

Water Availability Analysis

WATER AVAILABILITY ANALYSIS

B CELLARS WINERY 701 OAKVILLE CROSSROAD NAPA, CA NOV 08 2016

Napa County Planning, Building .

& Environmental Services

APN 031-070-026

PREPARED FOR:

Duffy Keys – B Cellars 701 Oakville Crossroad Napa, CA 94558

Project# 4116014.0 October 12, 2016

I. Executive Summary

B Cellars Winery proposes to expand their marketing program and employees. Below is a summary of the existing and proposed water use. A Groundwater recharge rate of 1 af/yr/acre was adopted for the 11.53 acre parcel to give a total groundwater recharge of 11.53 af/yr for the project parcel. See attached water use calculations for detailed calculations of the existing and proposed conditions.

Usage Type	Existing Usage [af/yr]	Proposed Usage [af/yr]
Residence	0.75	0.75
Irrigation		
Winery Landscape	3.17	3.17
Residence Landscape	0.11	0.11
Vineyard	2.05	2.05
Reclaimed Process Water	-0.69	-0.69
Winery		
Process Water	0.69	0.69
Domestic Water	0.30	0.53
Totals (Acre-ft per Year)	6.38	6.61
Estimated Ground Water Recharge (Acre-ft per Year)	11.53	11.53

The proposed increase in marketing and employees results in an increase in water use of 0.23 af/yr to a proposed use of 6.61 af/yr. This proposed use is less than the estimated groundwater recharge of 11.53 af/yr.

II. Water Use Calculation

Existing Conditions

Existing Residence Water Demand

Residence – (0.75 af/yr/residence x 1 residence) = Total =	0.75 0.75	af/yr af/yr
Existing Irrigation Water Demand			
Winery Landscape Irrigation taken from	WELO =	3.17	af/yr
Residence Landscape Irrigation taken from	WELO =	0.11	af/yr
Vineyard – Irrigation only – (0.5 af/ac-yr x 4.10 acres vine	yard) =	2.05	af/yr
Reclaimed Process Water used for irrigation - (5 gallons of water x 45,000 gal wine/y	rear =	-0.69	af/yr
	Total =	4.64	af/yr
Existing Winery Water Demand			
Full Time Employees – (15 gal/person/day x 365 days/yr x 8 employees	s/day) =	0.13	af/yr
Part Time Employees – (15 gal/person/day x 80 days/yr x 5 employees	s/day) =	0.02	af/yr
Visitors – (3 gal/person/day x 52 weeks/yr x 250 visitors/we	eek) =	0.12	af/yr
Marketing Events (Off-Site Catered) – (30 visitors @ 10 gpd x $\frac{12}{2}$ days/yr) =		0.011	af/yr
Marketing Events (Off-Site Catered) – (100 visitors @ 10 gpd x 2 days/yr) =		0.006	af/yr
Marketing Events (Off-Site Catered) – (150 visitors @ 10 gpd x 2 days/yr) =		0.009	af/yr
Process Water - (5 gallons of water x 45,000 gal wine/ye	ear =	0.69	af/yr
	Total =	0.99	af/yr

Proposed Conditions

Existing Residence Water Demand

Residence – (0.75 af/yr/residence x	1	residence) = Total =	0.75 0.75	af/yr af/yr
Existing Irrigation Water Demand				
Winery Landscape Residence Landscape Vineyard – Irrigation only – (0.5 af/ac-yr x Reclaimed Process Water used for irrigation - (5 gallons of water x	-	taken from WELO = taken from WELO = acres vineyard) = gal wine/year = Total =	3.17 0.11 2.05 -0.69 4.64	af/yr af/yr af/yr af/yr af/yr
Proposed Winery Water Demand				
Full Time Employees – (15 gal/person/day x 365 days/yr x	12	employees/day) =	0.20	af/yr
Part Time Employees – (15 gal/person/day x 125 days/yr x	7.5	employees/day) =	0.04	af/yr
Visitors – (3 gal/person/day x 52 weeks/yr x	450	visitors/week) =	0.22	af/yr
Marketing Events (Off-Site Catered) – (40 visitors @ 10 gpd x	8	days/yr) =	0.010	af/yr
Marketing Events (Off-Site Catered) – (50 visitors @ 10 gpd x	14	days/yr) =	0.021	af/yr
Marketing Events (Off-Site Catered) – (100 visitors @ 10 gpd x	6	days/yr) =	0.018	af/yr
Marketing Events (Off-Site Catered) – (150 visitors @ 10 gpd x	5	days/yr) =	0.023	af/yr
Process Water - (5 gallons of water x	45,000	gal wine/year =	0.69	af/yr
		Total =	1.22	af/yr

NAPA WATER EFFICIENT LANDSCAPE WORKSHEETS

: ==:	-
411	
···	
Nator Efficient Landscaping	Application and Guidanco – SECTION B
10	100
ر حتو ر	
2.2	

E	
12	
VORKSITE	
lő	
1	
5	
ပ္ထ	
2	
3	
Ę	
li	
PPICIENT LA	
豆	
E	
3	
5	
SECTION B: WATER EPPICIENT LANDSCAPE WORKSHEETS	
12	
ទ្រូ	
102	

Section II. Hydrozone Information Table Please complete the hydrozone table(s) for each hydrozone. Use as many tables as necessary to provide the square foolage of landscape area per hydrozone.

Hydrozone*	Zone or Valve	Infgallon Method**	Ares (Sq. Ft.)	% of Total Landscape Area
shutstp.cover	low dro	фp	3,100	8
ţaţ.	Ngh drip	ф	247	5
gaag	moderate bubblers	bubblers	×	-
		Total (Sq. Pt.);	2676	100%

	Summary Hydrozone Table	
Hydrozone*	Area (Sq. Pt.)	% of Total Landscape Area
High Water Use	247	9
Moderate Water Use	72	-
Low Water Use	3,160	8
Totak	3,437	100%

* Hydrozone I IW = High Water Use Flants MW = Modernte Water Use Plants LW = Low Water Use Plants

**Irrigation detinod
bils = Micro-spmy
\$ = Spmy
R = Hotor
D = Drip

LIVAL Common, Documental Forms and Apple attorast Planning - Forms and Appleation Con Line Planning Appleation Line WELD Appleation, Outstatoo

0

<u>Section D2, Maximum Applied Water Allowance MAAWA)</u> The project's Maximum Applied Water Allowance shall be calculated using this equation:

MAWA = (ETo) (0.62) [(0.7 x 1.A) + (0.3 x 51.A)]

- MAWA

 MAMMA

 Makinum Applied Water Allowance (gallons per year)

 O. = Reference Empotrarepiration from Appendix A (Inches per year)

 O. = En Adjustment Redor (ETA)

 LA = Landscaped Area Includes Special Landscape Area (square feet)

 LA = Landscaped Area (spallons per square feet)

 SLA = Pordion of the Indecape area Identified as Special Landscape Area (square feet)

 O.3 = the additional ET Adjustment Vactor for Special Landscape Area (1.0 0.7 = 0.2)

gallons per year Maximum Applied Water Allowance - 66,080

Show calculations.

44.3 x 0.62 x (.7 x 3,437) = 66,080

<u>llífective Precipitation (Eppi)</u> If considering Elícetive Precipitation, use 25% (0.25) of amuai precipitation. Use the following equation to calculate the Maximum Applied Water Allowance (see Appendix B for rainfall map):

MAWA" (ETo - Eppt) (0.62) [(0.7 x LA) + (0.3 x 5LA)]

Maximum Applied Water Allowance -

Show calculations.

Water Efficient Landscaping

٠,

0|

Section IV. Estimated Total Water Vise (ETWV)
The project's Estimated Total Water Vise is calculated using the following formula:

- where:
 ETWU-Estimated total water use per year (gallons per year)
 ETO Reference Ensportment that of the per year)
 FTO Plant Pactor from WICCOLS (Water Use Classification of Landscape Ascella, unclina, and low water use areas) (squar feet)
 SLA Special Landscape Area (squar feet)
 GAZ Convertable Pactor (in gollons per square foot)
 IE Irrigation Efficiency (minimum 0,71)

Hydrozone Table for Calculating ETWU

Plense complete the hydrozone table(s), Use as many tables as necessary.

1,160	Sum 3,437		25.	
12	-24	s,	moderate	Phot
100	247	8.	high	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
930	3,100	Ε, ,	kov	shrub/groundcover
PP×HA (square feet)	Area (HA) (aquare feet)	Plant Factor (PP)	Plant Water Use Type(s)	Hydrozone

Estimated Total Water Uge .. 35,423

gallons

Show calculations,

To obtain plant forters from WIOOL2, see bits/industrialistic descriptions (incredigning) incredigned in Viene Un-Chaffinnine of Landerry Syciet, UCC's 100. WRIO, Application, Calcadors
WRIO, Application, Calcadors

RRIGATION WATERING SCHEDULES

ŀr		~	~	7	~	•	7	_		~~~	~	,	-	*	7-	-	•	*
			l				10,47	8										
							55.0	040	9020	0.069	,,	,	-	-	Ţ	,	F	-
							AQX	9	0.348	0,115	ŀ		-	-	ŀ		ŀ	ŀ
							438	3.10	0,718	eg.	٤	٥	~	~	ŀ		L	ŀ
							203	4.80	1,109	0.570	۽	2	,	,				-
	CHILL						Н	4.10	4071	e g	n	a	,,	,		Ļ		-
	APA CALIFORNIA	20,61	ă		STES		300	7,10	1.640	490	2	177		+				-
	F	2		l	-10X OF YEAR 1 (ESTABLISHARBYT) RUN TAIR DIRUTES		Н	000	1,306	0,482	22	20	3	3	-	_		-
,		SPACINGS	1		A CHOOLE		Н	0.0	1,178	0.393	9	- 4	3	•			L	-
*11/1/	OCATION	Ves 1911	BLITTER FLOW		STRYLS		Н	2.80	0,001	0.200	ž	13	3	3	2	•		-
ALC: 400	Š	ă	P	ŀ	YEAR 1		Н	2.00	0.647	0210	10	0	3	2	•	9		-
100	90	5	000	ş	-10x OF			0.70	0.385	0,131	ő	°		-	•	80	Н	-
Zim ou							35	ş	0720	800	•	*			9	*		ŀ
- Noure		HON				1	VOIDE	S	(1000)	(SECRE)	1 27/24	YEAR 2	1EAR 1	TEM 2	1.073	YEAR 2	HY3A	TEAR 2
Care care	Carro	IE (HO E3)	DESCRIPTION		H ALICHTE			CO VO TOWN (NO CO)	ETO PUR (CHOLET): 0.300	o ra tax	ATES!		\$	3	YATER		1	E 5
TO CHAIN THE LAST CALIN FOR OUR POLYCION AND SOTTON OF SIX	PRINCIPAL UNIVERSITIES	PHODPYANDH RATE (BHOKES/HOLF)	BRAINS ISTU	1000	YCAR 2 REDUCTION ALKANTE			Ē	2	APPLED ETD PER 1	CHUTES OF WATER	PEDG.	And the state	שניין וויי	LINUTES OF WATER	DAM.		CTGLES PER UAT
S. C.	1	P.	100	2	Ž		1	l			Š	Ę	3	5	E	E	-	3

	т
150 C. 1. C.	
100 100	ŀ
### 100 10	ŀ
Control Cont	ŀ
100 100	-
E.S. = VILYES (1704). CALLY CA	-
SS 4 + + + 6 = -	-
R:	-
100 100 100 100 100 100 100 100 100 100	-
March Marc	-
WATER USE SHILL THE OF	-
0.557 0.557 0.557 0.557 0.557 12	-
10 10 10 10 10 10 10 10 10 10 10 10 10 1	-
MACASE TOTAL T	YEAR 2
10 10 10 10 10 10 10 10	Tell Date
SIB-SURYA STANTIN LINE FANT IN THE STANTIN IN THE	

	THE PROPERTY OF MARINES - VALVES C-11		đ	2		J		
SAME THE PERSON			E S		10CYDO1			É
PREDITATION RATE (NOISE	OCC/COM)		997		HEAD SP	Š		Į,
RESCRIPTION SYSTEM DYNORING	,		988	Ī	HEXO GALL			
PART FATTRE			900					
TEAR 2 PEDUCTION ALMOUNTS			201-	3	-10% OF YEAR 1 (ESTABLISHILDIN RUN TUP TIL	HAMBIT	ALM TALK	
	30303	100		, XX	200	OXO	167	Ē
CTO FEE DAY	10 CO	Ŗ	1.70	2.00	3,00	0,10	9,6	E
E 62	EX (ROES)	200	233	9,547	0.001	1,175	1,335	ŝ
ATTENDED TO PER YES	EEK (HOES):	13	2	0.380	9	2683	880	18
LIDITIES OF WATER	TEMP 1		,,	9	-	٥	9	ľ
PER HEEK	YEAR 2	7	s	*	9	-	-	ľ
DAYS PER NEWS	14.48		H	7	2	,	ļ.,	ľ
	NEAR 2	-	-	7	,	,		ľ
VOLUMES OF HATER	18.74	2	,	2	ñ	ŗ	,	ľ
PER DAY	YEAR 2	8	,,	e	-	,		ľ
The same of the same	111/2/11	L	F	L	L	-	ŀ	ľ
		ŀ	l					

Water Efficient Landscaping

Application and Guidance - SECTION B

Napa County Planning, Building, and Environmental Services

SECTION B: WATER EFFICIENT LANDSCAPE WORKSHEETS

Section B1. Hydrozone Information Table

Please complete the hydrozone table(s) for each hydrozone. Use as many tables as necessary to provide the square footage of landscape area per hydrozone.

Hydrozone*	Zone or Valve	Irrigation	Area (Sq. Ft.)	% of Total
		Method**		Landscape Area
shrub/g.cover	low drip	drip	19,385	30
shrub/g.cover	moderate dri[p	drip	5,709	9.
turf	high spray	spray	4,953	8 ·
bio-retention	moderate rotors	MP rotators	31,318	49
tree	moderate bubblers	bubblers	2,484	3
	·			
			,	•
		•		
			·	
		Total (Sq. Ft.):	63,849	100%

Summary Hydrozone Table						
Hydrozone*	Area (Sq. Ft.)	% of Total Landscape Area				
High Water Use	4,953	8				
Moderate Water Use	39,511	58				
Low Water Use	19,385					
Total:	63,849	100%				

* Hydrozone

HW = High Water Use Plants

MW = Moderate Water Use Plants

LW = Low Water Use Plants

**Irrigation Method

MS = Micro-spray

S = Spray

R = Rotor

B = Bubbler

D = Drip

Application and Guidance - SECTION B

Section B2. Maximum Applied Water Allowance (MAWA)

The project's Maximum Applied Water Allowance shall be calculated using this equation:

 $MAWA = (ETo) (0.62) [(0.7 \times LA) + (0.3 \times SLA)]$

where:						
MAWA = Maximum Applied Water Allowance (gallons per year)						
ETo = Reference Evapotranspiration from <i>Appendix A</i> (inches of the substitution of th	per year)					
LA = Landscaped Area includes Special Landscape Area (squ	are feet)					
0.62 = Conversion factor (to gallons per square foot)	are recty					
SLA = Portion of the landscape area identified as Special Landscape Area (square feet)						
0.3 = the additional ET Adjustment Factor for Special Landsca	ape Area $(1.0 - 0.7 = 0.3)$					
Maximum Applied Water Allowance = 1,227,574	gallons per year					
Show calculations.						
44.3 x 0.62 x (.7 x 63,849) = 1,227,574						
Effective Precipitation (Eppt)						
If considering Effective Precipitation, use 25% (0.25) of annual pre- equation to calculate the Maximum Applied Water Allowance (se						
MAWA= (ETo – Eppt) (0.62) $[(0.7 \times LA) + (0.3 \times SLA)]$						
Maximum Applied Water Allowance =	gallons per year					
Show calculations.						
	1					

Application and Guidance - SECTION B.

Section B3. Estimated Total Water Use (ETWU)

The project's Estimated Total Water Use is calculated using the following formula:

$$ETWU = (ETo)(0.62) \left(\frac{PF \times HA}{IE} + SLA \right)$$

where:

ETWU = Estimated total water use per year (gallons per year)

ETo = Reference Evapotranspiration (inches per year)

PF = Plant Factor from WUCOLS² (Water Use Classification of Landscape Species, UCCE 2000)

HA = Hydrozone Area [high, medium, and low water use areas] (square feet)

SLA = Special Landscape Area (square feet)

0.62 = Conversion Factor (to gallons per square foot)

IE = Irrigation Efficiency (minimum 0.71)

Hydrozone Table for Calculating ETWU

Please complete the hydrozone table(s). Use as many tables as necessary.

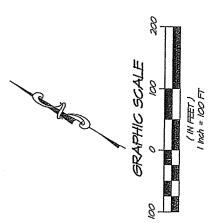
Hydrozone	Plant Water Use Type(s)	Plant Factor (PF)	Area (HA) (square feet)	PF x HA (square feet)
shrub/groundcover	low	.3	19,385	5,816
shrub/groundcover	moderate	.5	5,709	2,854
bioretention	moderate	.5	31,318	15,659
turf	· high	.8	4,953	3,962
trees	moderate	.5	2,484	1,242
			Sum	
	SLA		63,849	29,533

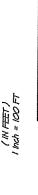
Show calculations.

44.3 x .62 x 5816/.9 = 177,491 44.3 x .62 x 2854/.9 = 87,097 44.3 x .62 x 15659/.75 = 573,453 44.3 x .62 x 3962/.7 = 155,457 44.3 x .62 x 1242/.85 = 40,132 TOTAL 1,033,630

² To obtain plant factors from WUCOLS, see http://www.water.ca.gov/wateruseefficiency/docs/wucols00.pdf - Water Use Classification of Landscape Species, UCCE 2000.

B CELLARS WINERY VINEYARD AREA EXHIBIT




HATCH LEGEND

(EPP) VINEYARD TO REMAIN = 4.10 ACRES

NOTE: NO CHANGES TO THE SITE ARE PROPOSED, ALL AREAS REPRESENT EXISTING AND PROPOSED CONDITIONS

RSA+| CONSULTING CIVIL ENGINEERS + SURVEYORS + | 1980 isis Fourth street NAPA, CALIF. 94559 OFFICE|707|252,3301 + www.RSAcivil.com + AUS 18, 2016

t NO CL

4116014.0

Exh-MAA.dwg