

Building on *Climate Ready North Bay* for projecting Napa Valley watershed and groundwater conditions Groundwater Sustainability Advisory Committee

November 12, 2020

Lisa Micheli, Pepperwood Lorraine Flint, USGS Emeritus

# Pepperwood inspiring conservation through science



3200-acre reserve in Mayacamas, partnered with CA Academy of Sciences





# Today's Topics

•Overview of *Climate Ready North Bay* projections for climate and hydrology of Napa Valley: results to build on for groundwater planning

•Opportunities to interface with SGMA Groundwater Sustainability modeling guidelines





#### An internationally-recognized climate science initiative











Creekside Center for Earth Observation





# North Bay Climate Ready

- Marin, Sonoma County, Mendocino, Napa Counties
  - (Not sea level rise!)
  - Warmer temperatures
  - Greater hydrologic variability
  - Greater evapo-transpiration
  - Increased water demand
  - Variable runoff and recharge
  - Shifts in natural vegetation types
- Increased wildfire risk Translating landscape-level climate-hydro projections into inputs for long-term planning



#### Climate Ready North Bay: Selected Future Scenarios



# USGS Basin Characterization Model



Size of unlows rejlect relative magnitude of water i

Brown text is BCM input, Purple text is BCM output



# Basin Characterization Model: "boundary conditions" for water inputs to aquifer





### California Climate Commons

Dataset

| Home Datasets Documents Web Resources CA LCC Projects Articles Forums |
|-----------------------------------------------------------------------|
|-----------------------------------------------------------------------|

#### Home

User login

Username \*

Password \*

Create new account

· Request new password



| to learn more about the watershea model. | to | n more | e about | the | watershed | model. |
|------------------------------------------|----|--------|---------|-----|-----------|--------|
|------------------------------------------|----|--------|---------|-----|-----------|--------|

# California Basin Characterization Model (BCM) downscaled climate and hydrology

#### Data Variables in this Dataset

- Actual evapotranspiration Potential evapotranspiration calculated when soil water con wilting point
- · Climatic Water Deficit Potential minus Actual Evapotranspiration
- · Excess water Water remaining above evapotranspiration
- · Maximum monthly temperature -
- · Minimum monthly temperature -
- · Potential Evapotranspiration Water that could evaporate or transpire from plants if av

#### climate.calcommons.org hosts Climate Ready North Bay products

# Water Supply-Recharge + Runoff-projections



30 year averages capture trajectories with both more and less rainfall

We also calculated these trends for every reservoir catchment in basin

|               |          |              |           | Moderate Warn | ning, High | Moderate Warming, |           |                    |         |
|---------------|----------|--------------|-----------|---------------|------------|-------------------|-----------|--------------------|---------|
|               |          |              | Current   | Rainfall      |            | Moderate          | Rainfall  | Hot, Low Rainfall  |         |
| Rch+Run (acre | e-ft)    | Area (acres) | 1981-2010 | 2040-2069     | 2070-2099  | 2040-2069         | 2070-2099 | 2040-2069 2070-209 |         |
| Mountains     | total    | 452,476      | 243,131   | 344,656       | 392,444    | 233,723           | 272,710   | 163,522            | 160,806 |
|               | SD       |              | 58,769    | 71,890        | 76,404     | 56,910            | 59,658    | 45,580             | 46,690  |
|               | % change |              |           | 42%           | 61%        | -4%               | 12%       | -33%               | -34%    |
| Valley floor  | total    | 189,418      | 59,142    | 89,894        | 107,424    | 53,860            | 67,413    | 33,201             | 31,061  |
|               | SD       |              | 21,889    | 28,335        | 30,616     | 22,300            | 23,755    | 17,066             | 17,567  |
|               | % change |              |           | 52%           | 82%        | -9%               | 14%       | -44%               | -47%    |

# Napa River Valley Runoff historic plus 6 models annual values



these are scenarios-not "predictions" allow us to look at potential patterns of inter-annual variability

# River managers need to design for both unprecedented HIGH and LOW flows





Water deficits increase in even high rainfall scenarios

# Climatic Water Deficit on Napa Agricultural Lands



Warm &

Rainfall





Scenario 6 Hot & Low Rainfall



last 30 years 9 % greater deficit

last 30 years 10 % greater deficit

last 30 years 20 % greater deficit

#### Projected Change in Recharge, Hot and Low Rainfall



11 in/y average for valley

29% reduction

27% reduction to 7.5 in/y average for valley to 7.8 in/y average for valley

Low rainfall scenario results in losses of 2.5 inches of groundwater recharge per unit area annually

# DWR Approach - Integrating Climate into GSP



DWR: Department of Water Resources; GSA: Groundwater Sustainability Agency; SWP: State Water Project; CVP: Central Valley Project; LOCA: Localized Constructed Analogs; VIC: Variable Infiltration Capacity; CalSim: SWP & CVP Operations Model; C2VSim: California Central Valley Groundwater - Surface Water Simulation Model; IWFM: Integrated Water Flow Model; CVHM: Central Valley Hydrologic Model; MF - OWHM: MODFLOW One Water Hydrologic Flow Model; ET: Evapotranspiration, SW: Surface Water; GW: Groundwater; CMIP 5: Coupled Model Intercomparison Project

![](_page_15_Figure_0.jpeg)

Basin Characterization Model: "boundary conditions" for water inputs to aquifer

# Other communities are using the BCM for SGMA applications

- Humboldt GSA
- Sonoma Water GSA
- Eagle-Anderson GSP OWHM
- Pajaro Valley OWHM model
- Anza Borrego Valley Modflow model
- Indian Wells Valley recharge
- Upper, middle and lower Santa Ynez GSP models
- Salinas Valley-Paso Robles OWHM
- Ventura River and Ojai GSPs
- Upper Coachella Valley
- USGS Coastal Basins project is developing BCMs for 123 basins draining to Pacific with an online interface to allow GSAs to download historical and future model data

The future of the Napa Valley is going to be more arid – So thank you for stewarding our water supply "savings account"

#### Extras

# Updates to USGS BCM V 8

- To improve model performance, water balance components were addressed
  - Soil properties were refined to incorporate soil organic matter, increase AET to match regional estimates, and improve recharge and runoff estimates
  - Dry out function below wilting point to represent droughts
  - Spatially variable snow parameters for SWE improvements
  - Vegetation specific ET plus seasonality for 62 vegetation types
  - Vegetation specific root exploration depth
  - Streamflow losses and gains
  - Solar function to include radiation in snowmelt
- Model calibrations were done regionally to compare to measured data
  - Snowpack, evapotranspiration, reservoir inflows, Modflow recharge, baseflows from baseflow separation, streamflow
- To enable scenario testing switches/enhancements were incorporated to assess hydrologic outcomes due to
  - Changes in climate (complete set of LOCA models downscaled to 270 m, 1950-2099)
  - Changes in soil management
  - Changes in urbanization or other land uses
  - Changes in vegetation due to wildfire, forest management, or agriculture
  - Flooding for managed aquifer recharge
- Application of historical and future projections of climate, recharge and runoff boundary conditions to MODFLOW models

![](_page_20_Figure_0.jpeg)

#### Seasonal Water Diagram 2070-2099

![](_page_20_Figure_2.jpeg)

#### Seasonality of Water Cycle

| 1980-2009       | Annual Average |    |
|-----------------|----------------|----|
| РРТ             | 25.9           | in |
| CWD             | 19.8           | in |
| AET             | 13.0           | in |
| Runoff          | 8.2            | in |
| Recharge        | 4.8            | in |
| Recharge/runoff | 0.58           |    |
| Tmax            | 59.2           | F  |
| Tmin            | 41.7           | F  |

| 2070-2099       | Annual Average |    |
|-----------------|----------------|----|
| РРТ             | 20.8           | in |
| CWD             | 23.8           | in |
| AET             | 11.1           | in |
| Runoff          | 6.4            | in |
| Recharge        | 3.4            | in |
| Recharge/runoff | 0.53           |    |
| Tmax            | 63.7           | F  |
| Tmin            | 45.5           | F  |

ТΒ

Terrestrial Biodiversity

Climate Change Collaborative

![](_page_21_Figure_0.jpeg)

increasing temperature

#### Change in Projected Probability of Burning One or More Times

![](_page_22_Figure_1.jpeg)

|                                       |                          |         |           | Hot, Low  | Moderat    |
|---------------------------------------|--------------------------|---------|-----------|-----------|------------|
| Probability of a fire in a 30v period |                          |         | Current   | Rainfall  | e Rainfall |
|                                       | Variable                 | Units   | 1971-2000 | 2070-2099 | 2070-2099  |
| doubles                               | Probability of burning 1 | Percent | 18%       | 19%       | 25%        |
| in some locations                     | or more times            | SD      | 4%        | 5%        | 6%         |
|                                       |                          |         |           |           |            |