month Flow

The harvest month of September accounts for approximately 16.4 percent of the annual PW flow.

Peak Flow		<u>984</u>	gal PW/day
	, i	1,000	gal PW/day

Notes:

- a. 165 Gal wine per ton of grapes is used as a wine industry standard
- b. 6.0 gal of PW per gallon wine produced over the course of 1 year is based on the average of data from approximately 16 wineries

The PW design flow will account for the most conservative approach; therefore 1,000 gpd will be used for preliminary system sizing as outlined below.

DISPOSAL METHODS

A Hold & Haul system will be utilized for disposal of PW, eliminating the need for vineyard removal associated with a PD system and 12" of fill. As a backup option, either a PD disposal system or a pre- treatment system will be utilized for treatment and disposal of PW, as presented in the following options.

OPTION 2: PD DISPOSAL SYSTEM

The PD system sized for disposal of PW in combination with SS flows would require a total area of 18,200 square feet. The system would require 2,900 LF of leachline, spaced 6.5 feet on center and with 12" of fill. An additional 200% reserve area is designated as a subsurface drip dispersal field, see Enclosure A.

PD Leach Field Size =
$$\frac{1,315 \text{ gpd}^a}{1.33 \frac{\text{SF}}{\text{LF}} x \frac{0.35 \text{ gal}}{\text{SF} x \text{ day}}} = 2,825 \text{ LF minimum}$$

A total of 28 – 100 foot pressure distribution lines will provide a total of 2,900 lineal feet. With trench spacing at 6.5 feet on-center, a total of 18,200 SF of leachfield area for disposal of combined SS and PW flows. A 200% reserve area will be provided for via a subsurface drip system, sized accordingly to the system type as shown in Option 3. Reduced sizing requirements for an SS only PD disposal system can be found in the Sanitary Sewage Treatment and Disposal section, page 11.

SETTLING TANKS WITH EFFLUENT FILTER

Solids settling and digestion in the settling tanks helps to reduce BOD and TSS concentrations entering the disposal system or pre-treatment system, resulting in higher treatment unit performance, and reduced potential for clogging of the disposal field. An effluent filter will also be provided to remove additional suspended solids which do not settle out in the settling tank. The required settling tank size for the PW flows was evaluated based on Napa County PBES criteria, which requires 3 days min of settling capacity.

Volume = 3 HRT x Flow rate Volume = 3 (1,000 gpd) <u>Volume = 3,000 gallons</u>

A new 3,000 gallon precast concrete settling tank will be provided to remove solids and reduce BOD loads to the system.

pH CONTROL SYSTEM

A pH control system could be provided (if necessary) for neutralization of the winery PW, with dosing of neutralizing chemicals into the sump. The combination of naturally occurring alkalinity in source water and alkaline cleaning compounds used within wineries usually provides sufficient buffering to maintain pond pH above 6.5. Neutralizing chemicals should only be used when absolutely necessary. It is recommended that the

^a The total flow accounts for 350 gpd of SS and 1,000 gpd of PW

and a minimum 200% reserve area of 10,600 square feet (to accommodate both options of PW and SS flows combined, or PW flows only). Warning signs and/or fencing will be installed to indicate the boundaries of the drip field area. See Enclosure B for more details on the subsurface drip disposal field design.

OPTION 4: PACKAGE TREATMENT SYSTEM WITH SURFACE REUSE/DISPOSAL (PW ONLY)

PACKAGE TREATMENT SYSTEM

A package treatment plant would be provided with the following additional items as discussed in Option 3.

EFFLUENT STORAGE TANK

An effluent storage tank shall be sized to accommodate approximately 15 days of storage during the winter months, to account for a prolonged rain event, when irrigation with treated PW effluent is prohibited.

FLOW MEASUREMENT

An additional flow measurement device will be provided to measure the discharge flows to the irrigation system.

FILTER

A filter will be provided to screen secondary effluent prior to irrigation.

IRRIGATION DISPOSAL AREA

The proposed vineyard and landscape areas should provide adequate capacity for reuse and disposal (through percolation) of PW effluent from the package treatment plant. Reuse/disposal of effluent will be via drip irrigation of approximately 1 acre of vineyard/landscape. The irrigation demand of the vineyards and landscaping exceeds the estimated annual process wastewater volume. To meet the additional irrigation demand the treated PW can be supplemented with well water. The irrigation demand is the lowest during the wet weather season (November through April) and application rates during this period should be less than 1 inch per month. An air gap or separate plumbing will be installed for the existing irrigation system plumbing to prevent cross-contamination with treated effluent applied to the irrigation distribution network. See Enclosure D for the PW irrigation balance.

SANITARY SEWAGE CHARACTERISTICS

SS will consist primarily of wastewater generated from restrooms, laboratories, and tasting room facilities. Typical SS characteristics are summarized below:

TABLE 2.TYPICAL SANITARY SEWER CHARACTERISTICS

Charac	teristic	<u>Units</u>	Raw Wastewater ¹ <u>Range</u>
BOD_s	÷	mg/L	110 - 220
Grease		mg/L	50-100
Total S	uspended Solids (TSS)	mg/L	100 - 220
Volatile	e Suspended Solids	mg/L	80 - 165
Total D	issolved Solids (TDS)	mg/L	250 - 500
Nitroge	en	mg/L	20 - 40
Nitrate		mg/L	0
Phosph	norous	mg/L	4 - 8
Alkalini	ity (CaCO ₃)	mg/L	50 - 100
Chlorid	e	mg/L	30 - 50
Sulfate		mg/L	20 - 30

 $^{^1}$ Typical composition of untreated domestic wastewater, Metcalf & Eddy, "Wastewater Engineering, Third Edition", 1991

Uniform Plumbing Code Method:

 $Volume = 1,125 + 0.75 \times Flow Rate$

 $Volume = 1,125 + 0.75 \times 315 \, gpd$

 $Volume = 1,362 \ gallons$

A 1,500 gallon precast concrete septic tank will be provided for solids removal prior to in-ground disposal of SS flows.

OPTION 1: PD DISPOSAL SYSTEM (SS ONLY)

PD DISPOSAL SYSTEM - SS

The PD system sized for disposal of the SS flows would require a total area of 4,550 square feet based on the soils evaluation information previously noted (See Calculations below). An additional 200% reserve area is designated as a subsurface drip dispersal system for combined PW and SS flows, see Enclosure A.

PD Leach Field Size =
$$\frac{350 \text{ gpd}^a}{1.33 \frac{\text{SF}}{\text{LF}} x \frac{0.35 \text{ gal}}{\text{SF} x \text{ day}}} = 752 \text{ LF minimum}$$

A total of 7 – 100 foot pressure distribution lines will provide a total of 800 lineal feet. With trench spacing at 6.5 feet on-center, a total of 4,550 SF of leach field area for disposal of SS flows will be provided. 12 inches of fill will be required over all lines.

OPTION 2: PD DISPOSAL SYSTEM (SS & PW)

PD DISPOSAL SYSTEM - SS & PW

The PD system sized for disposal of the SS in combination with PW flows would require a total area of 18,200 square feet (See Option 1 of PW management system). An additional 200% reserve area is designated as a subsurface drip dispersal system for combined PW and SS flows, see Enclosure A.

OPTION 3: PACKAGE TREATMENT PLANT SYSTEM WITH SUB-SURFACE DRIP DISPOSAL

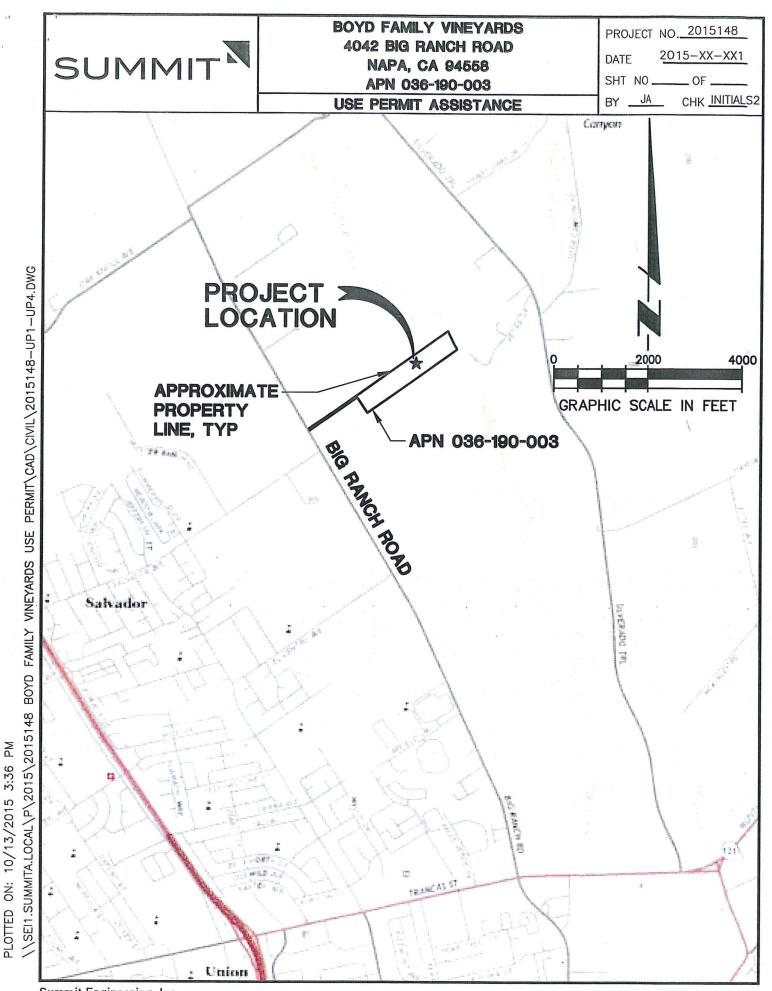
See Option 3 of PW Management System for combined treatment and sub-surface drip disposal details.

OTHER CONSIDERATIONS

ODOR CONTROL

There should be no noxious odors from a properly designed and operated treatment system. See Alternative Courses of Action for operation alternatives.

^a The total flow accounts for 350 gpd of SS

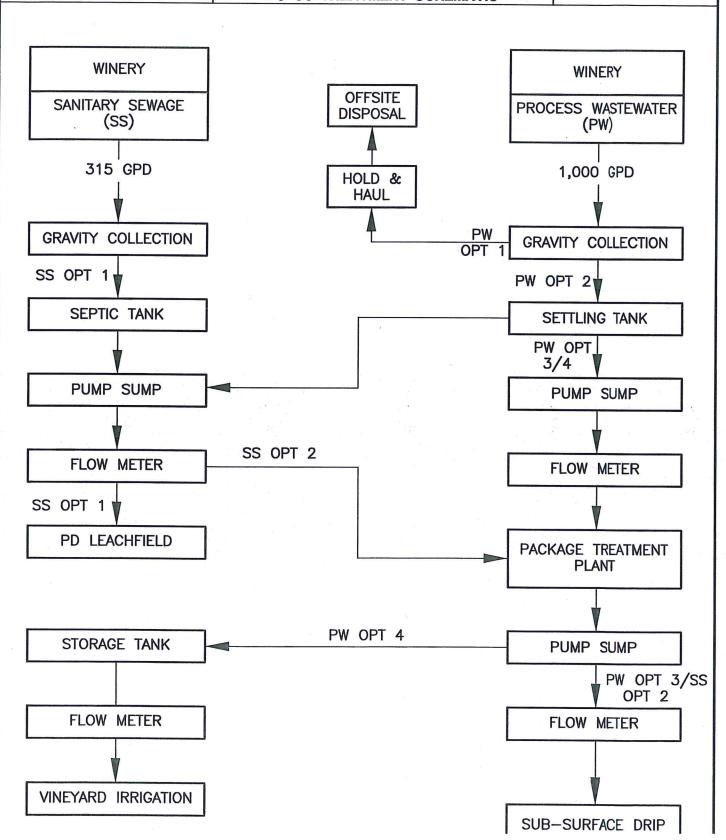

ENCLOSURE A

VICINITY MAP

OVERALL SITE PLAN

WASTEWATER SITE PLAN

WASTEWATER SYSTEM SCHEMATIC


Summit Engineering, Inc 463 Aviation Blvd., Suite 200 • Santa Rosa, CA 95403 • 707-527-0775 • www.summit-sr.com SUMMIT

BOYD VINEYARDS 4042 BIG RANCH NAPA, CA APN 036-190-003

PW & SS TREATMENT SCHEMATIC

PROJECT NO. 2015148 10-09-15 DATE SHT NO __1 OF ____1 BY _CL

CHK ___

2017\2017120 BOYD FAMILY VINEYARDS UP ASSISTANCE\TECHNICAL DOCS\WWFS\15148 SCHEMATIC UPDATED.DWG DITTED ON: 9/26/2017 9:03 AM

ENCLOSURE B

SANITARY SEWAGE FLOW ESTIMATES
PROCESS WASTEWATER FLOW ESTIMATES
PD & SUBSURFACE DRIP DISPOSAL FIELD SIZING
IRRIGATION HOLDING TANK SIZING
IRRIGATION BALANCE
CLIMATE DATA

SUMMIT ENGINEERING, INC.	BOYD VINEYARDS	PROJECT NO.	2015148
	Wastewater Feasibility Study	BY:	CL
	Sanitary Sewage Flows Estimate	CHK:	JR

SANITARY SEWAGE

Peak Tasting Day Harvest				
Employee (full-time)	6 x	15 gpcd	=	90 gal/day
Tasting Visitors	15 x	3 gpcd	=	45 gal/day
Maximum Marketing Visitors	30 x	6 gpcd		180 gal/day
Total			=	315 gal/day

 $Portable\ to ilets\ will\ be\ provided\ for\ marketing\ events\ resulting\ in\ more\ than\ 45\ total\ visitors\ on-site$

SUMMIT ENGINEERING, INC. BOYD VINEYARDS Wastewater Feasibility Study Process Wastewater Flows Estimate	PROJECT NO. BY: CHK:	CL
---	----------------------------	----

PROCESS WASTEWATER

Annual Volume						
Annual Production (projected)					=	12,500 cases wine/year
Generation Rate (assumed) ^a					=	2.4 galwine/case of wine
Annual Production		12,500 cases wine/year	x	2.4 gal wine/case of wine	=	30,000 galwine/year
Generation Rate (assumed) ^b					=	165 galwine/ton grapes
Tons Crushed		30,000 gal wine/year	÷	165 gal wine/ton grapes	=	182 tons grapes/year
Process Wastewater (PW) Generation	on Rate ^c (assum	ed)		,	Ë	6.00 gal PW/gal wine
Annual PW Flow		30,000 gal wine/year	x	6.00 gal PW/gal wine	=	180,000 galPW/year
Average Day Flow						
		180,000 gal PW/year	÷	365 days	=	493 galPW/day
Napa County Peak Day Flow						
Length of Harvest					=	45 days
Peak Flow		30,000 gal wine/year 45 days	x	1.5	=	<u>1,000</u> galPW/day
			•		=	<u>1,000</u> galPW/day
Average, Day Peak Harvest Month Fl	<u>ow</u>					
Assume:	1 2	16.4% of the PW flows a 30 days in Septembe		unted for during September		
Peak Flow	· · · · ·	180,000 gal PW/year	х	16%	=	984 galPW/day
		30	days		=	1,000 galPW/day

SUMMIT ENGINEERING, INC. **Consulting Civil Engineers**

BOYD VINEYARDS Wastewater Feasibility Study **Process Wastewater Flow Estimates**

PROJECT NO. 2015148 BY:

снк:

JR

DESIGN CRITERIA

FULL PRODUCTION

Production Level

Annual Production Crush Period

Annual PW Flow

Average PW Flow **PW** Generation Rate

Peak Harvest Day

PW Flows accounted during September Average Day Peak Harvest Month

12,500 cases/year

30,000 gal wine/year

45 day 180,000 gal PW/year

493 gal PW/day 6.0 gal PW/gal wine

1,000 gal PW/day

16.4 %

1,000 gal PW/day

* per PBES criteria

* per PBES criteria

DESIGN PROCESS WASTEWATER FLOWS

Month	PW Monthly Percentage of	Total PW Flow ^a
	Annual Flow ^a (%)	(Mgal)
August	10.5%	0.019
September	16.4%	0.030
October	12.9%	0.023
November	7.4%	0.013
December	6.4%	0.012
anuary -	6.6%	0.012
ebruary	7.2%	0.013
March	7.6%	0.014
April	6.8%	0.012
May	6.4%	0.012
une	5.6%	0.010
uly	6.2%	0.011
Total	100%	0.180

^a Assumption of monthly percentage of annual flow based on average of PW flow data for similar small wineries

SUMMIT ENGINEERING, INC. Consulting Civil Engineers

BOYD VINEYARDS Wastewater Feasibility Study PD & Subsurface Drip Disposal Field Sizing

PROJECT NO. 2015148 BY: CL CHK: JR

Option 1: PD System (SS only - Primary)

Design Flow	=	1,315 gal/day	
Depth to Groundwater or other limit	= .	55 inches	Based on TP 1, 2 and 3
Depth of Fill	=	5 inches	based off IF 1, 2 and 3
Rock below pipe	=	8 inches	
Sidewall area (orifices up)	= ,	1.33 sf/lf	
Application	=	0.35 gal/sf/day	Moderate sandy clay per
Lineal Feet required	= ,	2825 If	Napa Guidelines (pits
Proposed Lineal Feet installed	=	2900 If	1,2,3)
Leachline length	=	100 ft	1,2,0)
Trench spacing On-Center	=	6.5 ft	
Primary Area required	=	18,202 square feet	

Option 2: Subsurface Drip System (PW only or PW & SS comingled - Primary & Reserve)

Sizing based on Geoflow guidelines		
Design Flow	=	1,315 gal/day
Depth to Groundwater or other limit	=	36 inches *minimum
Application	=	0.25 gal/sf/day Moderate clay & sandy
Square Footage required	=	5,260 sf clay per Napa County
Primary Area required	=	53 x 100 Guidelines, with
	=	5,300 square feet pretreatment
200% Reserve Area Required	=	106 x 100
	=	10,600 square feet
	=	0.24 acres
Total Area	=	15,900 square feet
	=	0.37 acres

SUMMIT ENGINEERING, INC.	BOYD VINEYADS	PROJECT NO.	2015148
	Wastewater Feasibility Study	BY:	ช
Apparents of the second of the	PW Effluent Storage Tank Sizing (Option 3)	CHK:	JR
		· · · · · · · · · · · · · · · · · · ·	

PW EFFLUENT STORAGE TANK

	(Can be split into multiple tanks)	(provides 15 days of storage at average peak harvest month flows)		Accounting for 2 feet of freeboard	Based on CST aqua store tank capacities		
20,680 gallons	13,535 gallons	12,459 gallons	16 ft	14 ft	12 ft	12,308 ft	846 gal/ft
Min. lank volume=	Tank Volume =	Useable Tank Volume =	Actual Tank Height =	Useable Tank Height =	Tank Diameter =	Inside Diamter =	Unit Volume =

Month	Initial Volume	Total Inflow	Divert Volume ^a	Final Volume F	Final Depth
IDIOL:	(gal)	(gal)	(gal)	(gal)	(ft)
August	0	18,900	18,900	0	0.0
September	0	29,520	29,520	0	0.0
October	0	23,220	23,220	0	0.0
November	0	13,320	7,500	5,820	6.9
December	5,820	11,520	7,500	9,840	11.6
January	9,840	11,880	6,500	15,220	18.0
February	15,220	12,960	7,500	20,680	24.4
March	20,680	13,680	34,360	0	0.0
April	0	12,240	12,240	0	0.0
May	0	11,520	11,520	0	0.0
June	0	10,080	10,080	0	0.0
July	0	11,160	11,160	0	0.0
TOTAL	51,560	180,000	180,000		

 $^{^{\}rm a}$ Monthly volume of effluent to be used for onsite irrigation or reuse.

	SUMMIT ENG	SUMMIT ENGINEERING, INC.			- *		ξ Waster PW	BOYD VINEYARDS stewater Feasibility Str PW Irrigation Balance	BOYD VINEYARDS Wastewater Feasibility Study PW Irrigation Balance	4,			PROJECT NO. BY: CHK:	o.		2015148 CL JR
Applied Irrigation Area	ation Area		Vineyard		1.00	acres										
Total Area A	Total Area Available for Irrigation	rigation	Vineyard			acres						*				
Month	Reference ET ^a	Turfgrass Crop Coefficient ^b	Vineyard Crop Coefficient ^c	Turfgrass Vineyard ET ^d ET ^d	Vineyard ET ^d	100 year Precipitation ^e		Irrigation Demand ^f	Operating Days per Month ^g	Percolation	Percolation Capacity ^h	Assimilative Capacity	: Capacity ^l	Effluent Applied ^j	pplied ^j	Excess
	(in)			(in)	(in)	(in)	(ii)	(Mgal)	(p)	(in)	(Mgal)	(ii)	(Mgal)	(Mgal)	(in)	(Meal)
August	6.5	6.0	0.5	5.6	2.9	0.2	2.8	0.075	31	11.46	0.311	14.2	0.386	0.019	0.70	0.37
September	5.1	0.7	0.3	3.8	1.3	6.0	0.4	0.012	30	11.09	0.301	11.5	0.313	0.030	1.09	0.28
October	3.4	0.8	0.1	5.6	0.2	4.0	0.0	0.000	16	5.91	0.161	5.9	0.161	0.023	0.86	0.14
November	1.8	0.7	0.0	1.2	0.0	10.4	0.0	0.000	14	5.17	0.141	5.2	0.141	0.008	0.28	0.13
December	0.0	9.0	0.0	9.0	0.0	11.3	0.0	0.000	5	1.85	0.050	1.8	0.050	0.008	0.28	0.04
January	1.2	9.0	0.0	0.8	0.0	16.1	0.0	0.000	9	2.22	0.060	2.2	090'0	0.007	0.24	0.05
February	1.7	9.0	0.0	1.1	0.0	15.3	0.0	0.000	5	1.85	0.050	1.8	0.050	0.008	0.28	0.04
March	3.4	0.8	0.0	5.6	0.0	11.5	0.0	0.000	12	4.44	0.121	4.4	0.121	0.034	1.27	0.09
April	4.8	1.0	0.2	2.0	0.8	3.8	0.0	0.000	13	4.80	0.131	4.8	0.131	0.012	0.45	0.12
May	6.2	1.0	9.0	5.9	3.6	1.5	2.1	0.058	16	5.91	0.161	8.0	0.218	0.012	0.42	0.21
June	6.9	0.9	0.7	6.1	4.9	0.4	4.5	0.123	17	6.28	0.171	10.8	0.294	0.010	0.37	0.28
July	7.4	0.9	9.0	7.0	4.8	0.1	4.7	0.127	30	11.09	0.301	15.8	0.428	0.011	0.41	0.42
Total	49.4			42.1	18.5	75.4	14.5	0.4	195.0	72.1	2.0	86.6	2.4	0.18	9.9	2.17

(a) Average monthly reference evapotranspiration rates, see Climate Data Worksheet.
(b) Kc coefficients for pasture from Table 1, "Landscape Irrigation System Evaluation and Management"- University of California Cooperative Extension, April 2009
(c) Kc coefficients for vineyards from Table 5-12, Irrigation with Reclaimed Municipal Wastewater - A Guidance Manual, 84-1 wr, SWRCB.
(d) ET=ETO x Kc. A weighted value is determined on the basis of the available irrigated acreage of vineyard and pasture.
(e) Precipitation, 10-year ratifical event, see Climate Data Worksheet.
(f) Irrigation Demand = ET-Precipitation, inches. A weighted value is determined on the basis of the available irrigated acreage of vineyard and pasture.
(f) Irrigation Development in the seed on estimated irrigation days available based on 24-hr post storm criteria for a 100-year return period. Summit Engineering, NBRID Capacity Study, April 1996.
(g) Number of operating days per month based on estimated irrigation days available based on 24-hr post storm criteria for a 100-year return period.
(h) Design percolation rate is a maximum of 75 inches per day for the number of operating day per month. Per USDA soil survey, predominant soil type is bale loam. Sizing perc rate based on clay soils. Pretreated loading rates for non-shrink clay soils adjusted by a 0.04 safety factor to account for typical slow rate land application design methodology.

(i) Assimilative capacity is the sum of irrigation demand and percolation applied.
 (j) Effluent applied depths exceeding 1 inch/month could result in ponding; if ponding occurs, additional disposal area may be required for expansion

0.385 in/hr 24 hr/day 0.04 0.37 in/day 9.24 in/day Hourly Percolation Rate Daily Percolation Rate Land Application Safety Factor Adjusted Percolation Rate Percolation Adjustment

2015148 CL JR	
PROJECT NO. BY: CHK:	
BOYD VINEYARDS WASTEWATER FEASIBILITY STUDY Climate Data	
SUMMIT ENGINEERING, INC. Consulting Civil Engineers	

		Average	Reference					
Month	Days	Temp ^a	Evapotranspiration^b	Pan Evaporation ^c	Lake Evaporation ^d	Average Precipitation ^e	10-Year Precipitation	100-Year Precipitation
		(F)	(in)	(in)	(in)	(ii)	(ij)	(ii)
August	31	71.0	6.5	12.06	9.3	0.08	0.1	0.2
September	30	9.89	5.1	8.67	6.7	0.41	0.6	6.0
October	31	62.5	3.4	5.72	4.4	1.84	2.8	4.0
November	30	53.4	1.8	2.48	1.9	4.83	7.3	10.4
December	31	47.6	6.0	1.66	1.3	5.22	7.9	11.3
January	31	47.9	1.2	1.53	1.2	7.46	11.3	16.1
February	28	51.4	1.7	2.15	1.7	7.10	10.7	15.3
March	31	54.1	3.4	3.79	2.9	5.31	8.0	11.5
April	30	58.6	4.8	5.82	4.5	1.74	2.6	€
May	31	9.29	6.2	8.90	6.9	0.68	1.0	1.5
June	30	68.8	6.9	11.00	8.5	0.17	0.3	0.4
July	31	71.6	7.4	13.22	10.2	0.04	0.1	0.1
Total	365		49.4	77.0	59.3	34.9	52.6	75.4

Average monthly temperature observed between 1931 and 2001 for Saint Helena, Napa, CA from NOAA

b Average monthly reference evaporation rates for Zone 8, Inland San Fransisco Bay Area, typical rainfall year, CIMIS, DWR, 2001. See www.itrc.org.

° Average monthly pan evaporation rates observed at Lake Berryessa, between 1957 and 1970. See http://www.calclim.dri.edu/ccda/comparative/avgpan.html

 $^{\mathsf{d}}$ Pan evaporation rates adjusted by a factor of 0.77 to determine lake evaporation.

^e Average monthly rainfall observed between 1931 and 2001 for Saint Helena, Napa, CA from NOAA

 † Average monthly rainfall adjusted by the ratio of 10-yr and 100-yr wet year return storm identified by Pearsons Log III Distribution (St Helena)

* Boyd Family Vineyards Wastewater Feasibility Study October 23, 2017 SUMMIT ENGINEERING, INC. Project No. 2015148

ENCLOSURE C

SITE EVALUATION DATA

SITE EVALUATION REPORT

Please attach an 8.5" x 11" plot map showing the locations of all test pits triangulated from permanent landmarks or known property corners. The map must be drawn to scale and include a North arrow, surrounding geographic and topographic features, direction and % slope, distance to drainages, water bodies, potential areas for flooding, unstable landforms, existing or proposed roads, structures, utilities, domestic water supplies, wells, ponds, existing wastewater treatment systems and facilities.

Permit #:	
APN: 030-190-03	
(County Use Only) Reviewed by:	Date: 09/29/15

PLEASE PRINT OR TYPE ALL INFORMATION

Floberty Owner						
Boyd Vineyards		□ New Cor	nstruction	☑ Addition	☐ Remodel ☐ Relocation	on
Property Owner Mailing Address		☐ Other:				
4042 Big Ranch		☐ Resident	tial - # of B	Bedrooms:	Design Flow :	gpd
City State	Zip					
Napa CA	94558	☑ Comme	rcial – Type	e:		
Site Address/Location		Sanitary 1	Waste: 1	35 gpd	Process Waste: 1,461	gpd
4042 Big Ranch		□ Other:			,	0, 4
Napa, CA 94558						
11444, 621 7 1330		Sanitary	/ Waste:	gpd	Process Waste:	gpd
Evaluation Conducted By:						
Company Name	Evaluator's Name		5	Signature (Civil E	ngineer, R.E.H.S., Geologist, Soil Scien	tiet)
Summit Engineering, Inc	St. 17 Salestan St. St. Salestan St. Salesta			- ,	company some state of the control of	,
0 , 6,	Claudia Harandi EIT					- 1

Company Name
Summit Engineering, Inc

Mailing Address:

463 Aviation Boulevard, Ste 200

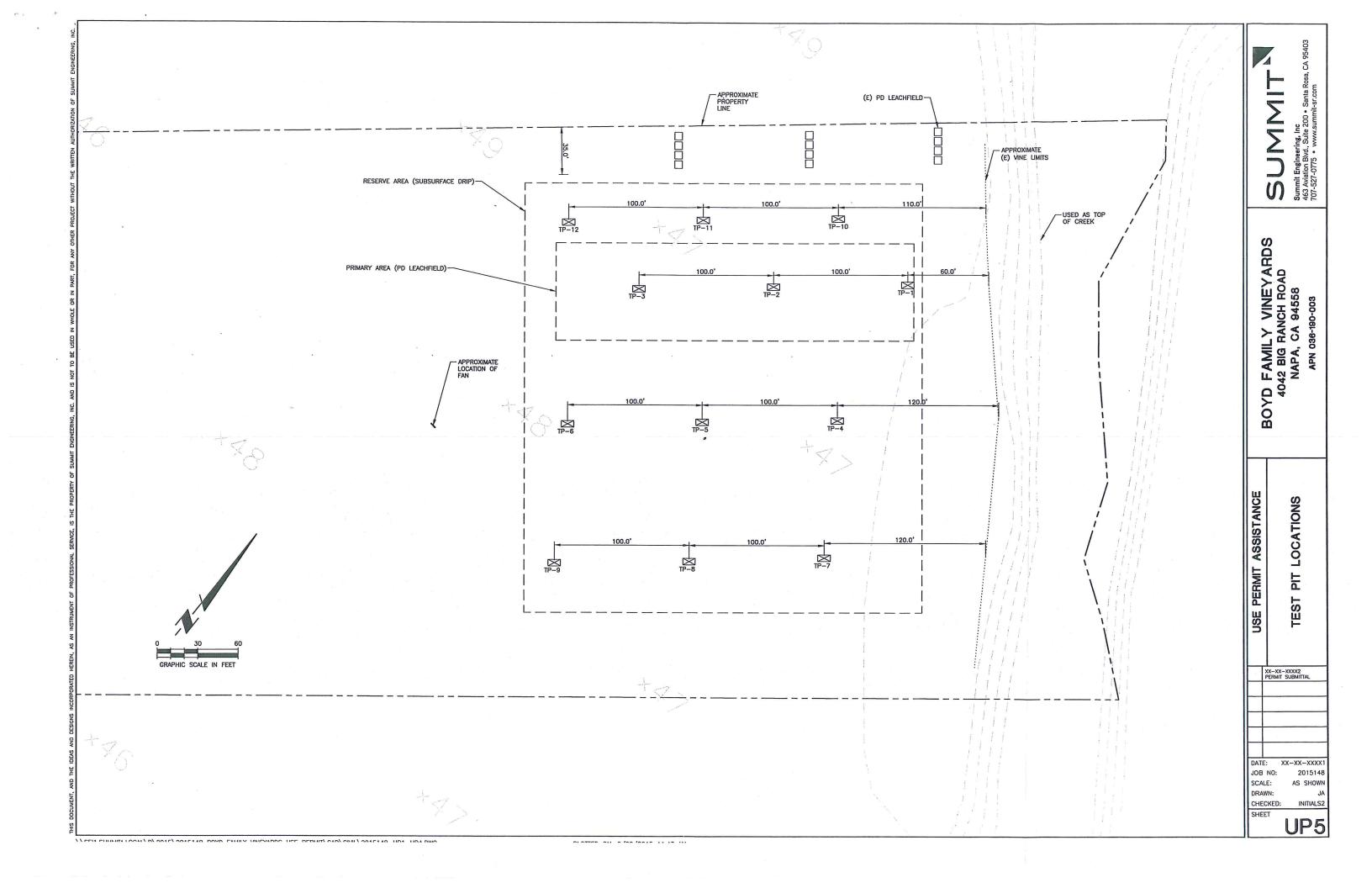
City
Santa Rosa

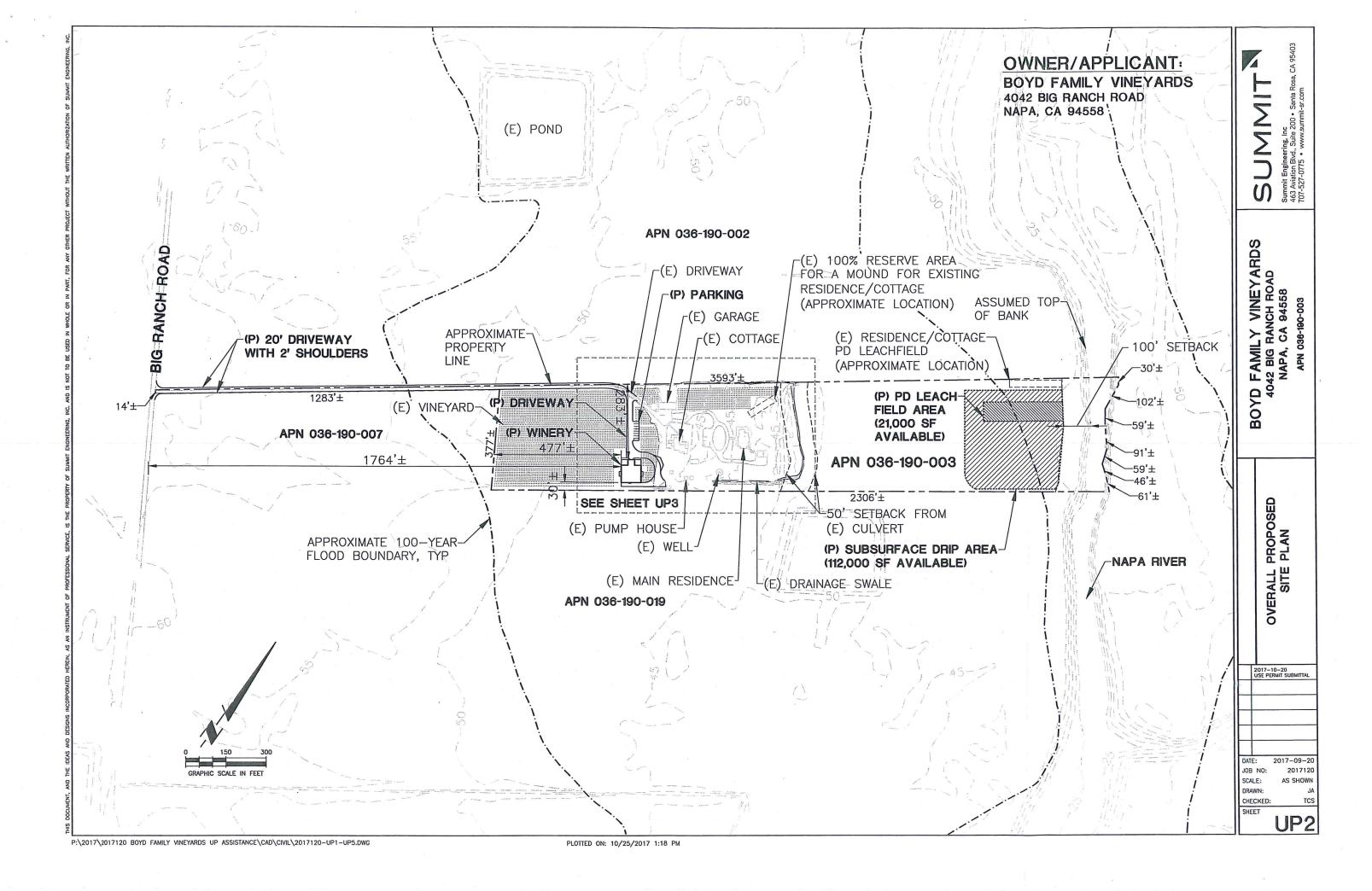
Evaluator's Name
Claudia Llerandi, E.I.T.

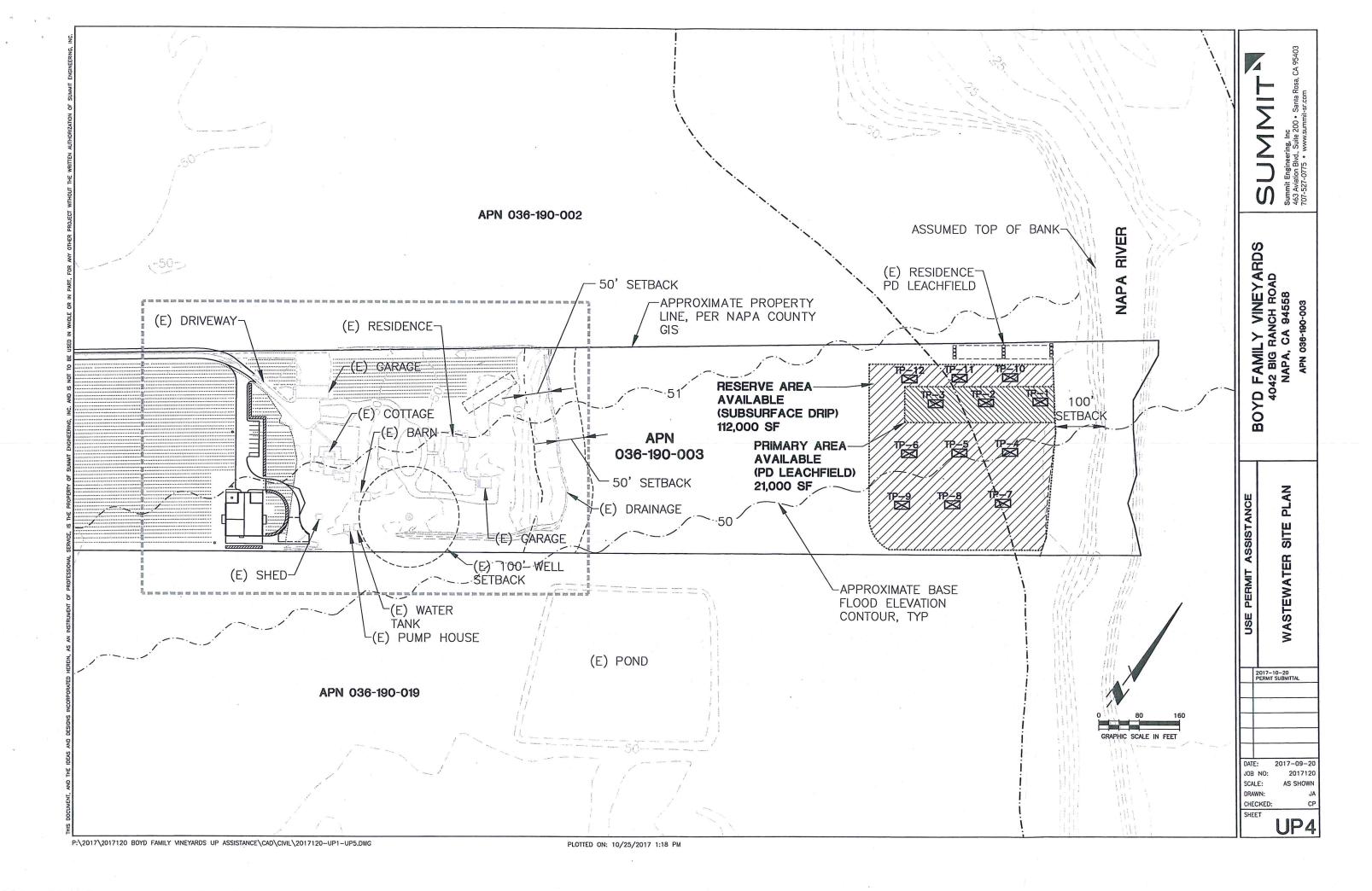
Evaluator's Name
Claudia Llerandi, E.I.T.

Telephone Number
707-527-0775

Date Evaluation Conducted
09/23/15


Primary Area		Expansion Area	· · · · · · · · · · · · · · · · · · ·
Acceptable Soil Depth: 55 in. Test pi Soil Application Rate (gal. /sq. ft. /day): 0.2	t #'s: 1, 2, 3	Acceptable Soil Depth: 43 in. Tes Soil Application Rate (gal. /sq. ft. /day):	et pit #'s: 4 through 12 0.25
System Type(s) Recommended: PD leac	hfield	System Type(s) Recommended: Subsu	rface drip w/pretreatmen
Slope: 1 %. Distance to nearest water	source: +100 ft.	Slope: 1 %. Distance to nearest wa	ater source:+100 ft.
Hydrometer test performed? No ☒	Yes □ (attach results)	Hydrometer test performed? No	∑ Yes □ (attach results)
Bulk Density test performed? No 図	Yes □ (attach results)	Bulk Density test performed? No	Yes □ (attach results)
Groundwater Monitoring Performed? No ☑	Yes □ (attach results)	Groundwater Monitoring Performed? No	
Cita canatrainta/Danas 1 11			


Site constraints/Recommendations:


A pressure distribution system with 12 inches of fill is proposed in the vicinity of test pits #1, 2 and 3 as the primary disposal area. A subsurface drip system with pretreatment is proposed in the vicinity of test pits 4 through 12. Soil was consistent throughout the area evaluated and was found to be clay and sandy clay with moderate texture. No mottling was found in any of the test pits evaluated.

	Horizon						Consistenc	ce			
Test Pit #	Depth (inches)	Boundary	%Rock	Texture	Structure	Side Wall	Ped	Wet	Pores	Roots	Mottling
1	55		0-5	SC	M,SB	VH	VF	VS,VP	C, F/M	F, F/M	NONE
2	55		0-5	SC	M,SB	VH	VF	VS,VP	C, F/M	F, F/M	NONE
3	50	G	0-5	SC	M,SB	VH	VF	VS,VP	F, F/M	F, F/M	NONE
	70		0-5	SC	S,SB	Н	F	P,S	C, F/M	F, F/M	NONE
4	36	,	0-5	С	W/M,SB	ExH	Ex	VS,VP	F, F/M	F, F/M	NONE
5	48		0-5	SC	M,SB	VH	VF	VS,VP	C, F/M	F, F/M	NONE
6	39		0-5	С	W/M,SB	ExH	Ex	VS,VP	F, F/M	F, F/M	NONE
7	41		0-5	SC	M,SB	VH	VF	P,S	F, F/M	F, F/M	NONE
8	40		0-5	sc	M,SB	VH	VF	VS,VP	C, F/M	F, F/M	NONE
9	37		0-5	С	W/M,SB	ExH	Ex	VS,VP	F, F/M	F, F/M	NONE
10	43	= -	0-5	SC	M,SB	VH	VF	VS,VP	F, F/M	F, F/M	NONE
11	48	_	0-5	sc	M,SB	H/VH	F/VF	S/VS,P/VP	C, F/M	F, F/M	NONE
12	48		0-5	SC	M,SB	H	F	S/P	C, F/M	F, F/M	NONE

Boundary	Texture	Structure		Consistence	9	Dawas	Donte	
	Texture	Structure	Side Wall	Ped	Wet	Pores	Roots	Mottling
A=Abrupt <1"	S=Sand	W=Weak	L=Loose	L=Loose	NS=NonSticky	Quantity:	Quantity:	Quantity:
C=Clear 1"-2.5"	LS=Loamy Sand	M=Moderate	S=Soft	VFRB=Very F	SS=Slightly	F=Few	F=Few	F=Few
G=Gradual 2.5"-5"	SL=Sandy Loam	S=Strong	SH=Slightly	Friable	Sticky	C=Common	C=Common	C=Common
D=Diffuse >5"	SCL=Sandy Clay Loam	G=Granular	H=Hard	FRB=Friable	S=Sticky	M=Many	M=Many	M=Many
	SC=Sandy Clay	PI=Platy	VH=Very	F=Firm	VS=Verv	Size:	Size:	Size:
1	CL=Clay Loam	Pr=Prismatic	ExH=	VF=Very	Sticky	VF=Very	F=Fine	F=Fine
1	L=Loam	C=Columnar	Extrm Hard	Firm	NP=Non	Fine	M=Medium	M=Medium
	C=Clay	AB=Ang. Bloc	ky	Ex=	Plastic	F=Fine	C=Coarse	C=Coarse
	SiC=Silty Clay	SB=Subang.B	locky	Extrm. Firm	SP=Slightly	M=Medium	VC=Very	
4	SiCL=Silty Clay Loam	M=Massive	1 2	_	Plastic	C=Coarse	Coarse	Contrast:
±	SiL=Silt Loam	SG=Single Gra	ain		P=Plastic	VC=Very	ExC=Extrm.	Ft=Faint
-	Si=Silt	C=Cemented			VP=Very	Coarse	Coarse	D=Distinct
the state of the s					Plastic			P=Prominent

