66^{6}

Traffic Impact Study

Materra Winery
Use Permit Major Modification Application No. P20-00184-MOD
Planning Commission Hearing, June 2, 2021

FINAL TRAFFIC IMPACT REPORT

MATERRA WINERY USE PERMIT MODIFICATION 2020

4326 Big Ranch Road, Napa, CA 94558
APN: 036-160-003-000
Project No. P20-00184
December 3, 2020

Prepared for: MATERRA WINERY

Prepared by: Mark D. Crane, P.E., President

California Registered Traffic Engineer (\#1381) CRANE
TRANSPORTATION GROUP
2621 East Windrim Court
Elk Grove, CA 95758
(916) 647-3406
cranetransgroup@gmail.com

TABLE OF CONTENTS

I. INTRODUCTION 1
II. EXECUTIVE SUMMARY OF PROJECT IMPACTS AND RECOMMENDED IMPROVEMENTS 1
A. Impacts 1
B. Recommended Improvements 2
III. SUMMARY OF "WITHOUT AND WITH PROJECT" OPERATING CONDITIONS 2
A. "Without Project" Operating Conditions 2
B. Project Impacts 4
C. Recommended Improvements 6
D. Conclusions \& Recommendations 6
IV. PROJECT LOCATION \& DESCRIPTION 7
V. EXISTING CIRCULATION SYSTEM EVALUATION PROCEDURES 7
A. Analysis Locations 7
B. Volumes 8
C. Roadways 9
D. Intersection Level Of Service 10
E. Arterial Level Of Service 11
F. Intersection Signal Warrants 11
G. Planned Improvements 12
H. Accident History 12
I. Existing Pedestrian And Bicycle Facilities Near The Project 12
J. Transit Service 12
K. Left Turn Warrant For Big Ranch Road At The Project Main Driveway 12
VI. FUTURE HORIZON TRAFFIC VOLUME PROJECTIONS 13
VII. OFF-SITE HARVEST CIRCULATION SYSTEM OPERATION - WITHOUT PROJECT 14
A. Year 2019 Harvest (Without Project) Operating Conditions 14
B. Year 2025 Harvest (Without Project) Operating Conditions 15
C. Cumulative (Year 2030) Harvest (Without Project) Operating Conditions 17
VIII. SIGNIFICANCE CRITERIA 19
A. County Of Napa 19

TABLE OF CONTENTS

IX. PROJECT IMPACT EVALUATION 21
A. Trip Generation 21
B. Trip Distribution 22
C. Off-Site Impacts 22
X. OTHER POTENTIAL PROJECT IMPACTS 29
A. Sight Lines At Big Ranch Road/Project Main Driveway 29
B. Left Turn Lane At Big Ranch Road/Project Main Driveway Intersection 29
C. Marketing Events 30
D. Pedestrian, Bicycle And Transit Impacts. 30
E. Transportation Demand Management (TDM) Plan \& Vehicle Miles Traveled (VMT) Reductions 30
F. On-Site Parking \& Internal Circulation 30
G. Yearly Trip Generation 31
XI. RECOMMENDED IMPROVEMENTS 31
XII. CONCLUSIONS \& RECOMMENDATIONS 31
ATTACHMENTS
TABLES 1-6
FIGURES 1-20APPENDICES A-H

I. INTRODUCTION

This report has been prepared at the request of the Materra Winery to determine whether expanded production, employees and visitors at the Winery as detailed in their 2020 use permit modification application will result in any significant circulation impacts to the local roadway network. The project site is located on the east side of Big Ranch Road just south of the Big Ranch Road/Oak Knoll Avenue (South) intersection. (See Figure 1 Regional Map, Figure 2 Site Specific Air Photo and Figure 3 Site Plan.) The scope of analysis includes evaluation of Oak Knoll Avenue and Big Ranch Road as well as the Oak Knoll Avenue intersections with SR 29, Silverado Trail and Big Ranch Road and the Big Ranch Road/Project Main Driveway intersection for harvest 2019, 2025 and Cumulative (Year 2030) horizons. The scope of service for this traffic study was developed for and approved by both the Napa County Public Works Department and the Planning, Building \& Environmental Services Department.

II. EXECUTIVE SUMMARY OF PROJECT IMPACTS AND RECOMMENDED IMPROVEMENTS

A. IMPACTS

1. PROPOSED PROJECT HARVEST FRIDAY \& SATURDAY PM PEAK HOUR TRIP GENERATION

PM PEAK HOUR TRIPS	
HARVEST FRIDAY	HARVEST SATURDAY
9	6

2. SIGNIFICANCE OF PROJECT IMPACTS

a. INTERSECTION LEVEL OF SERVICE
 Less than significant.
 (Oak Knoll Avenue at SR 29, Silverado Trail, Big Ranch Road [South] \& Big Ranch Road [North] + Big Ranch Road/Project Main Driveway)

b. ARTERIAL LEVEL OF SERVICE

Less than significant.
(Oak Knoll Avenue \& Big Ranch Road)
c. NEED FOR LEFT TURN LANE ON BIG RANCH ROAD AT THE PROJECT MAIN DRIVEWAY INTERSECTION
Significant - A left turn lane is warranted with Existing + project traffic.

d. SIGHT LINE ADEQUACY AT BIG RANCH ROAD/PROJECT MAIN DRIVEWAY INTERSECTION

Less than significant - Sight lines meet Caltrans stopping sight distance criteria.
e. MARKETING EVENTS

Less than significant - There are no changes in the marketing event program.
During days with midsize events occurring 2 or more times per month the number of visitors by appointment will be reduced by the number of guests at the marketing event.
f. PEDESTRIAN, BICYCLE AND TRANSIT IMPACTS

Less than significant - No pedestrians are anticipated as there are no pedestrian paths along Big Ranch Road or Oak Knoll Avenue. No significant transit ridership by employees is anticipated as the closest service is along SR 29. Bicycle racks will be provided for all employees or guests biking to the site.
g. PARKING \& INTERNAL CIRCULATION

Less than significant - Parking space layout and internal roadway design meet County and CAL FIRE Standards. A total of 25 parking spaces will be provided.
h. TRANSPORTATION DEMAND MANAGEMENT (TDM) PLAN AND VEHICLE MILES TRAVELED (VMT) REDUCTION
Less than significant - A TDM coordinator will be appointed to develop programs to provide incentives for employees to carpool, bicycle or take transit to work. In addition, shuttle bus service will be provided at all large marketing events (with 100 or more guests). A TDM plan is attached.
B. RECOMMENDED IMPROVEMENTS

A left turn lane should be provided on the southbound Big Ranch Road approach to the Materra Winery Main Driveway.

III. SUMMARY OF "WITHOUT AND WITH PROJECT" OPERATING CONDITIONS

A. "WITHOUT PROJECT" OPERATING CONDITIONS

1. INTERSECTION LEVEL OF SERVICE
a. OAK KNOLL AVENUE/SR 29 - Signal

- Friday \& Saturday PM Peak Hours

Existing, Year 2025 \& Cumulative (2030) - Acceptable
b. OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH) - Stop sign controlled approach

- Friday \& Saturday PM Peak Hours Existing - Acceptable
- Friday PM Peak Hour

Year 2025 \& Cumulative (2030) - Unacceptable

- Saturday PM Peak Hour

Year 2025 \& Cumulative (2030) - Acceptable
c. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH) - Stop sign controlled approach

- Friday \& Saturday PM Peak Hours

Existing, Year 2025 \& Cumulative (2030) - Acceptable
d. OAK KNOLL AVENUE/SILVERADO TRAIL - Stop sign controlled Oak Knoll Avenue approach

- Friday PM Peak Hour Existing, Year 2025 \& Cumulative (2030) - Unacceptable
- Saturday PM Peak Hour

Existing, Year 2025 \& Cumulative (2030) - Acceptable
e. BIG RANCH ROAD/PROJECT MAIN DRIVEWAY - Main Driveway Approach

- Friday \& Saturday PM Peak Hours

Existing, Year 2025 \& Cumulative (2030) - Acceptable

2. ARTERIAL LEVEL OF SERVICE

a. OAK KNOLL AVENUE EAST \& WEST OF BIG RANCH ROAD

- Friday \& Saturday PM Peak Hours

Existing, Year 2025 \& Cumulative (2030) - Acceptable

b. BIG RANCH ROAD SOUTH OF PROJECT SITE

- Friday \& Saturday PM Peak Hours Existing, Year 2025 \& Cumulative (2030) - Acceptable

3. INTERSECTIONS WITH VOLUMES MEETING PEAK HOUR SIGNAL WARRANT \#3 RURAL CRITERIA
a. OAK KNOLL AVENUE/SILVERADO TRAIL

- Friday \& Saturday PM Peak Hours

Existing, Year 2025 \& Cumulative (2030)
b. OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH)

- Friday PM Peak Hour Existing, Year 2025 \& Cumulative (2030)
- Saturday PM Peak Hour Year 2025 \& Cumulative (2030)

4. LEFT TURN LANE VOLUME WARRANT ON SOUTHBOUND BIG RANCH ROAD APPROACH TO PROJECT MAIN DRIVEWAY

Daily volumes at this intersection meet County Warrant Criteria for provision of a left turn lane.

B. PROJECT IMPACTS

1. OFF-SITE

a. INTERSECTION LEVEL OF SERVICE IMPACTS
 Less than significant Friday \& Saturday PM Peak Hours

1) Oak Knoll Avenue/SR 29

- Existing, Year 2025 \& Cumulative (2030) - Project traffic would not increase volumes at this intersection to unacceptable signalized operation. Operation would remain LOS B or C .

2) Oak Knoll Avenue/Big Ranch Road (South)

- Existing, Year 2025 \& Cumulative (2030) - Operation would be an acceptable LOS B with the addition of project traffic during the Saturday PM peak hour. During the Friday PM peak hour operation would be an acceptable LOS D for Existing conditions, and an unacceptable LOS E or F for the Year 2025 and Cumulative (Year 2030) horizons. However, project traffic would not increase delay by 5 seconds or more on the stop sign controlled Oak Knoll Avenue approach during either horizon.

3) Oak Knoll Avenue/Big Ranch Road (North)

- Existing, Year 2025 \& Cumulative (2030) - Operation would be an acceptable LOS B or C with the addition of project traffic during both the Friday and Saturday PM peak hours.

4) Oak Knoll Avenue/Silverado Trail

- Existing, Year 2025 \& Cumulative (2030) - Operation would remain an unacceptable LOS E or F during the Friday PM peak hour with the addition of project traffic. However, project traffic would not increase delay by 5 seconds or more on the stop sign controlled Oak Knoll Avenue approach to Silverado Trail. Operation would be an acceptable LOS C or D during the Saturday PM peak hour.

5) Big Ranch Road/Project Main Driveway

- Existing, Year 2025 \& Cumulative (2030) - Operation would be an acceptable LOS A or B with the addition of project traffic during both the Friday and Saturday PM peak hours.

b. ARTERIAL LEVEL OF SERVICE IMPACTS Less than significant Friday \& Saturday PM Peak Hours

1) Oak Knoll Avenue West of Big Ranch Road

- Existing, Year 2025 \& Cumulative (2030) - Project traffic would not increase volumes to unacceptable levels. Operation would remain LOS A or B.

2) Oak Knoll Avenue East of Big Ranch Road

- Existing, Year 2025 \& Cumulative (2030) - Project traffic would not increase volumes to unacceptable levels. Operation would remain LOS A or C.

3) Big Ranch Road South of the Project

- Existing, Year 2025 \& Cumulative (2030) - Project traffic would not increase volumes to unacceptable levels. Operation would remain an acceptable LOS A or C.

c. NEED FOR A LEFT TURN LANE ON SOUTHBOUND BIG RANCH ROAD APPROACH

 TO PROJECT MAIN DRIVEWAYSignificant - Existing + project daily volumes at this intersection would meet current County Warrant Criteria for provision of a left turn lane on the southbound Big Ranch Road intersection approach.
d. SIGHT LINE ADEQUACY AT BIG RANCH ROAD/PROJECT MAIN DRIVEWAY INTERSECTION
Less than significant - Sight lines meet Caltrans stopping sight distance criteria.
e. MARKETING EVENTS

Less than significant - There will be no change in marketing events. On days with events occurring 2 or more times per month, daily visitation by appointment will be lowered an amount equal to attendance at the marketing event.
f. PEDESTRIAN, BICYCLE AND TRANSIT IMPACTS

Less than significant - No pedestrians are anticipated as there are no pedestrian paths along Oak Knoll Avenue or Big Ranch Road. No significant transit ridership by employees is anticipated as the closest service is along SR 29. Bicycle racks will be provided for all employees or guests biking to the site.

g. ON-SITE PARKING \& INTERNAL CIRCULATION

Less than significant - A total of 25 parking spaces will be provided. This is an increase of one space compared to Existing conditions. Visitation is scheduled throughout the day such that 14 spaces for visitors will be adequate. Internal circulation and parking layouts have been designed to meet all County and CAL FIRE criteria.

h. TDM PROGRAM AND VMT REDUCTION

Less than significant - A TDM coordinator will be appointed to develop programs to provide financial incentives for employees to carpool, bicycle to work or take transit. In addition, shuttle bus service will be provided at all large marketing events (with 100 or more guests). A TDM plan is attached.

C. RECOMMENDED IMPROVEMENTS

A left turn lane should be provided on the southbound Big Ranch Road approach to the Materra Winery Main Driveway.
D. CONCLUSIONS \& RECOMMENDATIONS

- The project will result in no significant off-site circulation system operational impacts to Oak Knoll Avenue or Big Ranch Road or to the Oak Knoll Avenue intersections with SR 29, Silverado Trail and Big Ranch Road, or to the Big Ranch Road/Project Main Driveway intersection.
- A left turn lane is now warranted on the southbound Big Ranch Road approach to the Project Main Driveway even without the addition of project traffic.
- Sight lines at the Project Main Driveway connection to Big Ranch Road are acceptable and meet Caltrans stopping sight distance criteria.
- No pedestrians and minimal or no transit users are expected at the Winery. However, bicycle racks will be provided for any bike riders accessing the Winery via the Class II bike lanes along Silverado Trail or the Class I "Vine Trail" along the west side of SR 29.
- Internal circulation is designed to meet County and CAL FIRE criteria. In addition, 25 parking spaces will be provided for guests and employees.
- No new marketing events are being proposed and on days with medium size marketing events occurring 2 times or more per month, daily visitation by appointment will be reduced by the same amount as the number of guests at the marketing event.
- A TDM coordinator will be appointed to institute measures to reduce daily and peak hour employee traffic as well as increase limousine and shuttle bus service for large marketing events. The attached TDM Plan will be adopted.
- A left turn lane should be provided on the southbound Big Ranch Road approach to the Materra Winery Main Driveway.

IV. PROJECT LOCATION \& DESCRIPTION

The Materra Winery is located on the east side of Big Ranch Road just south of the Oak Knoll Avenue/ Big Ranch Road (South) intersection. The proposed use permit modification will have the following characteristics:

- An increase in yearly production from 110,000 to 150,000 gallons.
- Tons of grapes on haul will increase from 330 to 510.
- Additional bottling on site.
- Non-harvest Friday and Saturday maximum employee totals will be increased from 3 full time and 3 part time to 12 full time and 2 part time.
- Harvest Friday and Saturday maximum employee totals will be increased from 3 full time and 7 part time to 12 full time and 5 part time.
- Maximum daily visitation will increase from 18 to 34 guests.
- Tours and tasting will remain 7 days/week, 10:00 AM - 4:30 PM.
- No new marketing events are proposed.
- A total of 25 parking spaces will be provided.
- Internal circulation and parking layout will meet County and CAL FIRE design criteria.

V. EXISTING CIRCULATION SYSTEM EVALUATION PROCEDURES

A. ANALYSIS LOCATIONS

1. INTERSECTIONS

The following locations have been evaluated.
a. OAK KNOLL AVENUE/SR 29
(Signalized)
b. OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH) (The Oak Knoll Avenue eastbound approach is stop sign controlled)
c. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH) (The Oak Knoll Avenue westbound approach is stop sign controlled)
d. OAK KNOLL AVENUE/SILVERADO TRAIL (The Oak Knoll Avenue eastbound approach is stop sign controlled)
e. BIG RANCH ROAD/PROJECT MAIN DRIVEWAY INTERSECTION (The driveway approach is currently not stop sign controlled)

Figure 4 presents a schematic of approach lane geometrics and control at each analysis intersection.

2. ARTERIAL ROADWAY SEGMENTS

The following locations have been evaluated.

a. OAK KNOLL AVENUE JUST EAST AND WEST OF BIG RANCH ROAD b. BIG RANCH ROAD SOUTH OF MATERRA WINERY

B. VOLUMES

1. ANALYSIS SEASONS AND DAYS OF THE WEEK

Project traffic impacts have been evaluated during harvest conditions. Based upon more than four years of historical information from Caltrans PeMS (Performance Measurement System) count surveys along SR 29 in the Napa Valley, September has the highest daily volumes of the year (during harvest). Therefore, only September harvest conditions were selected for evaluation.

In regard to the peak traffic days of the week, the Napa County Travel Behavioral Study 1 (Fehr \& Peers, December 8, 2014) shows that the highest weekday volumes in Napa Valley occur on a Friday, with the highest weekend volumes occurring on a Saturday. In addition historical count data from the City of Napa show that Friday has the highest volumes of any weekday, while Caltrans historical counts for SR 29 between St. Helena and Napa also show that weekday AM and PM peak hour volumes are higher on a Friday than on either a Wednesday or Thursday. Therefore, Friday and Saturday peak traffic conditions were evaluated in this study.

2. COUNT RESULTS

Friday 2:00 to 6:00 PM as well as Saturday Noon to 6:00 PM turn movement counts were conducted by Crane Transportation Group (CTG) for two Fridays and two Saturdays in October 2020 at all 5 study intersections. Based upon harvest 2019 counts at Silverado Trail/Oak Knoll Avenue and the new counts, the peak traffic hours for the system were determined to be 3:15 to 4:15 PM on Friday and 4:45 to 5:45 PM on Saturday. It should be noted, however, that there were many hours on both days that had similar volumes. Based upon direction from County Public Works, results from the two Friday counts were averaged and the results shown in Appendix A Figure A-1, while the two Saturday counts were also averaged with the results shown in Appendix A Figure A-2. Peak hour counts from each count day are also presented in Appendix A.

Comparison of fall 2019 and 2020 PM peak period counts along SR 29 in the project vicinity using Caltrans SR 29 PeMS count station data showed that 2020 Friday PM peak hour volumes were somewhat lower (about 2.5% northbound and 10% southbound), while Saturday PM peak hour volumes were significantly lower (about 5\% northbound and 20% southbound) than fall 2019 volumes. Likewise, comparison of fall 2019 counts (from the Signorello Winery Traffic Impact Study by Crane Transportation Group) and the 2020 counts at the Silverado Trail/Oak Knoll Avenue intersection showed that the 2020

Friday PM peak hour volumes passing through the intersection were also somewhat lower (15\%), while the 2020 Saturday PM peak hour volumes were significantly lower (35\%) than the fall 2019 volumes. While the 2020 counts were lower, it was determined that traffic flow distribution patterns along Oak Knoll Avenue between the SR 29 and Silverado Trail intersections looked reasonable during both the Friday and Saturday PM peak hours. Adjustments were then made to the system of 2020 counts to reflect he higher volumes that would have been present during harvest 2019. Figures 5 and 6 present 2019 harvest Friday and Saturday PM peak hour volumes.

Daily (24-hour) directional volume classification counts and speed surveys were also conducted for two Fridays and two Saturdays in October 2020 along Big Ranch Road at the project site and on the Project Main Driveway. See Appendix A.

C. ROADWAYS

Roadway descriptions are based upon the designation that SR 29, Silverado Trail and Big Ranch Road run in general north-south directions through the project area, while Oak Knoll Avenue and the Project Driveway run in an east-west direction. The project site is along the east side of Big Ranch Road just south of the Oak Knoll Avenue/Big Ranch Road (South) intersection. Figure 4 presents Existing intersection geometrics and control.

State Route 29 (SR 29) provides the only major regional access to the west side of the Napa Valley and has a signalized connection to Oak Knoll Avenue. In the vicinity of the intersection it is an expressway and has two well-paved 12 -foot travel lanes and 8 -foot wide paved shoulders in each direction. The posted speed limit is 50 miles per hour and the roadway is level and straight. Left turn lanes are provided on the north and southbound intersection approaches.

Silverado Trail in the project vicinity has two well-paved 12 -foot travel lanes and wide paved shoulders that are utilized as Class II bicycle lanes. A left turn lane is provided on the northbound Silverado Trail approach to Oak Knoll Avenue. The posted speed limit is 55 miles per hour at Oak Knoll Avenue.

Oak Knoll Avenue is a two-lane rural collector roadway extending westerly from Silverado Trail to the west of SR 29. It is stop sign controlled on its eastbound approach to Silverado Trail and is signal controlled at SR 29. Oak Knoll Avenue also has offset "Tee" intersections with Big Ranch Road. At the north Tee Oak Knoll Avenue extends easterly to Silverado Trail, and at the south Tee it extends westerly to SR 29. Oak Knoll Avenue is stop sign controlled on both approaches to Big Ranch Road. There is no posted speed limit along Oak Knoll Avenue, although speed advisory signs are posted on the approaches to two curves: 20 miles per hour on the approaches to the narrow Napa River bridge near Silverado Trail and 40 miles per hour on the approaches to a curve west of Big Ranch Road. The Napa Wine Train has an at-grade crossing of Oak Knoll Avenue just west of SR 29. Its crossing is protected by gates and flashing lights. There are no pedestrian walkways or bicycle lanes along Oak Knoll Avenue in the project vicinity.

Big Ranch Road is a two-lane rural collector roadway extending northerly from Trancas Street in the City of Napa to just north of Oak Knoll Avenue. The posted speed limit in the project vicinity is 50 miles per hour. Big Ranch Road is level and straight near the project site. Left turn lanes are not provided on the approaches to either Oak Knoll Avenue intersection or on the approach to the Materra Winery Main Driveway. There are no pedestrian walkways or bicycle lanes along Big Ranch Road in the project vicinity.

D. INTERSECTION LEVEL OF SERVICE

1. ANALYSIS METHODOLOGY

Transportation engineers and planners commonly use a grading system called level of service (LOS) to measure and describe the operational status of the local roadway network. LOS is a description of the quality of a roadway facility's operation, ranging from LOS A (indicating free-flow traffic conditions with little or no delay) to LOS F (representing oversaturated conditions where traffic flows exceed design capacity, resulting in long queues and delays). Intersections, rather than roadway segments between intersections, are almost always the capacity controlling locations for any circulation system.

Signalized Intersections. For signalized intersections, the Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board, National Research Council) methodology was utilized. With this methodology, operations are defined by the level of service and average control delay per vehicle (measured in seconds) for the entire intersection. For a signalized intersection, control delay is the portion of the total delay attributed to traffic signal operation. This includes delay associated with deceleration, acceleration, stopping, and moving up in the queue. Table 1 summarizes the relationship between delay and LOS for signalized intersections.

Unsignalized Intersections. For unsignalized (all-way stop-controlled and side-street stop-controlled) intersections, the Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board, National Research Council) methodology for unsignalized intersections was utilized. For side-street stopcontrolled intersections, operations are defined by the level of service and average control delay per vehicle (measured in seconds), with delay reported for the stop sign controlled approaches or turn movements. For all-way stop-controlled intersections, operations are defined by the average control delay for the entire intersection (measured in seconds per vehicle). The delay at an unsignalized intersection incorporates delay associated with deceleration, acceleration, stopping, and moving up in the queue. Table $\mathbf{2}$ summarizes the relationship between delay and LOS for unsignalized intersections while Appendix B presents level of service worksheets.

2. MINIMUM ACCEPTABLE OPERATION

Napa County's current minimum acceptable operating standard is level of service D (LOS D) for signalized or all-way stop overall intersection operation, as well as for side street stop sign controlled approaches at two-way stop unsignalized intersections.

E. ARTERIAL LEVEL OF SERVICE

1. ANALYSIS METHODOLOGY

The 2017 Highway Capacity Manual 6th Edition arterial analysis methodology has been utilized for analysis of Oak Knoll Avenue and Big Ranch Road. Analysis results are presented as a level of service and demand capacity ratio. Input includes directional volumes, road and shoulder widths, percent trucks and RV's, terrain characteristics, percent available passing distance, etc.

2. MINIMUM ACCEPTABLE OPERATION

Napa County's current minimum acceptable operating standard for arterials is level of service D (LOS D).

F. INTERSECTION SIGNAL WARRANTS

1. ANALYSIS METHODOLOGY

Traffic signals are used to provide an orderly flow of traffic through an intersection. Many times, they are needed to offer side street traffic an opportunity to access a major road where high volumes and/or high vehicle speeds block crossing or turn movements. They do not, however, increase the capacity of an intersection (i.e., increase the overall intersection's ability to accommodate additional vehicles) and, in fact, often slightly reduce the number of total vehicles that can pass through an intersection in a given period of time. Signals can also cause an increase in traffic accidents if installed at inappropriate locations.

There are 10 possible tests for determining whether a traffic signal should be considered for installation. These tests, called "warrants", consider criteria such as actual traffic volume, pedestrian volume, presence of school children, and accident history. The intersection volume data together with the available collision histories were compared to warrants contained in the California Manual on Uniform Traffic Control Devices, 2014, Rev 5 (2014 CaMUTCD Rev 5 - March 2020). It provides guidelines, or warrants, which may indicate need for a traffic signal at an unsignalized intersection. As indicated in the 2014 CaMUTCD Rev 5 - March 2020, satisfaction of one or more warrants does not necessarily require immediate installation of a traffic signal. It is merely an indication that the local jurisdiction should begin monitoring conditions at that location and that a signal may ultimately be required.

2. MINIMUM ACCEPTABLE OPERATION

Warrant 3, the peak hour volume warrant, is often used as an initial check of signalization needs since peak hour volume data is typically available and this warrant is usually the first one to be met. Warrant 3 is based on a logarithmic curve and takes only the hour with the highest volume of the day into account. For intersections in rural locations (with local area population less than 10,000 people or where the
posted speed limit or $85^{\text {th }}$ percentile speed on the uncontrolled intersection approaches is greater than 40 miles per hour) a 70% warrant is applied. The regular and 70% warrants are typically referred to as the urban and rural peak hour warrants. Rural warrant criteria have been used for evaluation of the Oak Knoll Avenue intersections with Silverado Trail and Big Ranch Road. Please see Appendix C for the signal warrant charts.

G. PLANNED IMPROVEMENTS

There are no planned and funded improvements at any location evaluated in this study (Napa County Public Works Department, January 2020).

H. ACCIDENT HISTORY

Accident records from January 2015 through mid- 2020 were obtained from the California Highway Patrol for Oak Knoll Avenue between and including the SR 29 and Silverado Trail intersections as well as for Big Ranch Road from Oak Knoll Avenue to the Napa City limit. Locations of all accidents over this time span are presented in Figure 7, while attached year by year accident details are presented in Appendix D. As shown, there has only been one reported accident along Big Ranch Road adjacent to the Materra Winery Main Driveway in the last 5.5 years. This involved a driver on Big Ranch Road making a U-turn movement and being hit by another vehicle. The location with the greatest accident history, the Oak Knoll Avenue/SR 29 intersection, had 35 accidents over this 5.5 -year span, while the Oak Knoll Avenue/Silverado Trail intersection had 28 accidents.

I. EXISTING PEDESTRIAN AND BICYCLE FACILITIES NEAR THE PROJECT

There are no pedestrian walkways along Oak Knoll Avenue between SR 29 and Silverado Trail, nor along Big Ranch Road within Napa County. Likewise, there are no Class 1 to 4 bicycle facilities along Oak Knoll Avenue or Big Ranch Road and none are planned by the project. Class II signed and striped bicycle lanes are, however, provided along Silverado Trail while the Class I "Vine Trail" bicycle-pedestrian path runs along the west side of SR 29. See Figure 8.

J. TRANSIT SERVICE

The Vine provides transit service along SR 29. Route 10 travels between the City of Napa and Calistoga on approximate hourly headways 7 days per week. Route 10X also travels along SR 296 times per day during commute periods on weekdays only. Stops are limited. See Figure 8.

K. LEFT TURN WARRANT FOR BIG RANCH ROAD AT THE PROJECT MAIN DRIVEWAY

Daily volumes on Big Ranch Road and the Project Main Driveway currently meet County warrant criteria for provision of a left turn lane on the southbound Big Ranch Road intersection approach.
See Appendix E for the County Warrant chart.

VI. FUTURE HORIZON TRAFFIC VOLUME PROJECTIONS

Traffic analysis has been conducted for harvest Existing (2019), Year 2025 and Cumulative (Year 2030) horizons at County request. The 2030 Cumulative horizon reflects the County General Plan Buildout year. Traffic modeling for the General Plan shows the following growths in two-way traffic between 2019 and 2030 for the following roadways.

Route

> 2019 to 2030 Projected Growth in 2-Way PM Peak Hour Traffic (Rounded)

SR 29 (south of Oak Knoll Avenue)
Silverado Trail (south of Oak Knoll Avenue)
Oak Knoll Avenue (east of SR 29)
Oak Knoll Avenue (west of Silverado Trail)
Big Ranch Road

PM Peak Hour = 15\%
PM Peak Hour = 13\%
PM Peak Hour $=21 \%$
PM Peak Hour = 9\%
PM Peak Hour = 12\%

Projecting straight line traffic growth for analysis purposes, this translates into the following growths in two-way traffic between 2019 and 2025 for the same roadways.

Route

2019 to 2025 Projected Growth in 2-Way PM Peak Hour Traffic (Rounded)

SR 29 (south of Oak Knoll Avenue)
Silverado Trail (south of Oak Knoll Avenue)
Oak Knoll Avenue (east of SR 29)
Oak Knoll Avenue (west of Silverado Trail)
Big Ranch Road

PM Peak Hour = 8\%
PM Peak Hour = 7\%
PM Peak Hour = 12\%
PM Peak Hour = 5\%
PM Peak Hour = 6\%

Since traffic modeling projections were only available for weekday PM peak hour conditions and not for the Saturday PM peak hour, Saturday two-way PM peak hour volumes were increased by the percentages found for the weekday PM peak hour.

Based upon input from County Planning, traffic from other approved but not constructed developments was also included in near-term horizon growth. They are:

- Boyd Winery - To be located along Big Ranch Road about a mile south of Oak Knoll Avenue. Characteristics: 30,000 gallon production / 6 full time \& 4 part time harvest employees / 15 visitors per day.
- H \& L Winery - Relocating the access driveway from Oak Knoll Avenue to Big Ranch Road.

Appendix F presents expected PM peak hour trip generation from each project.
Resultant Year 2025 harvest "Without Project" Friday and Saturday PM peak hour volumes are presented in Figures 9 and 10, while Cumulative (Year 2030) harvest "Without Project" Friday and Saturday PM peak hour volumes are presented in Figures 11 and 12.

VII. OFF-SITE HARVEST CIRCULATION SYSTEM OPERATION - WITHOUT PROJECT

A. YEAR 2019 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

1. EXISTING INTERSECTION LEVEL OF SERVICE - SEE TABLE 3 \& APPENDIX B FOR CAPACITY WORKSHEETS
a. OAK KNOLL AVENUE/SR 29

- Friday \& Saturday PM Peak Hours

Acceptable signalized operation: LOS B.
b. OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH)

- Friday \& Saturday PM Peak Hours

Acceptable Oak Knoll Avenue stop sign controlled eastbound approach:
LOS D and B, respectively.
c. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH)

- Friday \& Saturday PM Peak Hours

Acceptable Oak Knoll Avenue stop sign controlled westbound approach:
LOS C and B, respectively.
d. OAK KNOLL AVENUE/SILVERADO TRAIL

- Friday PM Peak Hours

Unacceptable Oak Knoll Ave stop sign controlled eastbound approach: LOS E.

- Saturday PM Peak Hour

Acceptable Oak Knoll Avenue stop sign controlled eastbound approach: LOS C.
e. BIG RANCH ROAD/PROJECT MAIN DRIVEWAY

- Friday \& Saturday PM Peak Hours

Acceptable driveway westbound approach: LOS A.
2. EXISTING ARTERIAL SEGMENT LEVEL OF SERVICE - SEE TABLE 4
a. OAK KNOLL AVENUE WEST OF BIG RANCH ROAD

- Friday PM Peak Hour

Eastbound - LOS B
Westbound - LOS A

- Saturday PM Peak Hour

Eastbound - LOS A
Westbound - LOS A
b. OAK KNOLL AVENUE EAST OF BIG RANCH ROAD

- Friday PM Peak Hour Eastbound - LOS A Westbound - LOS C
- Saturday PM Peak Hour

Eastbound - LOS A
Westbound - LOS B
c. BIG RANCH ROAD JUST SOUTH OF MATERRA WINERY

- Friday PM Peak Hour

Northbound - LOS A
Southbound-LOS C

- Saturday PM Peak Hour

Northbound - LOS A
Southbound - LOS B
3. EXISTING SIGNAL WARRANT EVALUATION - SEE TABLE 5 \& APPENDIX C
a. OAK KNOLL AVENUE/SILVERADO TRAIL INTERSECTION

- Friday \& Saturday PM Peak Hours

Volumes exceed peak hour signal Warrant \#3 rural criteria.
b. OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH) INTERSECTION

- Friday PM Peak Hour

Volumes exceed peak hour signal Warrant \#3 rural criteria.

- Saturday PM Peak Hour

Volumes do not exceed peak hour signal Warrant \#3 rural criteria.
c. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH) INTERSECTION

- Friday \& Saturday PM Peak Hours

Volumes do not exceed peak hour signal Warrant \#3 rural criteria.
B. YEAR 2025 HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

1. 2025 INTERSECTION LEVEL OF SERVICE - SEE TABLE 3 \& APPENDIX B FOR CAPACITY WORKSHEETS
a. OAK KNOLL AVENUE/SR 29

- Friday \& Saturday PM Peak Hours

Acceptable signalized operation: LOS B.
b. OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH)

- Friday PM Peak Hour

Unacceptable Oak Knoll Ave stop sign controlled eastbound approach: LOS E.

- Saturday PM Peak Hour

Acceptable Oak Knoll Ave stop sign controlled eastbound approach: LOS B.
c. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH)

- Friday \& Saturday PM Peak Hours

Acceptable Oak Knoll Ave stop sign controlled westbound approach: LOS B or C.
d. OAK KNOLL AVENUE/SILVERADO TRAIL

- Friday PM Peak Hour Unacceptable Oak Knoll Ave stop sign controlled eastbound approach: LOS F.
- Saturday PM Peak Hour

Acceptable Oak Knoll Avenue stop sign controlled eastbound approach: LOS D.

e. BIG RANCH ROAD/PROJECT MAIN DRIVEWAY

- Friday \& Saturday PM Peak Hours

Acceptable driveway westbound approach: LOS A or B.
2. 2025 ARTERIAL SEGMENT LEVEL OF SERVICE - SEE TABLE 4
a. OAK KNOLL AVENUE WEST OF BIG RANCH ROAD

- Friday PM Peak Hour

Eastbound - LOS B
Westbound - LOS B

- Saturday PM Peak Hour

Eastbound - LOS B
Westbound - LOS B
b. OAK KNOLL AVENUE EAST OF BIG RANCH ROAD

- Friday PM Peak Hour

Eastbound - LOS A
Westbound-LOS C

- Saturday PM Peak Hour

Eastbound - LOS A
Westbound - LOS B

c. BIG RANCH ROAD JUST SOUTH OF MATERRA WINERY

- Friday PM Peak Hour

Northbound - LOS A
Southbound - LOS C

- Saturday PM Peak Hour

Northbound - LOS A
Southbound - LOS B
3. 2025 SIGNAL WARRANT EVALUATION - SEE TABLE 5
a. OAK KNOLL AVENUE/SILVERADO TRAIL \& OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH) INTERSECTIONS

- Friday \& Saturday PM Peak Hours

Volumes would exceed peak hour signal Warrant \#3 rural criteria.
b. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH) INTERSECTION

- Friday \& Saturday PM Peak Hours Volumes would not exceed peak hour signal Warrant \#3 rural criteria.
C. CUMULATIVE (YEAR 2030) HARVEST (WITHOUT PROJECT) OPERATING CONDITIONS

1. 2030 INTERSECTION LEVEL OF SERVICE - SEE TABLE 3
a. OAK KNOLL AVENUE/SR 29

- Friday \& Saturday PM Peak Hours

Acceptable signalized operation: LOS C.
b. OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH)

- Friday PM Peak Hour Unacceptable Oak Knoll Ave stop sign controlled eastbound approach: LOS F.
- Saturday PM Peak Hour

Acceptable Oak Knoll Avenue stop sign controlled eastbound approach: LOS B.
c. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH)

- Friday \& Saturday PM Peak Hours

Acceptable Oak Knoll Ave stop sign controlled westbound approach: LOS B or C.

d. OAK KNOLL AVENUE/SILVERADO TRAIL

- Friday PM Peak Hour

Unacceptable Oak Knoll Ave stop sign controlled eastbound approach: LOS F.

- Saturday PM Peak Hour

Acceptable Oak Knoll Ave stop sign controlled eastbound approach: LOS D.

e. BIG RANCH ROAD/PROJECT MAIN DRIVEWAY

- Friday \& Saturday PM Peak Hours

Acceptable driveway southbound approach: LOS A or B.
2. 2030 ARTERIAL SEGMENT LEVEL OF SERVICE - SEE TABLE 4
a. OAK KNOLL AVENUE WEST OF BIG RANCH ROAD

- Friday PM Peak Hour

Eastbound - LOS B
Westbound - LOS B

- Saturday PM Peak Hour

Eastbound - LOS B
Westbound - LOS B
b. OAK KNOLL AVENUE EAST OF BIG RANCH ROAD

- Friday PM Peak Hour

Eastbound-LOS A
Westbound-LOS C

- Saturday PM Peak Hour

Eastbound - LOS A
Westbound - LOS B
c. BIG RANCH ROAD JUST SOUTH OF MATERRA WINERY

- Friday PM Peak Hour

Northbound - LOS A
Southbound - LOS C

- Saturday PM Peak Hour

Northbound - LOS A
Southbound - LOS B
3. 2030 SIGNAL WARRANT EVALUATION - SEE TABLE 5
a. OAK KNOLL AVENUE/SILVERADO TRAIL \& OAK KNOLL AVENUE/BIG RANCH ROAD (SOUTH) INTERSECTIONS

- Friday \& Saturday PM Peak Hours

Volumes would exceed peak hour signal Warrant \#3 rural criteria.
b. OAK KNOLL AVENUE/BIG RANCH ROAD (NORTH) INTERSECTION

- Friday \& Saturday PM Peak Hours

Volumes would not exceed peak hour signal Warrant \#3 rural criteria.

VIII. SIGNIFICANCE CRITERIA

A. COUNTY OF NAPA

The following criteria have recently been developed for traffic impact analyses in Napa County.

EXISTING + PROJECT CONDITIONS

1. ARTERIAL SEGMENTS

A project would cause a significant impact requiring mitigation if:
a. An arterial segment operates at LOS A, B, C or D during the selected peak hours without project trips, and deteriorates to LOS E or F with the addition of project trips, or
b. An arterial segment operates at LOS E or F during the selected peak hours without project trips, and the addition of project trips increases the total segment volume by one percent or more.

For the second criteria, the following equation should be used if the arterial operates at LOS E or F without the project:

Project Contribution \% = Project Trips \div Existing Volumes

2. SIGNALIZED INTERSECTIONS

A project would cause a significant impact requiring mitigation if:
a. A signalized intersection operates at $\operatorname{LOS} \mathrm{A}, \mathrm{B}, \mathrm{C}$ or D during the selected peak hours without project trips, and deteriorates to LOS E or F with the addition of project trips, or
b. A signalized intersection operates at LOS E or F during the selected peak hours without project trips, and the addition of project trips increases the total entering volume by one percent or more.

For the second criteria, the following equation should be used if the signalized intersection operates at LOS E or F without the project:

Project Contribution \% = Project Trips \div Existing Volumes

Maintaining LOS D or better at all signalized intersections would sometimes require expanding the physical footprint of an intersection. In some locations around the County, expanding physical transportation infrastructure could be in direct conflict with the County's goals of preserving the area's rural character, improving safety, and sustaining the agricultural industry, making these potential improvements infeasible. The County's Circulation Element lists intersections that are slated for improvement or expansion in unincorporated Napa County. (According to the Circulation Element dated June 8, 2008, the following intersections can be altered or expanded as a mitigation measure: SR-12/Airport Boulevard/SR-29, SR-221/SR-12/Highway 29, and several intersections along SR-29 and SR-128 north of Napa. The significance criteria shown above should apply to facilities where appropriate based upon the most recent Circulation Element chapter of the General Plan.)

Transportation studies should individually consider the feasibility of potential mitigation measures with respect to right-of-way acquisition, regardless of the intersection's place in the Circulation Element's identified improvement lists, and present potential alternative mitigation measures that do not require right-of-way acquisition. County staff would then review that information and make the decision about the feasibility of the identified potential mitigations.

For the intersections that cannot be improved without substantial additional right-of-way according to both the Circulation Element and the individual transportation impact study, and where other mitigations such as updating signal timing, signal phasing and operations, and/or signing and striping improvements do not improve the LOS, LOS E or LOS F will be considered acceptable and the one percent threshold would not apply. Analysis of signalized intersection LOS should sill be presented for informational purposes, and there should still be an evaluation of effects on safety and local access, per Policy CIR-18.

3. UNSIGNALIZED INTERSECTIONS (ALL WAY STOP AND SIDE STREET STOP SIGN CONTROLLED)

LOS for all way stop controlled intersections is defined as an average of the delay at all approaches. LOS for side street stop-controlled intersections is defined by the delay and LOS for the worst-case approach. The recommended interpretation of Policy CIR-16 regarding unsignalized intersection significance criteria is as follows:
a. An unsignalized intersection operates at LOS A, B, C or D during the selected peak hours without project trips, the LOS deteriorates to LOS E or F with the addition of project traffic, and the peak hour traffic signal warrant criteria should also be evaluated and presented for informational purposes, or
b. An unsignalized intersection operates at LOS E or F during the selected peak hours without project trips, and the project increases stop sign controlled delay by 5 seconds or greater. The peak hour traffic signal warrant criteria should also be evaluated and presented for informational purposes.

Project Contribution \% = Project Trips \div Existing Volumes

CUMULATIVE + PROJECT CONDITIONS

1. ARTERIAL SEGMENTS, SIGNALIZED INTERSECTIONS AND UNSIGNALIZED INTERSECTIONS

A project would cause a significant Cumulative impact requiring mitigation if:
a. The overall amount of expected traffic growth causes conditions to deteriorate such that any of the significance criteria described above for Existing conditions are met, and
b. The project's contribution to a significant Cumulative impact for arterials or signalized intersections would be equal to or greater than five percent of the growth in traffic from Existing to Cumulative conditions.
c. The project's contribution to a Cumulative significant impact at an unsignalized intersection would result with an increase in stop sign controlled delay of 5 seconds or greater.

A project's contribution to a Cumulative condition would be calculated as the project's percentage contribution to the total growth in traffic from Existing conditions.

Project Contribution \% = Project Trips \div (Cumulative Volumes - Existing Volumes)

IX. PROJECT IMPACT EVALUATION

A. TRIP GENERATION

1. METHODOLOGY

Project trip generation was determined using one of the three possible methodologies recently approved by Napa County Public Works for transportation impact study analysis (for Winery use permit modifications). As detailed from Public Works, a site-specific analysis was performed by first conducting actual daily trip counts at the driveway of the project on two Fridays and two Saturdays. Next, the increment of net new daily traffic due to the use permit modification proposed project was determined using trip rates from the Use Permit Winery Traffic Information/Trip Generation sheets. Based upon the two Friday and two Saturday 24 -hour Winery driveway counts, the hour on each day that had the highest combined inbound + outbound traffic was determined along with the percent of total traffic occurring during those hours in relation to the daily counts. These percentages were applied to the net new Friday and Saturday daily traffic increments for the project to determine the amount of project traffic that would be expected to occur during the Winery's peak traffic hour. Finally, it was assumed that the Winery's peak hourly traffic would occur at the same time as the ambient peak traffic time on
the adjacent roadway system. Harvest 2019 surveys of the Materra Driveway showed that on a Friday afternoon the peak traffic hour had 21% of daily traffic (the highest of two Friday surveys) while on a Saturday afternoon the peak traffic hour had 15% of daily traffic (the highest of two Saturday surveys).

2. PROJECT PM PEAK HOUR VOLUMES

Table 6 shows that the proposed use permit modification 2020 would be expected to generate 5 new outbound and 4 new inbound trips during a harvest Friday PM peak hour ($3: 15-4: 15$), with 3 new outbound and 3 new inbound trips during a harvest Saturday PM peak hour (4:45-5:45). Winery Traffic Information/Trip Generation sheets are presented in Appendix G, as are the hourly 2-way traffic volume percentages on the Winery's Main Driveway for two Fridays and two Saturdays. It should be noted that all project harvest Friday and Saturday PM peak hour trip generation will be due to the one new full time employee, as no change in visitation is being requested and any increase in grape truck deliveries would occur earlier in the day.

B. TRIP DISTRIBUTION

Project traffic was distributed to Big Ranch Road, Oak Knoll Avenue, SR 29 and Silverado Trail in a pattern reflective of Existing PM peak hour distribution patterns at the Project Main Driveway intersection and at the Oak Knoll Avenue intersections with Big Ranch Road, SR 29 and Silverado Trail.

PERCENT PROJECT TRIP DISTRIBUTION Friday PM Peak Hour	Saturday PM Peak Hour
45%	35%
35%	35%
20%	30%

The harvest Friday and Saturday project traffic increment expected during the times of ambient peak traffic flows are presented in Figures 13 and 14. Friday and Saturday "With Project" PM peak hour harvest volumes for Year 2019 are presented in Figures 15 and 16; "With Project" PM peak hour harvest volumes for Year 2025 conditions are presented in Figures 17 and 18, and "With Project" PM peak hour harvest volumes for Cumulative (Year 2030) conditions are presented in Figures 19 and 20.
C. OFF-SITE IMPACTS

1. EXISTING (2019) HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts along Oak Knoll Avenue or Big Ranch Road, at the Oak Knoll Avenue intersections with SR 29, Silverado Trail or Big Ranch Road, nor at the Big Ranch Road/Project Main Driveway intersection during either the Friday or Saturday PM peak traffic hours. Less than significant.

b. 2019 INTERSECTION LEVEL OF SERVICE IMPACTS - SEE TABLE 3

1) Oak Knoll Avenue/SR 29

- Friday \& Saturday PM Peak Hours

Signalized operation would remain an acceptable LOS B with the addition of project traffic. Less than significant.
2) Oak Knoll Avenue/Big Ranch Road (South)

- Friday \& Saturday PM Peak Hours

Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an acceptable LOS D on Friday and LOS B on Saturday with the addition of project traffic. Less than significant.
3) Oak Knoll Avenue/Big Ranch Road (North)

- Friday \& Saturday PM Peak Hours

Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an acceptable LOS C on Friday and LOS B on Saturday with the addition of project traffic. Less than significant.
4) Oak Knoll Avenue/Silverado Trail

- Friday \& Saturday PM Peak Hours

Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an unacceptable LOS E during the Friday PM peak hour with the addition of project traffic. However, the addition of project traffic to the eastbound Oak Knoll Avenue approach would increase delay less than the 5 -second significance limit (0.6 seconds on Friday). During the Saturday PM peak hour operation would remain an acceptable LOS C. Less than significant.
5) Big Ranch Road/Project Main Driveway

- Friday \& Saturday PM Peak Hours

Operation of the Project Main Driveway approach to Big Ranch Road would be an acceptable LOS A or B with the addition of project traffic. Less than significant.
c. 2019 ARTERIAL SEGMENT LEVEL OF SERVICE IMPACTS - SEE TABLE 4

1) Oak Knoll Avenue West of Big Ranch Road

- Friday PM Peak Hour Operation would remain an acceptable LOS B eastbound and LOS A westbound with the addition of project traffic. Less than significant.
- Saturday PM Peak Hour

Operation would remain an acceptable LOS A eastbound and LOS A westbound with the addition of project traffic. Less than significant.
2) Oak Knoll Avenue East of Big Ranch Road

- Friday PM Peak Hour

Operation would remain an acceptable LOS A eastbound and LOS C westbound with the addition of project traffic. Less than significant.

- Saturday PM Peak Hour

Operation would remain an acceptable LOS A eastbound and LOS B westbound with the addition of project traffic. Less than significant.
3) Big Ranch Road South of Materra Winery

- Friday \& Saturday PM Peak Hours

Operation would remain an acceptable LOS A northbound and LOS B or C southbound with the addition of project traffic. Less than significant.

d. 2019 SIGNAL WARRANT EVALUATION - SEE TABLE 5

Signal warrant information is provided for informational purposes only per County significance criteria.

1) Oak Knoll Avenue/Silverado Trail

- Friday \& Saturday PM Peak Hours

Volumes would be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.
2) Oak Knoll Avenue/Big Ranch Road (South)

- Friday PM Peak Hour

Volumes would be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

- Saturday PM Peak Hour

Volumes would not be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

3) Oak Knoll Avenue/Big Ranch Road (North)

- Friday \& Saturday PM Peak Hours

Volumes would not be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

2. YEAR 2025 HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts along Oak Knoll Avenue or Big Ranch Road, at the Oak Knoll Avenue intersections with SR 29, Silverado Trail or Big Ranch Road, nor at the Big Ranch Road/Project Main Driveway intersection during either the Friday or Saturday PM peak traffic hours. Less than significant.
b. 2025 INTERSECTION LEVEL OF SERVICE IMPACTS - SEE TABLE 3

1) Oak Knoll Avenue/SR 29

- Friday \& Saturday PM Peak Hours

Signalized operation would remain an acceptable LOS B with the addition of project traffic. Less than significant.
2) Oak Knoll Avenue/Big Ranch Road (South)

- Friday \& Saturday PM Peak Hours Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an unacceptable LOS E during the Friday PM peak hour with the addition of project traffic. However, the addition of project traffic to the eastbound Oak Knoll Avenue approach would increase delay less than the 5 second significance limit (1.2 seconds). During the Saturday PM peak hour operation would remain an acceptable LOS B. Less than significant.

3) Oak Knoll Avenue/Big Ranch Road (North)

- Friday \& Saturday PM Peak Hours

Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an acceptable LOS C on Friday and LOS B on Saturday with the addition of project traffic. Less than significant.

4) Oak Knoll Avenue/Silverado Trail

- Friday \& Saturday PM Peak Hours

Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an unacceptable LOS F during the Friday PM peak hour with the addition of project traffic. However, the addition of project traffic to the eastbound Oak Knoll Avenue approach would increase delay less than the 5 second significance limit (1.2 seconds). During the Saturday PM peak hour operation would remain an acceptable LOS D. Less than significant.

5) Big Ranch Road/Project Main Driveway

- Friday \& Saturday PM Peak Hours

Operation of the Project Main Driveway approach to Big Ranch Road would be an acceptable LOS B with the addition of project traffic. Less than significant.
c. 2025 ARTERIAL SEGMENT LEVEL OF SERVICE IMPACTS - SEE TABLE 4

1) Oak Knoll Avenue West of Big Ranch Road

- Friday PM Peak Hour

Operation would remain an acceptable LOS B eastbound and LOS B westbound with the addition of project traffic. Less than significant.

- Saturday PM Peak Hour Operation would remain an acceptable LOS B eastbound and LOS B westbound with the addition of project traffic. Less than significant.

2) Oak Knoll Avenue East of Big Ranch Road

- Friday PM Peak Hour

Operation would remain an acceptable LOS A eastbound and LOS C westbound with the addition of project traffic. Less than significant.

- Saturday PM Peak Hour

Operation would remain an acceptable LOS A eastbound and LOS B westbound with the addition of project traffic. Less than significant.

3) Big Ranch Road South of Materra Winery

- Friday \& Saturday PM Peak Hours Operation would remain and acceptable LOS A northbound and LOS B or C southbound with the addition of project traffic. Less than significant.

d. 2025 SIGNAL WARRANT EVALUATION - SEE TABLE 5

Signal warrant information is provided for informational purposes only per County significance criteria.

1) Oak Knoll Avenue/Silverado Trail

- Friday \& Saturday PM Peak Hours Volumes would be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

2) Oak Knoll Avenue/Big Ranch Road (South)

- Friday \& Saturday PM Peak Hours

Volumes would be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

3) Oak Knoll Avenue/Big Ranch Road (North)

- Friday \& Saturday PM Peak Hours

Volumes would not be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

3. CUMULATIVE (YEAR 2030) HARVEST + PROJECT CONDITIONS

a. SUMMARY

Project traffic would not result in any significant level of service impacts along Oak Knoll Avenue or Big Ranch Road, at the Oak Knoll Avenue intersections with SR 29, Silverado Trail or Big Ranch Road, nor at the Big Ranch Road/Project Main Driveway intersection during either the Friday or Saturday PM peak traffic hours. Less than significant.

b. 2030 INTERSECTION LEVEL OF SERVICE IMPACTS - SEE TABLE 3

1) Oak Knoll Avenue/SR 29

- Friday \& Saturday PM Peak Hours

Signalized operation would remain an acceptable LOS C with the addition of project traffic. Less than significant.
2) Oak Knoll Avenue/Big Ranch Road (South)

- Friday \& Saturday PM Peak Hours

Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an unacceptable LOS F during the Friday PM peak hour with the addition of project traffic. However, the addition of project traffic to the eastbound Oak Knoll Avenue approach would increase delay less than the 5 second significance limit (2.0 seconds). During the Saturday PM peak hour operation would remain an acceptable LOS B. Less than significant.
3) Oak Knoll Avenue/Big Ranch Road (North)

- Friday \& Saturday PM Peak Hours Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an acceptable LOS C on Friday and LOS B on Saturday with the addition of project traffic. Less than significant.

4) Oak Knoll Avenue/ Silverado Trail

- Friday \& Saturday PM Peak Hours Operation of the stop sign controlled Oak Knoll Avenue intersection approach would remain an unacceptable LOS F with the addition of project traffic. However, the addition of project traffic to the eastbound Oak Knoll Avenue approach would increase delay less than the 5 second significance limit (1.8 seconds). During the Saturday PM peak hour operation would remain an acceptable LOS D. Less than significant.

5) Big Ranch Road/Project Main Driveway

- Friday \& Saturday PM Peak Hours

Operation of the Project Main Driveway approach to Big Ranch Road would be an acceptable LOS B with the addition of project traffic. Less than significant.
c. 2030 ARTERIAL SEGMENT LEVEL OF SERVICE IMPACTS - SEE TABLE 4

1) Oak Knoll Avenue West of Big Ranch Road

- Friday PM Peak Hour

Operation would remain an acceptable LOS B eastbound and LOS B westbound with the addition of project traffic. Less than significant.

- Saturday PM Peak Hour Operation would remain an acceptable LOS B eastbound and LOS B westbound with the addition of project traffic. Less than significant.

2) Oak Knoll Avenue East of Big Ranch Road

- Friday PM Peak Hour

Operation would remain an acceptable LOS A eastbound and LOS C westbound with the addition of project traffic. Less than significant.

- Saturday PM Peak Hour

Operation would remain an acceptable LOS A eastbound and LOS B westbound with the addition of project traffic. Less than significant.

3) Big Ranch Road South of Materra Winery

- Friday \& Saturday PM Peak Hours Operation would remain an acceptable LOS A northbound and LOS B or C southbound with the addition of project traffic. Less than significant.

d. 2030 SIGNAL WARRANT EVALUATION - SEE TABLE 5

Signal warrant information is provided for informational purposes only per County significance criteria.

1) Oak Knoll Avenue/Silverado Trail

- Friday \& Saturday PM Peak Hours Volumes would be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

2) Oak Knoll Avenue/Big Ranch Road (South)

- Friday \& Saturday PM Peak Hours

Volumes would be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

3) Oak Knoll Avenue/Big Ranch Road (North)

- Friday \& Saturday PM Peak Hours

Volumes would not be exceeding peak hour signal Warrant \#3 rural criteria with or without project traffic.

X. OTHER POTENTIAL PROJECT IMPACTS

A. SIGHT LINES AT BIG RANCH ROAD/PROJECT MAIN DRIVEWAY

Sight lines at the Big Ranch Road/Project Main Driveway intersection are currently acceptable to the north and south along Big Ranch Road.

- Sight line to the south along Big Ranch Road (to see northbound vehicles) 800+ feet
- Sight line to the north along Big Ranch Road (to see southbound vehicles) 500+ feet (through the Oak Knoll Avenue south and north intersections)

The Caltrans Highway Design Manual (July 2018) states that stopping sight distance is the corner sight distance criteria to be utilized at private road connections to arterial roadways. The minimum required stopping sight distances based upon various vehicle speeds are as follows.

SPEED	MINIMUM REQUIRED STOPPING SIGHT DISTANCE
40 mph	300 feet
45 mph	360 feet
50 mph	430 feet
55 mph	500 feet

The posted speed limit at the project entrance is 50 miles per hour, and a few northbound vehicles were observed traveling higher than the posted limit during two field surveys by Crane Transportation Group. Southbound drivers, however, were typically traveling more slowly as they were leaving the Oak Knoll Avenue South and North intersections (35 to 40 miles per hour). Based upon the 55 mile per hour criteria, resultant sight lines to the north and south along Big Ranch Road from the Project Main Driveway would be acceptable. Less than significant.

B. LEFT TURN LANE AT BIG RANCH ROAD/PROJECT MAIN DRIVEWAY INTERSECTION

A left turn lane is now warranted on the southbound Big Ranch Road approach to the Project Main Driveway and the addition of project traffic will further increase volumes above left turn lane warrant criteria. The County left turn lane warrant chart is provided in Appendix E. Significant.

C. MARKETING EVENTS

No new marketing events are proposed. In addition, for midsize events occurring two or more times per month daily visitation by appointment will be reduced by the level of attendance at the marketing event. Less than significant.

D. PEDESTRIAN, BICYCLE AND TRANSIT IMPACTS

There are no pedestrian walkways along Oak Knoll Avenue or Big Ranch Road. No pedestrian traffic is expected, and no pedestrian facilities are proposed along the project's Big Ranch Road frontage. Bicycle racks will be provided for all guests using bicycles and accessing the area via the Class II bicycle lanes along Silverado Trail and the Class I "Vine Trail" bicycle-pedestrian path along the west side of SR 29. It should be noted, however that there are minimal to no paved shoulders along Oak Knoll Avenue between SR 29 and Silverado Trail, there are deep drainage ditches immediately adjacent to the roadway in most locations and this roadway in general would not be attractive to bicycle riders. Currently no employees or visitors use County-wide transit service along SR 29 to access the Winery, although as part of the project's proposed TDM plan, incentives will be provided to any employee taking transit. Less than significant.

E. TRANSPORTATION DEMAND MANAGEMENT (TDM) PLAN \& VEHICLE MILES TRAVELED (VMT) REDUCTIONS

It is an upcoming requirement of all jurisdictions in the state to reduce the Vehicle Miles Traveled (VMT) of traffic associated with new developments to lower levels than would have resulted with comparable projects in the past (per State Senate Bill 743, which took effect in July 2020). This will help reduce greenhouse gas emissions and vehicle congestion. Specific quantitative reduction guidelines have not yet been set for wineries in Napa County, but all are expected to develop ongoing programs that will provide incentives to reduce daily and commute period employee traffic as well as measures that will entice guests to use travel modes other than the automobile or to travel at times other than peak congestion periods. Towards this end, the Materra Winery will develop a Transportation Demand Management (TDM) plan that will help accomplish these goals.

The applicant will be appointing a TDM coordinator to carry out the proposed plan. See Appendix \mathbf{H}. Measures will include providing incentives to establish carpools and riding bicycles to work. Bike racks will be provided for employees and guests. Incentives will also be provided for any employees riding transit. In addition, shuttle buses will be provided for all large events with 100 or more guests. Less than significant.

F. ON-SITE PARKING \& INTERNAL CIRCULATION

There will be a total of 25 on-site parking spaces with the proposed project (with one designated for ADA drivers). There will be 8 employee spaces south of the Winery, with 3 employee and 14 visitor spaces north of the Winery. Visitors to the Winery will be by appointment only. On a busy day, visitors
arrive in a staggered arrangement so that the 14 guest spaces will be more than adequate to accommodate demand. Occasionally, visitors will arrive in a higher-occupancy vehicle such as an SUV, minivan or smaller shuttle bus.

Most of the larger marketing events occur during off-peak hours when some employee parking spaces are available. When larger marketing events are held excess parking can also be accommodated along the Winery access road and along vineyard roads. The Winery utilizes valet parking for these events in addition to the services of small shuttle buses or vans for some groups of visitors. Shuttle buses bring visitors from their hotels or other areas where there are legally entitled parking areas. Internal circulation design (roadway \& parking dimensions/parking spaces, turnaround areas and radii for emergency vehicle and large truck movements) will not change and has been provided to meet all County and CAL FIRE design criteria. Less than significant.

G. YEARLY TRIP GENERATION

Based upon County formula the Materra Winery is currently generating 12,135 yearly trips, while with the use permit modification 2020 yearly trip generation would increase to 26,343 yearly trips for an increase of 14,208 yearly trips. See Appendix G.

XI. RECOMMENDED IMPROVEMENTS

A left turn lane should be provided on the southbound Big Ranch Road approach to the Materra Winery Main Driveway.

XII. CONCLUSIONS \& RECOMMENDATIONS

- The project will result in no significant off-site circulation system operational impacts to Oak Knoll Avenue or Big Ranch Road or to the Oak Knoll Avenue intersections with SR 29, Silverado Trail and Big Ranch Road, or to the Big Ranch Road/Project Main Driveway intersection.
- A left turn lane is now warranted on the southbound Big Ranch Road approach to the Project Main Driveway even without the addition of project traffic.
- Sight lines at the Project Main Driveway connection to Big Ranch Road are acceptable and meet Caltrans stopping sight distance criteria.
- No pedestrians and minimal or no transit users are expected at the Winery. However, bicycle racks will be provided for any bike riders accessing the Winery via the Class II bike lanes along Silverado Trail or the Class I "Vine Trail" along the west side of SR 29.
- Internal circulation is designed to meet County and CAL FIRE criteria. In addition, 25 parking spaces will be provided for guests and employees.
- No new marketing events are being proposed and on days with medium size marketing events occurring 2 times or more per month, daily visitation by appointment will be reduced by the same amount as the number of guests at the marketing event.
- A TDM coordinator will be appointed to institute measures to reduce daily and peak hour employee traffic as well as increase limousine and shuttle bus service for large marketing events. The attached TDM Plan will be adopted.
- A left turn lane should be provided on the southbound Big Ranch Road approach to the Materra Winery Main Driveway.

This Report is intended for presentation and use in its entirety, together with all of its supporting exhibits, schedules, and appendices. Crane Transportation Group will have no liability for any use of the Report other than in its entirety, such as providing an excerpt to a third party or quoting a portion of the Report. If you provide a portion of the Report to a third party, you agree to hold CTG harmless against any liability to such third parties based upon their use of or reliance upon a less than complete version of the Report.

Tables

TABLE 1

SIGNALIZED INTERSECTION LOS CRITERIA

$\begin{array}{c}\text { Level of } \\ \text { Service }\end{array}$	$\begin{array}{c}\text { Description } \\ \text { A }\end{array}$	$\begin{array}{c}\text { Average Control } \\ \text { Delay }\end{array}$
(Seconds Per Vehicle)		

Source: Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board).

TABLE 2
UNSIGNALIZED INTERSECTION LOS CRITERIA

Level of Service	Description	Average Control Delay (Seconds Per Vehicle)
A	Little or no delays	≤ 10.0
B	Short traffic delays	10.0 to 15.0
C	Average traffic delays	15.0 to 25.0
D	Long traffic delays	25.0 to 35.0
E	Very long traffic delays	35.0 to 50.0
F	Extreme traffic delays with intersection capacity exceeded (for an all-way stop), or with approach/turn movement capacity exceeded (for a side street stop controlled intersection)	>50.0

Source: Year 2017 6th Edition Highway Capacity Manual (Transportation Research Board)

TABLE 3

INTERSECTION LEVEL OF SERVICE

YEAR 2019 HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:30-4:30 PM)		SATURDAY PM PEAK HOUR (4:45-5:45 PM)	
	W/O PROJECT	WITH PROJECT	W/O PROJECT	WITH PROJECT
SR29/Oak Knoll Avenue	B-16.4 ${ }^{(1)}$	B-16.5	B-17.4	B-17.6
Oak Knoll Ave/Big Ranch Rd (South)	D-27.7 ${ }^{(2)}$	D-28.4	B-12.3	B-12.4
Oak Knoll Ave/Big Ranch Rd (North)	C-15.8 ${ }^{(3)}$	C-15.9	B-10.7	B-10.7
Oak Knoll Ave/Silverado Trail	E-48.6 ${ }^{(4)}$	E-49.2	C-22.4	C-22.6
Big Ranch Rd/Project Main Driveway	A-9.5 ${ }^{(5)}$	B-10.6	A-9.8	A-9.9

YEAR 2025 HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:30-4:30 PM)		SATURDAY PM PEAK HOUR (4:45-5:45 PM)	
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$	WITH PROJECT	W/O PROJECT	WITH PROJECT
SR29/Oak Knoll Avenue	B-18.9 ${ }^{(1)}$	B-19.1	B-19.5	B-19.7
Oak Knoll Ave/Big Ranch Rd (South)	E-40.9 ${ }^{(2)}$	E-42.1	B-13.1	B-13.1
Oak Knoll Ave/Big Ranch Rd (North)	C-17.8 ${ }^{(3)}$	C-17.9	B-10.9	B-10.9
Oak Knoll Ave/Silverado Trail	F-77.8 ${ }^{(4)}$	F-79.0	D-25.9	D-26.2
Big Ranch Rd/Project Main Driveway	A-9.6 ${ }^{(5)}$	B-10.7	B-10.0	B-10.0

CUMULATIVE (YEAR 2030) HARVEST

LOCATION	FRIDAY PM PEAK HOUR (3:30-4:30 PM)		SATURDAY PM PEAK HOUR (4:45-5:45 PM)	
	W/O PROJECT	WITH PROJECT	W/O PROJECT	WITH PROJECT
SR29/Oak Knoll Avenue	C-22.4 ${ }^{(1)}$	C-22.7	C-21.7	C-21.7
Oak Knoll Ave/Big Ranch Rd (South)	F-56.7 ${ }^{(2)}$	F-58.7	B-13.9	B-14.0
Oak Knoll Ave/Big Ranch Rd (North)	C-19.7 ${ }^{(3)}$	C-19.8	B-11.2	B-11.2
Oak Knoll Ave/Silverado Trail	F-119.3 ${ }^{(4)}$	F-121.1	D-29.7	D-29.9
Big Ranch Rd/Project Main Driveway	A-9.6 ${ }^{(5)}$	B-10.8	B-10.1	B-10.2

${ }^{(1)}$ Signalized level of service - control delay in seconds
${ }^{(2)}$ Unsignalized level of service - control delay in seconds: Eastbound Oak Knoll Ave approach to Big Ranch Rd (south)
${ }^{(3)}$ Unsignalized level of service - control delay in seconds: Westbound Oak Knoll Ave approach to Big Ranch Rd (north)
${ }^{(4)}$ Unsignalized level of service - control delay in seconds: Eastbound Oak Knoll Ave approach to Silverado Trail
${ }^{(5)}$ Unsignalized level of service - control delay in seconds: Westbound Winery Driveway approach to Big Ranch Rd

6th Edition Highway Capacity Manual (HCM) Analysis Methodology for unsignalized intersections (2017)
Source: Crane Transportation Group

ARTERIAL LEVEL OF SERVICE

YEAR 2019 HARVEST

LOCATION	FRIDAY PM PEAK HOUR				SATURDAY PM PEAK HOUR			
	$\begin{gathered} \text { W/O } \\ \text { PROJECT } \end{gathered}$		WITH PROJECT		w/o PROJECT		WITH PROJECT	
	EB	WB	EB	WB	EB	WB	EB	WB
Oak Knoll Ave west of Big Ranch Road	B-. $18^{(1)}$	A-. 15	B-. 18	A-. 15	A-. 14	A-. 15	A-. 14	A-. 15
Oak Knoll Ave east of Big Ranch Road	$\mathrm{A}-.10^{(1)}$	C-. 28	A-. 10	C-. 28	A-. 05	B-. 18	A-. 05	B-. 18
	NB	SB	NB	SB	NB	SB	NB	SB
Big Ranch Road south of Project	A-. $13^{(1)}$	C-. 35	A-. 13	C-. 35	A-. 07	B-. 20	A-. 07	B-. 20

YEAR 2025 HARVEST

LOCATION	FRIDAY PM PEAK HOUR				SATURDAY PM PEAK HOUR			
	w/0 PROJECT		WITH PROJECT		W/O PROJECT		WITH PROJECT	
	EB	WB	EB	WB	EB	WB	EB	WB
Oak Knoll Ave west of Big Ranch Road	B-. $20^{(1)}$	B-. 17	B-. 20	B-. 17	B-. 16	B-. 16	B-. 16	B-. 16
Oak Knoll Ave east of Big Ranch Road	A-. $11^{(1)}$	C-. 30	A-. 11	C-. 30	A-. 05	B-. 19	A-. 05	B-. 19
	NB	SB	NB	SB	NB	SB	NB	SB
Big Ranch Road south of Project	A-. $14^{(1)}$	C-. 37	A-. 14	C-. 37	A-. 08	B-. 22	A-. 08	B-. 22

ARTERIAL LEVEL OF SERVICE

CUMULATIVE (YEAR 2030) HARVEST

LOCATION	FRIDAY PM PEAK HOUR				SATURDAY PM PEAK HOUR			
	W/O PROJECT		WITH PROJECT		w/0 PROJECT		WITH PROJECT	
	EB	WB	EB	WB	EB	WB	EB	WB
Oak Knoll Ave west of Big Ranch Road	$\mathrm{B}-.21^{(1)}$	B-. 19	B-. 21	B-. 19	B-. 18	B-. 17	B-. 18	B-. 17
Oak Knoll Ave east of Big Ranch Road	$\mathrm{A}-.12^{(1)}$	C-. 31	A-. 12	C-. 31	A-. 06	B-. 20	A-. 06	B-. 20
	NB	SB	NB	SB	NB	SB	NB	SB
Big Ranch Road south of Project	A-. $14^{(1)}$	C-. 38	A-. 14	C-. 38	A-. 09	B-. 23	A-. 09	B-. 23

${ }^{1)}$ Level of service - demand/capacity
Highway Capacity Manual, $6^{\text {th }}$ Edition (2017) analysis methodology

Source: Crane Transportation Group

TABLE 5 (a)

RURAL SIGNAL WARRANT EVALUATION

> Oak Knoll Ave/Big Ranch Rd (South)

Do Volumes meet Caltrans Rural Warrant \#3 Volume Criteria?

EXISTING

YEAR 2025

CUMULATIVE (YEAR 2030)

FRIDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
WITHOUT PROJECT	WITH PROJECT	WITHOUT PROJECT	WITH PROJECT
Yes	Yes	Yes	Yes

TABLE 5 (b)

RURAL SIGNAL WARRANT EVALUATION

> Oak Knoll Ave/Big Ranch Rd (North)

Do Volumes meet Caltrans Rural Warrant \#3 Volume Criteria?

EXISTING

FRIDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
WITHOUT PROJECT	WITH PROJECT	WITHOUT PROJECT	WITH PROJECT
No		No	No

YEAR 2025

CUMULATIVE (YEAR 2030)

FRIDAY PM PEAK HOUR		SATURDAY PM PEAK HOUR	
WITHOUT PROJECT	WITH PROJECT	WITHOUT PROJECT	WITH PROJECT
No	No	No	No

TABLE 5 (c)
RURAL SIGNAL WARRANT EVALUATION
Oak Knoll Ave/Silverado Trail
Do Volumes meet Caltrans Rural Warrant \#3 Volume Criteria?
EXISTING

YEAR 2025

CUMULATIVE (YEAR 2030)

Source: Crane Transportation Group

TABLE 6

PROJECT TRIP GENERATION

	Daily Trips			Maximum PM Hourly \% of Daily 2-Way Traffic**	Resultant Project PM Peak Hour 2-Way Trip Generation
	Existing*	Existing* +Project	Increase Due to Project	83	40
21%	9				
Friday	43	83	39	15%	6
Saturday	42	81			

* Napa County Winery Trip Generation Worksheets
** 2 Friday and 2 Saturday 24-hour Traffic Counts of the Winery driveway - Harvest 2020

Source: Crane Transportation Group

Figures

Figure 1
Area Map

Employee \& Visitor Driveway

MAUFRRAS
WINERY

Figure 5
Existing 2019 Harvest Friday (without Project) PM Peak Hour Volumes

Figure 6
Existing 2019 Harvest Saturday (without Project) PM Peak Hour Volumes

Figure 7
Accidents in the Vicinity of the Project Site

Figure 8

Figure 10
Year 2025 Harvest Saturday (without Project) PM Peak Hour Volumes

Figure 12
Cumulative (Year 2030) Harvest Saturday (without Project) PM Peak Hour Volumes

Figure 14
Harvest Saturday PM Peak Hour Project Increment Volumes

Figure 16
Existing 2019 Harvest Saturday (with Project) PM Peak Hour Volumes

Figure 19
Cumulative (Year 2030) Harvest Friday (with Project) PM Peak Hour Volumes

Appendices

Appendix A

Figure A-2

Location: Mattery Winery N Driveway E-O Big Ranch Rd Date Range: 10/23/2020-10/29/2020
iみx

Site Code: 01

Time	Friday			Saturday			Sunday			Monday			Tuesday			Wednesday			Thursday			Mid-Week Average		
	10/23/2020			10/24/2020			10/25/2020			10/26/2020			10/27/2020			10/28/2020			10/29/2020					
	EB	WB	Total																					
12:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 AM	1	0	1	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 AM	2	0	2	3	0	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 AM	5	2	7	1	0	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 AM	2	1	3	2	0	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 AM	3	2	5	3	0	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
12:00 PM	2	5	7	4	10	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 PM	7	5	12	5	3	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 PM	8	5	13	5	2	7		-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 PM	0	2	2	4	5	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 PM	0	2	2	2	5	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 PM	2	5	7	2	5	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 PM	0	2	2	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Total	32	31	63	31	30	61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Percent	51\%	49\%	-	51\%	49\%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM Peak	09:00	09:00	09:00	08:00	-	08:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	5	2	7	3	-	3	-	-	$-$	-	$-$	$-$	$-$	$-$	$-$	-	$-$	-	$-$	$-$	$-$	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
PM Peak	14:00	12:00	14:00	13:00	12:00	12:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	8	5	13	5	10	14															-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#

1. Mid-week average includes data between Tuesday and Thursday.

Location: \quad Big Ranch Rd N-O Mattery Winery N Driveway Date Range: 10/23/2020-10/29/2020
Site Code: 02

DATA SOLUTIONS

Time	Friday			Saturday			Sunday			Monday			Tuesday			Wednesday			Thursday			Mid-Week Average		
	10/23/2020			10/24/2020			10/25/2020			10/26/2020			10/27/2020			10/28/2020			10/29/2020					
	NB	SB	Total																					
12:00 AM	3	11	14	5	7	12	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 AM	4	1	5	3	5	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 AM	7	8	15	2	4	6	-	-	-	-	-	-	-	-	-	-	-	-				\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 AM	1	7	8	2	1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 AM	12	6	18	8	1	9	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 AM	51	6	57	12	2	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 AM	188	24	212	50	8	58	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 AM	139	55	194	68	25	93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 AM	211	92	303	137	71	208	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 AM	156	106	262	155	82	237	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 AM	150	114	264	128	90	218	-	-	-	-	-	-	-	-	-	-	-	-			-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 AM	146	153	299	133	127	260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
12:00 PM	177	165	342	139	139	278	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 PM	135	177	312	148	135	283	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 PM	142	258	400	164	153	317	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 PM	142	446	588	228	246	474	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 PM	110	433	543	151	310	461	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 PM	103	329	432	99	239	338	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 PM	71	179	250	61	151	212	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 PM	54	86	140	49	90	139	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 PM	37	45	82	30	38	68	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 PM	19	34	53	32	25	57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 PM	17	29	46	25	27	52	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 PM	4	33	37	14	44	58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$-$	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Total	2,079	2,797	4,876	1,843	2,020	3,863	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Percent	43\%	57\%	-	48\%	52\%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM Peak	08:00	11:00	08:00	09:00	11:00	11:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	211	153	303	155	127	260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
PM Peak	12:00	15:00	15:00	15:00	16:00	15:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	177	446	588	228	310	474	-	\sim	\sim	\sim	-	-	\sim	-	\sim	\sim	\square	\sim	\sim	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#

1. Mid-week average includes data between Tuesday and Thursday.

Location: Mattery Winery N Driveway E-O Big Ranch Rd
iみx
DATA SOLUTIONS
Site Code: 01

Time	Friday			Saturday			Sunday			Monday			Tuesday			Wednesday			Thursday			Mid-Week Average		
	10/30/2020			10/31/2020			11/1/2020			11/2/2020			11/3/2020			11/4/2020			11/5/2020					
	EB	WB	Total																					
12:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 AM	1	0	1	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 AM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 AM	4	0	4	5	0	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 AM	3	4	7	4	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 AM	5	2	7	2	4	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 AM	3	4	7	3	4	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
12:00 PM	1	1	2	8	4	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 PM	4	5	9	3	1	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 PM	1	2	3	2	2	4	-	-	-	-	-	-	-	-	-	-	-					\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 PM	2	4	6	1	4	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 PM	1	2	3	0	1	1	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 PM	0	5	5	0	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 PM	0	2	2	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 PM	1	1	2	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 PM	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	$-$	-	-	-	$-$	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Total	26	32	58	28	23	51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Percent	45\%	55\%		55\%	45\%	-	-	$-$	$-$	$-$	-	-	-	$-$	$-$	-	-	-	-	-	$-$	-	-	-
AM Peak	10:00	09:00	09:00	08:00	10:00	11:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	5	4	7	5	4	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
PM Peak	13:00	13:00	13:00	12:00	12:00	12:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	4	5	9	8	4	12	-	-	-	-	-	-	-	-	-	-	-	-	-	\square	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#

1. Mid-week average includes data between Tuesday and Thursday.

Location: Big Ranch Rd N-O Mattery Winery N Driveway Date Range: 10/30/2020-11/5/2020
Site Code: 02

DATA SOLUTIONS

Time	Friday			Saturday			Sunday			Monday			Tuesday			Wednesday			Thursday			Mid-Week Average		
	10/30/2020			10/31/2020			11/1/2020			11/2/2020			11/3/2020			11/4/2020			11/5/2020					
	NB	SB	Total																					
12:00 AM	6	6	12	8	12	20	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 AM	4	3	7	0	4	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 AM	3	2	5	5	4	9	-	-	-	-	-	-	-	-	-	-	-	-				\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 AM	2	3	5	2	4	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 AM	13	7	20	6	3	9	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 AM	47	3	50	13	2	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 AM	161	21	182	40	9	49	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 AM	181	78	259	59	31	90	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 AM	240	96	336	116	59	175	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 AM	161	107	268	116	71	187	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 AM	137	131	268	137	96	233	-	-	-	-	-	-	-	-	-	-	-	-			-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 AM	140	127	267	112	108	220	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
12:00 PM	123	168	291	119	122	241	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
1:00 PM	136	192	328	113	118	231	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
2:00 PM	142	252	394	121	160	281	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
3:00 PM	139	447	586	101	166	267	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
4:00 PM	126	459	585	102	179	281	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
5:00 PM	102	318	420	60	176	236	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
6:00 PM	79	174	253	51	101	152	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
7:00 PM	49	79	128	53	47	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
8:00 PM	28	38	66	33	40	73	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
9:00 PM	25	28	53	25	31	56	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
10:00 PM	13	35	48	18	30	48	-	-	-	-	-	-	-	-	-	-	-	-		-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
11:00 PM	12	28	40	12	25	37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Total	2,069	2,802	4,871	1,422	1,598	3,020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Percent	42\%	58\%	-	47\%	53\%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM Peak	08:00	10:00	08:00	10:00	11:00	10:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	240	131	336	137	108	233	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
PM Peak	14:00	16:00	15:00	14:00	16:00	14:00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
Vol.	142	459	586	121	179	281	-	\sim	-	\sim	\sim	-	\sim	-	\sim	\square	\square	\sim	\sim	-	\bigcirc	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#

1. Mid-week average includes data between Tuesday and Thursday.

Big Ranch Rd
Matterna Winery Entrance

Peak Hour

Four-Hour Count Summaries

Interval Start		0				Matterna Winery Entrance				Big Ranch Rd				Big Ranch Rd				$15-m i n$Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
3:30	PM	0	0	0	0	0	0	0	0	0	0	39	0	0	0	133	0	172	0
3:45	PM	0	0	0	0	0	0	0	0	0	0	35	0	0	0	146	0	181	0
4:00	PM	0	0	0	0	0	0	0	0	0	0	32	0	0	0	100	0	132	0
4:15	PM	0	0	0	0	0	0	0	0	0	0	32	0	0	0	102	0	134	619
	All	0	0	0	0	0	0	0	0	0	0	138	0	0	0	481	0	619	0
Peak	HV	0	0	0	0	0	0	0	0	0	0	1	0	0	0	5	0	6	0
	HV\%	-	-	-	-	-	-	-	-	-	-	1\%	-	-	-	1\%	-	1\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
3:30 PM	0	0	1	2	3	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
4:00 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	1	5	6	0	0	0	0	0	0	0	0	0	0

Big Ranch Rd
Oak Knoll Ave

Four-Hour Count Summaries

Interval Start		Oak Knoll Ave				Oak Knoll Ave				Big Ranch Rd				Big Ranch Rd				15-minTotal	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
3:30 PM		0	0	25	45	0	76	25	0	0	23	1	12	0	0	2	1	210	0
3:45 PM		0	0	21	54	0	94	25	0	0	32	4	7	0	0	0	1	238	0
4:00 PM		0	1	11	48	0	68	25	2	0	23	2	7	0	1	13	2	203	0
4:15 PM		0	0	13	47	0	74	17	0	0	26	1	14	0	0	4	1	197	848
Peak Hour	All	0	1	70	194	0	312	92	2	0	104	8	40	0	1	19	5	848	0
	HV	0	0	1	4	0	6	0	0	0	1	0	2	0	0	2	0	16	0
	HV\%	-	0\%	1\%	2\%	-	2\%	0\%	0\%	-	1\%	0\%	5\%	-	0\%	11\%	0\%	2\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
3:30 PM	2	3	0	2	7	0	2	0	0	2	0	0	0	0	0
3:45 PM	0	1	1	0	2	1	0	0	0	1	0	0	0	0	0
4:00 PM	1	1	1	0	3	0	1	0	0	1	0	0	0	0	0
4:15 PM	2	1	1	0	4	1	0	2	0	3	0	0	0	0	0
Peak Hour	5	6	3	2	16	2	3	2	0	7	0	0	0	0	0

Four-Hour Count Summaries

Interval Start		Oak Knoll Ave				n/a				Silverado Trail				Silverado Trail				$15-\mathrm{min}$Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
3:30 PM		0	12	0	17	0	0	0	0	0	17	68	0	0	0	200	91	405	0
3:45 PM		0	12	0	19	0	0	0	0	0	11	72	0	0	0	220	108	442	0
4:00 PM		0	7	0	6	0	0	0	0	0	12	78	0	0	0	169	86	358	0
4:15 PM		0	22	0	10	0	0	0	0	0	9	60	0	0	0	153	85	339	1,544
Peak Hour	All	0	53	0	52	0	0	0	0	0	49	278	0	0	0	742	370	1,544	0
	HV	0	2	0	0	0	0	0	0	0	1	4	0	0	0	19	4	30	0
	HV\%	-	4\%	-	0\%	-	-	-	-	-	2\%	1\%	-	-	-	3\%	1\%	2\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
3:30 PM	0	0	2	8	10	0	0	2	0	2	0	0	0	0	0
3:45 PM	1	0	0	6	7	0	0	0	1	1	0	0	0	0	0
4:00 PM	0	0	1	4	5	0	0	0	1	1	0	0	0	0	0
4:15 PM	1	0	2	5	8	2	0	0	0	2	0	0	0	0	0
Peak Hour	2	0	5	23	30	2	0	2	2	6	0	0	0	0	0

Big Ranch Rd
Matterna Winery Entrance
人
Peak Hour

Date: 10/30/2020
Count Period: 2:00 PM to 6:00 PM
Peak Hour: 3:30 PM to 4:30 PM

Four-Hour Count Summaries

Interval Start		n/a				Matterna Winery Entrance				Big Ranch Rd				Big Ranch Rd				$15-\mathrm{min}$Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
3:30 PM		0	0	0	0	0	0	0	1	0	0	36	0	0	1	121	0	159	0
3:45 PM		0	0	0	0	0	0	0	1	0	0	41	0	0	0	150	0	192	0
4:00 PM		0	0	0	0	0	0	0	0	0	0	31	0	0	0	128	0	159	0
4:15 PM		0	0	0	0	0	0	0	1	0	0	40	0	0	1	122	0	164	674
Peak Hour	All	0	0	0	0	0	0	0	3	0	0	148	0	0	2	521	0	674	0
	HV	0	0	0	0	0	0	0	0	0	0	4	0	0	0	11	0	15	0
	HV\%	-	-	-	-	-	-	-	0\%	-	-	3\%	-	-	0\%	2\%	-	2\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
3:30 PM	0	0	1	7	8	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	1	1	2	0	0	0	1	1	0	0	0	0	0
4:00 PM	0	0	1	1	2	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	1	2	3	0	0	2	1	3	0	0	0	0	0
Peak Hour	0	0	4	11	15	0	0	2	2	4	0	0	0	0	0

Big Ranch Rd
Matterna Winery Entrance
*
Peak Hour

Six-Hour Count Summaries

Interval Start		0				Matterna Winery Entrance				Big Ranch Rd				Big Ranch Rd				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
4:15	PM	0	0	0	0	0	1	0	0	0	0	48	0	0	2	84	0	135	0
4:30	PM	0	0	0	0	0	0	0	0	0	0	37	0	0	0	90	0	127	0
4:45	PM	0	0	0	0	0	5	0	0	0	0	30	0	0	1	87	0	123	0
5:00	PM	0	0	0	0	0	0	0	0	0	0	28	0	0	1	73	0	102	487
	All	0	0	0	0	0	6	0	0	0	0	143	0	0	4	334	0	487	0
Peak Hour	HV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	5	0
Hour	HV\%	-	-	-	-	-	0\%	-	-	-	-	0\%	-	-	0\%	1\%	-	1\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:15 PM	0	0	0	1	1	0	0	0	2	2	0	0	0	0	0
4:30 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	5	5	0	0	0	2	2	0	0	0	0	0

Big Ranch Rd
 Oak Knoll Ave

Date: 10/31/2020
Count Period: 12:00 PM to 6:00 PM
Peak Hour: 2:00 PM to 3:00 PM

Six-Hour Count Summaries

Interval Start		Oak Knoll Ave				Oak Knoll Ave				Big Ranch Rd				Big Ranch Rd				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00 PM		0	21	18	26	0	24	19	0	0	20	2	12	0	2	1	2	147	0
2:15 PM		0	0	16	24	0	16	12	0	0	25	3	5	0	13	3	2	119	0
2:30 PM		0	0	22	21	0	14	22	0	0	21	5	10	0	1	2	1	119	0
2:45 PM		0	1	20	31	0	18	12	0	0	20	1	4	0	1	0	0	108	493
Peak Hour	All	0	22	76	102	0	72	65	0	0	86	11	31	0	17	6	5	493	0
	HV	0	1	3	2	0	0	0	0	0	1	0	0	0	0	1	1	9	0
	HV\%	-	5\%	4\%	2\%	-	0\%	0\%	-	-	1\%	0\%	0\%	-	0\%	17\%	20\%	2\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	3	0	0	1	4	6	4	1	0	11	0	0	0	0	0
2:15 PM	2	0	0	1	3	0	0	2	4	6	0	0	0	0	0
2:30 PM	1	0	0	0	1	2	3	3	0	8	0	0	0	0	0
2:45 PM	0	0	1	0	1	5	0	0	0	5	0	0	0	0	0
Peak Hour	6	0	1	2	9	13	7	6	4	30	0	0	0	0	0

Six-Hour Count Summaries

Interval Start		Oak Knoll Ave				0				Silverado Trail				Silverado Trail				$15-\mathrm{min}$Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
12:15 PM		0	14	0	10	0	0	0	0	1	14	62	0	0	0	57	32	190	0
12:30 PM		0	21	0	12	0	0	0	0	0	7	62	0	0	0	71	26	199	0
12:45 PM		0	23	0	21	0	0	0	0	0	9	77	0	0	0	50	16	196	0
1:00 PM		0	14	0	6	0	0	0	0	0	11	68	0	0	0	65	26	190	775
Peak Hour	All	0	72	0	49	0	0	0	0	1	41	269	0	0	0	243	100	775	0
	HV	0	0	0	0	0	0	0	0	0	1	3	0	0	0	11	1	16	0
	HV\%	-	0\%	-	0\%	-	-	-	-	0\%	2\%	1\%	-	-	-	5\%	1\%	2\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
12:15 PM	0	0	2	4	6	0	0	3	7	10	0	0	0	0	0
12:30 PM	0	0	0	1	1	1	0	4	4	9	0	0	0	0	0
12:45 PM	0	0	1	2	3	4	0	2	2	8	0	0	0	0	0
1:00 PM	0	0	1	5	6	0	0	2	3	5	0	0	0	0	0
Peak Hour	0	0	4	12	16	5	0	11	16	32	0	0	0	0	0

Big Ranch Rd
Matterna Winery Entrance

Date: 10/31/2020
Count Period: 12:00 PM to 6:00 PM
Peak Hour: 2:00 PM to 3:00 PM

Six-Hour Count Summaries

Interval Start		0				Matterna Winery Entrance				Big Ranch Rd				Big Ranch Rd				15-min	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	0	0	0	0	0	0	1	0	0	33	0	0	0	46	0	80	0
2:15	PM	0	0	0	0	0	0	0	1	0	0	31	0	0	1	42	0	75	0
2:30	PM	0	0	0	0	0	0	0	0	0	0	37	0	0	1	36	0	74	0
2:45	PM	0	0	0	0	0	0	0	0	0	0	25	0	0	0	45	0	70	299
	All	0	0	0	0	0	0	0	2	0	0	126	0	0	2	169	0	299	0
Peak Hour	HV	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	0	4	0
	HV\%	-	-	-	-	-	-	-	0\%	-	-	1\%	-	-	0\%	2\%	-	1\%	0

Note: For all three-hour count summary, see next page.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	0	0	0	0	0	0	0	1	4	5	0	0	0	0	0
2:15 PM	0	0	0	3	3	0	0	2	0	2	0	0	0	0	0
2:30 PM	0	0	1	0	1	0	0	3	0	3	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	3	3	0	0	0	0	0
Peak Hour	0	0	1	3	4	0	0	6	7	13	0	0	0	0	0

Appendix B

Intersection						
Int Delay, s/veh	9.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Yr			-1	b	
Traffic Vol, veh/h	72	202	120	90	344	114
Future Vol, veh/h	72	202	120	90	344	114
Conflicting Peds, \#/hr	7	7	7	0	0	7
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	1	1	0	0	1	1
Mvmt Flow	82	230	136	102	391	130

Intersection						
Int Delay, s/veh	10.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\neq
Traffic Vol, veh/h	423	8	12	150	4	35
Future Vol, veh/h	423	8	12	150	4	35
Conflicting Peds, \#/hr	7	7	0	7	7	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	0	2	0	0
Mvmt Flow	481	9	14	170	5	40

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	163	113	0	0	191	0
Stage 1	106	-	-	-	-	-
Stage 2	57	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.1	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.2	-
Pot Cap-1 Maneuver	828	940	-	-	1395	-
Stage 1	918	-	-	-	-	-
Stage 2	966	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	815	929	-	-	1387	-
Mov Cap-2 Maneuver	815	-	-	-	-	-
Stage 1	912	-	-	-	-	-
Stage 2	956	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.8		0		0.8	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	817	1387	-
HCM Lane V/C Ratio		-	-	0.599	0.003	-
HCM Control Delay (s)		-	-	15.8	7.6	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	4.1	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\uparrow
Traffic Vol, veh/h	0	2	206	0	1	545
Future Vol, veh/h	0	2	206	0	1	545
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	86
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	0	2	242	0	1	634

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	878	242	0	0	242	0
Stage 1	242	-	-	-	-	-
Stage 2	636	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	321	802	-	-	1336	-
Stage 1	803	-	-	-	-	-
Stage 2	531	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	321	802	-	-	1336	-
Mov Cap-2 Maneuver	321	-	-	-	-	-
Stage 1	803	-	-	-	-	-
Stage 2	530	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.5		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	802	1336	-
HCM Lane V/C Ratio		-	-	0.003	0.001	-
HCM Control Delay (s)		-	-	9.5	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			\uparrow	F	\％	个4	「	\％	个4	F
Traffic Volume（veh／h）	28	43	40	67	66	104	27	821	56	185	1320	154
Future Volume（veh／h）	28	43	40	67	66	104	27	821	56	185	1320	154
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	0.99		0.97	0.99		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1870	1885	1900	1870	1870	1870
Adj Flow Rate，veh／h	30	46	43	72	71	58	29	883	60	199	1419	112
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	0	0	0	0	0	0	2	1	0	2	2	2
Cap，veh／h	67	82	56	144	113	230	51	1981	866	237	2337	1015
Arrive On Green	0.15	0.15	0.15	0.15	0.15	0.15	0.03	0.55	0.55	0.13	0.66	0.66
Sat Flow，veh／h	117	558	382	571	771	1565	1781	3582	1567	1781	3554	1544
Grp Volume（v），veh／h	119	0	0	143	0	58	29	883	60	199	1419	112
Grp Sat Flow（s），veh／h／ln	1056	0	0	1342	0	1565	1781	1791	1567	1781	1777	1544
Q Serve（g＿s），s	1.6	0.0	0.0	0.0	0.0	3.0	1.4	13.2	1.6	9.8	20.5	2.4
Cycle Q Clear（g＿c），s	11.0	0.0	0.0	9.4	0.0	3.0	1.4	13.2	1.6	9.8	20.5	2.4
Prop In Lane	0.25		0.36	0.50		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	206	0	0	258	0	230	51	1981	866	237	2337	1015
V／C Ratio（X）	0.58	0.00	0.00	0.56	0.00	0.25	0.57	0.45	0.07	0.84	0.61	0.11
Avail Cap（c＿a），veh／h	289	0	0	340	0	313	103	1981	866	376	2337	1015
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	36.1	0.0	0.0	36.4	0.0	34.0	43.2	11.9	9.3	38.1	8.8	5.7
Incr Delay（d2），s／veh	2.6	0.0	0.0	1.9	0.0	0.6	9.6	0.7	0.2	9.2	1.2	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	4.7	0.0	0.0	5.4	0.0	2.0	1.3	7.8	0.9	8.1	9.7	1.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	38.7	0.0	0.0	38.3	0.0	34.6	52.7	12.7	9.5	47.3	10.	5.9

LnGrp Delay（d），s／veh	38.7	0.0	0.0	38.3	0.0	34.6	52.7	12.7	9.5	47.3	10.0	5.9
LnGrp LOS	D	A	A	D	A	C	D	B	A	D	A	A
Approach Vol，veh／h		119			201			972		1730		
Approach Delay，s／veh		38.7			37.2			13.7		14.0		
Approach LOS		D			D			B		B		

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	17.0	54.8	18.2	7.6	64.2	18.2
Change Period $(\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	5.0	5.0	5.0	5.0	5.0
Max Green Setting（Gmax），s	19.0	38.0	18.0	5.2	51.8	18.0
Max Q Clear Time（g＿c＋11），s	11.8	15.2	13.0	3.4	22.5	11.4
Green Ext Time（p＿c），s	0.3	3.7	0.1	0.0	7.4	0.3

Intersection Summary

HCM 6th Ctrl Delay	16.4
HCM 6th LOS	B

Intersection						

Intersection						
Int Delay, s/veh	7.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		\uparrow			\uparrow
Traffic Vol, veh/h	279	5	12	74	3	14
Future Vol, veh/h	279	5	12	74	3	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	1	0	0	1	0	0
Mvmt Flow	297	5	13	79	3	15

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	74	53	0	0	92	0
Stage 1	53	-	-	-	-	-
Stage 2	21	-	-	-	-	-
Critical Hdwy	6.41	6.2	,	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	932	1020	-	-	1515	-
Stage 1	972	-	-	-	-	-
Stage 2	1004	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	930	1020	-	-	1515	-
Mov Cap-2 Maneuver	930	-	-	-	-	-
Stage 1	972	-	-	-	-	-
Stage 2	1002	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.7		0		1.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	931	1515	-
HCM Lane V/C Ratio		-	-	0.325	0.002	-
HCM Control Delay (s)		-	-	10.7	7.4	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.4	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F			\uparrow
Traffic Vol, veh/h	1	2	116	0	3	313
Future Vol, veh/h	1	2	116	0	3	313
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	1	2	129	0	3	348

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	483	129	0	0	129	0
Stage 1	129	-	-	-	-	-
Stage 2	354	-	-	-	-	-
Critical Hdwy	6.4	6.2		-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	546	926	-	-	1469	-
Stage 1	902	-	-	-	-	-
Stage 2	715	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	544	926	-	-	1469	-
Mov Cap-2 Maneuver	544	-	-	-	-	-
Stage 1	902	-	-	-	-	-
Stage 2	713	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.8		0		0.1	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	750	1469	-
HCM Lane V/C Ratio		-	-	0.004	0.002	-
HCM Control Delay (s)		-	-	9.8	7.5	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	「	${ }^{7}$	个4	「	\％	个4	F
Trafic Volume（veh／h）	28	26	25	104	45	85	13	575	19	177	1255	86
Future Volume（veh／h）	28	26	25	104	45	85	13	575	19	177	1255	86
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.98	1.00		0.98	1.00		0.97	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1900	1885	1900	1870	1885	1900
Adj Flow Rate，veh／h	31	29	27	114	49	60	14	632	21	195	1379	62
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％	0	0	0	0	0	0	0	1	0	2	1	0
Cap，veh／h	72	65	37	200	69	292	30	1850	809	233	2260	989
Arrive On Green	0.19	0.19	0.19	0.19	0.19	0.19	0.02	0.52	0.52	0.13	0.63	0.63
Sat Flow，veh／h	96	349	200	710	372	1571	1810	3582	1566	1781	3582	1568
Grp Volume（v），veh／h	87	0	0	163	0	60	14	632	21	195	1379	62
Grp Sat Flow（s），veh／h／ln	646	0	0	1082	0	1571	1810	1791	1566	1781	1791	1568
Q Serve（g＿s），s	0.9	0.0	0.0	0.0	0.0	2.9	0.7	9.3	0.6	9.6	20.8	1.4
Cycle Q Clear（g＿c），s	14.7	0.0	0.0	13.8	0.0	2.9	0.7	9.3	0.6	9.6	20.8	1.4
Prop In Lane	0.36		0.31	0.70		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	174	0	0	269	0	292	30	1850	809	233	2260	989
V／C Ratio（X）	0.50	0.00	0.00	0.61	0.00	0.21	0.47	0.34	0.03	0.84	0.61	0.06
Avail Cap（c＿a），veh／h	196	0	0	290	0	314	105	1850	809	376	2260	989
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	32.5	0.0	0.0	35.2	0.0	31.0	43.9	12.8	10.7	38.2	10.0	6.4
Incr Delay（d2），s／veh	2.2	0.0	0.0	3.2	0.0	0.3	11.2	0.5	0.1	8.7	1.2	0.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	3.0	0.0	0.0	6.3	0.0	2.0	0.7	5.8	0.3	7.9	10.3	0.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d）．s／veh	34.7	0.0	0.0	38.4	0.0	31.3	55.0	13.3	10.7	46.8	11.2	6.5

LnGrp Delay（d），s／veh	34.7	0.0	0.0	38.4	0.0	31.3	55.0	13.3	10.7	46.8	11.2	6.5
LnGrp LOS	C	A	A	D	A	C	E	B	B	D	B	A
Approach Vol，veh／h		87			223			667		1636		
Approach Delay，s／veh		34.7			36.5			14.1			15.3	
Approach LOS		C			D			B			B	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	16.8	51.5	21.7	6.5	61.8	21.7
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	5.0	5.0	5.0	5.0	5.0	5.0
Max Green Setting（Gmax），s	19.0	38.0	18.0	5.2	51.8	18.0
Max Q Clear Time（g＿c＋11），s	11.6	11.3	16.7	2.7	22.8	15.8
Green Ext Time（p＿c），s	0.3	2.4	0.0	0.0	6.9	0.1

Intersection Summary

HCM 6th Ctrl Delay	17.4
HCM 6th LOS	B

Intersection						

Intersection						
Int Delay, s/veh	12.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		6			\uparrow
Traffic Vol, veh/h	458	9	14	163	4	38
Future Vol, veh/h	458	9	14	163	4	38
Conflicting Peds, \#/hr	7	7	0	7	7	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	0	2	0	0
Mvmt Flow	520	10	16	185	5	43

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	176	123	0	0	208	0
Stage 1	116	-	-	-	-	-
Stage 2	60	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.1	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.2	-
Pot Cap-1 Maneuver	814	928	-	-	1375	-
Stage 1	909	-	-	-	-	-
Stage 2	963	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	801	917	-	-	1367	-
Mov Cap-2 Maneuver	801	-	-	-	-	-
Stage 1	904	-	-	-	-	-
Stage 2	953	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	17.8		0		0.7	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	803	1367	-
HCM Lane V/C Ratio		-	-	0.661	0.003	-
HCM Control Delay (s)		-	-	17.8	7.6	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	5.1	0	-

Intersection						

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			-1
Traffic Vol, veh/h	0	2	215	0	1	577
Future Vol, veh/h	0	2	215	0	1	577
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	86
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	0	2	253	0	1	671

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	926	253	0	0	253	0
Stage 1	253	-	-	-	-	-
Stage 2	673	-	-	-	-	-
Critical Hdwy	6.4	6.2	,	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-		-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	301	791	-	-	1324	-
Stage 1	794	-	-	-	-	-
Stage 2	511	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	301	791	-	-	1324	-
Mov Cap-2 Maneuver	301	-	-	-	-	-
Stage 1	794	-	-	-	-	-
Stage 2	510	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.6		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	791	1324	-
HCM Lane V/C Ratio		-	-	0.003	0.001	-
HCM Control Delay (s)		-	-	9.6	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	「	\％	个4	「	\％	性	7
Traffic Volume（veh／h）	29	44	43	85	65	113	29	840	63	212	1465	171
Future Volume（veh／h）	29	44	43	85	65	113	29	840	63	212	1465	171
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.97	1.00		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1870	1885	1900	1870	1870	1870
Adj Flow Rate，veh／h	31	47	46	91	70	68	31	903	68	228	1575	130
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	0	0	0	0	0	0	2	1	0	2	2	2
Cap，veh／h	63	86	59	162	102	274	53	1824	797	266	2235	971
Arrive On Green	0.17	0.17	0.17	0.17	0.17	0.17	0.03	0.51	0.51	0.15	0.63	0.63
Sat Flow，veh／h	76	495	337	571	585	1569	1781	3582	1566	1781	3554	1543
Grp Volume（v），veh／h	124	0	0	161	0	68	31	903	68	228	1575	130
Grp Sat Flow（s），veh／h／ln	907	0	0	1156	0	1569	1781	1791	1566	1781	1777	1543
Q Serve（g＿s），s	0.9	0.0	0.0	0.0	0.0	3.4	1.5	14.9	2.0	11.2	26.6	3.1
Cycle Q Clear（g＿c），s	13.6	0.0	0.0	12.7	0.0	3.4	1.5	14.9	2.0	11.2	26.6	3.1
Prop In Lane	0.25		0.37	0.57		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	208	0	0	264	0	274	53	1824	797	266	2235	971
V／C Ratio（X）	0.60	0.00	0.00	0.61	0.00	0.25	0.58	0.50	0.09	0.86	0.70	0.13
Avail Cap（c＿a），veh／h	249	0	0	303	0	314	103	1824	797	376	2235	971
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	33.6	0.0	0.0	35.5	0.0	32.1	43.1	14.5	11.3	37.3	11.1	6.8
Incr Delay（d2），s／veh	2.7	0.0	0.0	2.8	0.0	0.5	9.6	1.0	0.2	12.8	1.9	0.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	4.4	0.0	0.0	6.2	0.0	2.3	1.4	9.0	1.1	9.3	12.8	1.5
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	36.3	0.0	0.0	38.2	0.0	32.5	52.7	15.5	11.5	50.2	13.0	7.1
LnGrp LOS	D	A	A	D	A	C	D	B	B	D	B	A
Approach Vol，veh／h		124			229			1002			1933	
Approach Delay，s／veh		36.3			36.5			16.3			17.0	
Approach LOS		D			D			B			B	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	18.5	50.8		20.7	7.7	61.6		20.7				
Change Period（ $Y+R \mathrm{R}$ ），s	5.0	5.0		5.0	5.0	5.0		5.0				
Max Green Setting（Gmax），s	19.0	38.0		18.0	5.2	51.8		18.0				
Max Q Clear Time（g＿c＋11），s	13.2	16.9		15.6	3.5	28.6		14.7				
Green Ext Time（p＿c），s	0.3	3.7		0.1	0.0	8.2		0.2				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			18.9									
			B									

Intersection						

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Yr		个			\uparrow
Traffic Vol, veh/h	1	2	124	0	3	339
Future Vol, veh/h	1	2	124	0	3	339
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	1	2	138	0	3	377

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	521	138	0	0	138	0
Stage 1	138	-	-	-	-	-
Stage 2	383	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	519	916	-	-	1458	-
Stage 1	894	-	-	-	-	-
Stage 2	694	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	517	916	-	-	1458	-
Mov Cap-2 Maneuver	517	-	-	-	-	-
Stage 1	894	-	-	-	-	-
Stage 2	692	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	729	1458	-
HCM Lane V/C Ratio		-	-	0.005	0.002	-
HCM Control Delay (s)		-	-	10	7.5	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						

Intersection						
Int Delay, s/veh	13.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		6			\uparrow
Traffic Vol, veh/h	480	10	15	175	5	40
Future Vol, veh/h	480	10	15	175	5	40
Conflicting Peds, \#/hr	7	7	0	7	7	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	0	2	0	0
Mvmt Flow	545	11	17	199	6	45

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	188	131	0	0	223	0
Stage 1	124	-	-	-	-	-
Stage 2	64	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.1	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.2	-
Pot Cap-1 Maneuver	801	919	-	-	1358	-
Stage 1	902	-	-	-	-	-
Stage 2	959	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	787	908	-	-	1350	-
Mov Cap-2 Maneuver	787	-	-	-	-	-
Stage 1	897	-	-	-	-	-
Stage 2	948	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.7		0		0.9	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	789	1350	-
HCM Lane V/C Ratio		-	-	0.706	0.004	-
HCM Control Delay (s)		-	-	19.7	7.7	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	6	0	-

[^0]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0 | | | | | |
| Movement | WBL | WBR | NBT | NBR | SBL | SBT |
| Lane Configurations | Mi | | 个 | | | \uparrow |
| Traffic Vol, veh/h | 0 | 2 | 223 | 0 | 1 | 594 |
| Future Vol, veh/h | 0 | 2 | 223 | 0 | 1 | 594 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | 0 | - | - | 0 |
| Grade, \% | 0 | - | 0 | - | - | 0 |
| Peak Hour Factor | 85 | 85 | 85 | 85 | 85 | 86 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 0 | 0 | 1 |
| Mvmt Flow | 0 | 2 | 262 | 0 | 1 | 691 |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	「	${ }^{7}$	个4	「	\％	性	7
Traffic Volume（veh／h）	30	45	44	100	72	118	30	855	65	230	1585	185
Future Volume（veh／h）	30	45	44	100	72	118	30	855	65	230	1585	185
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.98	1.00		0.98	1.00		0.97	1.00		0.95
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1870	1885	1900	1870	1870	1870
Adj Flow Rate，veh／h	32	48	47	108	77	73	32	919	70	247	1704	199
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	0	0	0	0	0	0	2	1	0	2	2	2
Cap，veh／h	52	70	42	161	90	314	54	1695	741	285	2142	903
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.03	0.47	0.47	0.16	0.60	0.60
Sat Flow，veh／h	8	352	212	487	451	1572	1781	3582	1565	1781	3554	1498
Grp Volume（v），veh／h	127	0	0	185	0	73	32	919	70	247	1704	199
Grp Sat Flow（s），veh／h／ln	572	0	0	939	0	1572	1781	1791	1565	1781	1777	1498
Q Serve（g＿s），s	0.4	0.0	0.0	0.0	0.0	3.5	1.6	16.4	2.2	12.2	32.9	5.5
Cycle Q Clear（g＿c），s	18.0	0.0	0.0	17.6	0.0	3.5	1.6	16.4	2.2	12.2	32.9	5.5
Prop In Lane	0.25		0.37	0.58		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	165	0	0	251	0	314	54	1695	741	285	2142	903
V／C Ratio（X）	0.77	0.00	0.00	0.74	0.00	0.23	0.59	0.54	0.09	0.87	0.80	0.22
Avail Cap（c＿a），veh／h	165	0	0	251	0	314	103	1695	741	376	2142	903
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	32.0	0.0	0.0	35.4	0.0	30.2	43.1	16.8	13.1	36.9	13.6	8.2
Incr Delay（d2），s／veh	19.9	0.0	0.0	10.8	0.0	0.4	9.7	1.2	0.3	15.1	3.2	0.6
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	5.7	0.0	0.0	8.1	0.0	2.4	1.4	10.0	1.3	10.1	16.0	2.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	52.0	0.0	0.0	46.2	0.0	30.6	52.7	18.0	13.3	52.0	16.8	8.8
LnGrp LOS	D	A	A	D	A	C	D	B	B	D	B	A
Approach Vol，veh／h		127			258			1021			2150	
Approach Delay，s／veh		52.0			41.8			18.8			20.1	
Approach LOS		D			D			B			C	
Timer－Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	19.4	47.6		23.0	7.8	59.2		23.0				
Change Period（ $Y+R \mathrm{R}$ ），s	5.0	5.0		5.0	5.0	5.0		5.0				
Max Green Setting（Gmax），s	19.0	38.0		18.0	5.2	51.8		18.0				
Max Q Clear Time（g＿c＋11），s	14.2	18.4		20.0	3.6	34.9		19.6				
Green Ext Time（p＿c），s	0.3	3.8		0.0	0.0	8.2		0.0				
Intersection Summary												
HCM 6th Ctrr Delay			22.4									
HCM 6th LOS			C									

Intersection						

Intersection						
Int Delay, s/veh	8.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		6			\uparrow
Traffic Vol, veh/h	309	6	15	86	4	16
Future Vol, veh/h	309	6	15	86	4	16
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	1	0	0	1	0	0
Mvmt Flow	329	6	16	91	4	17

Major/Minor M	Minor1		ajor1		Major2	
Conflicting Flow All	87	62	0	0	107	0
Stage 1	62	-	-	-	-	-
Stage 2	25	-	-	-	-	-
Critical Hdwy	6.41	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	916	1009	-	-	1497	-
Stage 1	963	-	-	-	-	-
Stage 2	1000	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	913	1009	-	-	1497	-
Mov Cap-2 Maneuver	913	-	-	-	-	-
Stage 1	963	-	-	-	-	-
Stage 2	997	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.2		0		1.5	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	915	1497	-
HCM Lane V/C Ratio		-	-	0.366	0.003	-
HCM Control Delay (s)		-	-	11.2	7.4	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.7	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		6			\uparrow
Traffic Vol, veh/h	1	2	135	0	3	363
Future Vol, veh/h	1	2	135	0	3	363
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	1	2	150	0	3	403

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	F	${ }^{7}$	个 \uparrow	「	${ }^{7}$	个4	F
Traffic Volume（veh／h）	33	32	30	120	55	97	15	660	30	213	1435	100
Future Volume（veh／h）	33	32	30	120	55	97	15	660	30	213	1435	100
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.98	1.00		0.98	1.00		0.97	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1900	1885	1900	1870	1885	1900
Adj Flow Rate，veh／h	36	35	33	132	60	74	16	725	33	234	1577	77
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％	0	0	0	0	0	0	0	1	0	2	1	0
Cap，veh／h	54	50	23	193	62	314	33	1721	752	272	2203	964
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.02	0.48	0.48	0.15	0.62	0.62
Sat Flow，veh／h	0	250	116	625	311	1572	1810	3582	1565	1781	3582	1568
Grp Volume（v），veh／h	104	0	0	192	0	74	16	725	33	234	1577	77
Grp Sat Flow（s），veh／h／n	366	0	0	936	0	1572	1810	1791	1565	1781	1791	1568
Q Serve（g＿s），s	0.0	0.0	0.0	0.0	0.0	3.6	0.8	11.9	1.0	11.5	27.3	1.8
Cycle Q Clear（g＿c），s	18.0	0.0	0.0	18.0	0.0	3.6	0.8	11.9	1.0	11.5	27.3	1.8
Prop In Lane	0.35		0.32	0.69		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	127	0	0	255	0	314	33	1721	752	272	2203	964
V／C Ratio（X）	0.82	0.00	0.00	0.75	0.00	0.24	0.48	0.42	0.04	0.86	0.72	0.08
Avail Cap（c＿a），veh／h	127	0	0	255	0	314	105	1721	752	376	2203	964
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（1）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	33.6	0.0	0.0	36.1	0.0	30.2	43.8	15.2	12.4	37.2	11.9	7.0
Incr Delay（d2），s／veh	32.7	0.0	0.0	12.0	0.0	0.4	10.5	0.8	0.1	13.6	2.0	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	6.1	0.0	0.0	8.5	0.0	2.4	0.8	7.7	0.6	9.5	13.3	0.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	66.4	0.0	0.0	48.1	0.0	30.6	54.2	16.0	12.5	50.8	13.9	7.2
LnGrp LOS	E	A	A	D	A	C	D	B	B	D	B	A
Approach Vol，veh／h		104			266			774			1888	
Approach Delay，s／veh		66.4			43.2			16.6			18.2	
Approach LOS		E			D			B			B	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	18.8	48.2	23.0	6.6	60.4	23.0
Change Period $(\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	5.0	5.0	5.0	5.0	5.0
Max Green Setting（Gmax），s	19.0	38.0	18.0	5.2	51.8	18.0
Max Q Clear Time（g＿c＋11），s	13.5	13.9	20.0	2.8	29.3	20.0
Green Ext Time（p＿c），s	0.3	2.9	0.0	0.0	7.9	0.0

Intersection Summary
HCM 6th Ctrl Delay 21.7
HCM 6th LOS
C

Intersection						

Intersection						
Int Delay, s/veh	10.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\mathbf{F}			\uparrow
Traffic Vol, veh/h	424	8	12	152	4	35
Future Vol, veh/h	424	8	12	152	4	35
Conflicting Peds, \#/hr	7	7	0	7	7	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	0	2	0	0
Mvmt Flow	482	9	14	173	5	40

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	165	115	0	0	194	0
Stage 1	108	-	-	-	-	-
Stage 2	57	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.1	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.2	-
Pot Cap-1 Maneuver	826	937	-	-	1391	-
Stage 1	916	-	-	-	-	-
Stage 2	966	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	813	926	-	-	1383	-
Mov Cap-2 Maneuver	813	-	-	-	-	-
Stage 1	911	-	-	-	-	-
Stage 2	956	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.9		0		0.8	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	815	1383	-
HCM Lane V/C Ratio		-	-	0.602	0.003	-
HCM Control Delay (s)		-	-	15.9	7.6	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	4.1	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		6			\uparrow
Traffic Vol, veh/h	1	6	206	1	4	545
Future Vol, veh/h	1	6	206	1	4	545
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	86
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	1	7	242	1	5	634

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	F	\％	个4	「	${ }^{7}$	个4	F
Trafic Volume（veh／h）	28	43	40	69	66	104	27	821	57	186	1320	154
Future Volume（veh／h）	28	43	40	69	66	104	27	821	57	186	1320	154
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	0.99		0.97	0.99		0.97	1.00		0.97	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1870	1885	1900	1870	1870	1870
Adj Flow Rate，veh／h	30	46	43	74	71	58	29	883	61	200	1419	112
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	0	0	0	0	0	0	2	1	0	2	2	2
Cap，veh／h	67	83	56	146	112	234	51	1971	862	238	2329	1012
Arrive On Green	0.15	0.15	0.15	0.15	0.15	0.15	0.03	0.55	0.55	0.13	0.66	0.66
Sat Flow，veh／h	111	553	376	573	749	1566	1781	3582	1566	1781	3554	1544
Grp Volume（v），veh／h	119	0	0	145	0	58	29	883	61	200	1419	112
Grp Sat Flow（s），veh／h／ln	1040	0	0	1322	0	1566	1781	1791	1566	1781	1777	1544
Q Serve（g＿s），s	1.5	0.0	0.0	0.0	0.0	2.9	1.4	13.2	1.6	9.9	20.6	2.4
Cycle Q Clear（g＿c），s	11.2	0.0	0.0	9.7	0.0	2.9	1.4	13.2	1.6	9.9	20.6	2.4
Prop In Lane	0.25		0.36	0.51		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	205	0	0	258	0	234	51	1971	862	238	2329	1012
V／C Ratio（X）	0.58	0.00	0.00	0.56	0.00	0.25	0.57	0.45	0.07	0.84	0.61	0.11
Avail Cap（c＿a），veh／h	285	0	0	337	0	313	103	1971	862	376	2329	1012
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	35.9	0.0	0.0	36.4	0.0	33.8	43.2	12.1	9.5	38.0	8.9	5.8
Incr Delay（d2），s／veh	2.6	0.0	0.0	1.9	0.0	0.5	9.6	0.7	0.2	9.3	1.2	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	4.7	0.0	0.0	5.5	0.0	2.0	1.3	7.9	0.9	8.1	9.8	1.1
Unsig．Movement Delay，s／veh												
LnGrp Delay（d）．s／veh	38.5	0.0	0.0	38.3	0.0	34.4	52.7	12.8	9.6	47.	10.1	6.0

LnGrp Delay（d），s／veh	38.5	0.0	0.0	38.3	0.0	34.4	52.7	12.8	9.6	47.4	10.1	6.0
LnGrp LOS	D	A	A	D	A	C	D	B	A	D	B	A
Approach Vol，veh／h		119			203			973		1731		
Approach Delay，s／veh		38.5			37.2			13.8			14.1	
Approach LOS		D			D			B			B	

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration（G＋Y＋Rc），s	17.0	54.5	18.4	7.6	64.0	18.4
Change Period $(\mathrm{Y}+\mathrm{Rc}$ ），s	5.0	5.0	5.0	5.0	5.0	5.0
Max Green Setting（Gmax），s	19.0	38.0	18.0	5.2	51.8	18.0
Max Q Clear Time（g＿c＋11），s	11.9	15.2	13.2	3.4	22.6	11.7
Green Ext Time（p＿c），s	0.3	3.7	0.1	0.0	7.4	0.3

Intersection Summary

HCM 6th Ctrl Delay	16.5
HCM 6th LOS	B

Intersection						

Intersection						
Int Delay, s/veh	7.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	280	5	12	74	3	14
Future Vol, veh/h	280	5	12	74	3	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	1	0	0	1	0	0
Mvmt Flow	298	5	13	79	3	15

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	74	53	0	0	92	0
Stage 1	53	-	-	-	-	-
Stage 2	21	-	-	-	-	-
Critical Hdwy	6.41	6.2	,	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	932	1020	-	-	1515	-
Stage 1	972	-	-	-	-	-
Stage 2	1004	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	930	1020	-	-	1515	-
Mov Cap-2 Maneuver	930	-	-	-	-	-
Stage 1	972	-	-	-	-	-
Stage 2	1002	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.7		0		1.3	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	931	1515	-
HCM Lane V/C Ratio		-	-	0.326	0.002	-
HCM Control Delay (s)		-	-	10.7	7.4	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.4	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		6			\uparrow
Traffic Vol, veh/h	2	4	116	1	5	313
Future Vol, veh/h	2	4	116	1	5	313
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	2	4	129	1	6	348

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	「	${ }^{7}$	个4	「	\％	个4	F
Trafic Volume（veh／h）	28	26	25	105	45	85	13	575	20	177	1255	86
Future Volume（veh／h）	28	26	25	105	45	85	13	575	20	177	1255	86
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.98	1.00		0.98	1.00		0.97	1.00		0.97
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1900	1900	1900	1900	1900	1900	1885	1900	1870	1885	1900
Adj Flow Rate，veh／h	31	29	27	115	49	60	14	632	22	195	1379	62
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh，\％	0	0	0	0	0	0	0	1	0	2	1	0
Cap，veh／h	72	65	37	201	69	295	30	1844	806	233	2254	987
Arrive On Green	0.19	0.19	0.19	0.19	0.19	0.19	0.02	0.51	0.51	0.13	0.63	0.63
Sat Flow，veh／h	95	346	198	709	367	1571	1810	3582	1566	1781	3582	1568
Grp Volume（v），veh／h	87	0	0	164	0	60	14	632	22	195	1379	62
Grp Sat Flow（s），veh／h／ln	640	0	0	1076	0	1571	1810	1791	1566	1781	1791	1568
Q Serve（g＿s），s	0.9	0.0	0.0	0.0	0.0	2.9	0.7	9.4	0.6	9.6	20.9	1.4
Cycle Q Clear（g＿c），s	14.9	0.0	0.0	14.0	0.0	2.9	0.7	9.4	0.6	9.6	20.9	1.4
Prop In Lane	0.36		0.31	0.70		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	174	0	0	270	0	295	30	1844	806	233	2254	987
V／C Ratio（X）	0.50	0.00	0.00	0.61	0.00	0.20	0.47	0.34	0.03	0.84	0.61	0.06
Avail Cap（c＿a），veh／h	193	0	0	288	0	314	105	1844	806	376	2254	987
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	32.4	0.0	0.0	35.1	0.0	30.9	43.9	12.9	10.7	38.2	10.1	6.4
Incr Delay（d2），s／veh	2.2	0.0	0.0	3.3	0.0	0.3	11.2	0.5	0.1	8.7	1.3	0.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	3.0	0.0	0.0	6.4	0.0	2.0	0.7	5.8	0.4	7.9	10.4	0.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	34.6	0.0	0.0	38.4	0.0	31.2	55.0	13.4	10.8	46.	11.3	6.6

LnGrp Delay (d) ，s／veh	34.6	0.0	0.0	38.4	0.0	31.2	55.0	13.4	10.8	46.8	11.3	6.6
LnGrp LOS	C	A	A	D	A	C	E	B	B	D	B	A
Approach Vol，veh／h		87			224			668		1636		
Approach Delay，s／veh		34.6			36.5			14.2		15.4		
Approach LOS		C			D			B				

Timer－Assigned Phs	1	2	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	16.8	51.3	21.9	6.5	61.6	21.9
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ，s	5.0	5.0	5.0	5.0	5.0	5.0
Max Green Setting（Gmax），s	19.0	38.0	18.0	5.2	51.8	18.0
Max Q Clear Time（g＿c＋11），s	11.6	11.4	16.9	2.7	22.9	16.0
Green Ext Time（p＿c），s	0.3	2.4	0.0	0.0	6.9	0.1

Intersection Summary

HCM 6th Ctrl Delay	17.5
HCM 6th LOS	B

Intersection						

Major/Minor	Minor2	Major1 Major2					
Conflicting Flow All	896	500	572	0	-	0	
Stage 1	493	-	-	-	-	-	
Stage 2	403	-	-	-	-	-	
Critical Hdwy	6.41	6.21	4.1	-	-	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509	3.309	2.2	-	-	-	
Pot Cap-1 Maneuver	312	573	1011	-	-	-	
Stage 1	616	-	-	-	-	-	
Stage 2	677	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	261	566	1005	-	-	-	
Mov Cap-2 Maneuver	261	-	-	-	-	-	
Stage 1	519	-	-	-	-	-	
Stage 2	673	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	42.1		5.3		0		
HCM LOS	E						
Minor Lane/Major Mvmt		NBL	NBT	BLn1	SBT	SBR	
Capacity (veh/h)		1005	-	427	-	-	
HCM Lane V/C Ratio		0.145	-	0.822	-	-	
HCM Control Delay (s)		9.2	0	42.1	-	-	
HCM Lane LOS		A	A	E	-	-	
HCM 95th \%tile Q(veh)		0.5	-	7.7	-	-	

Intersection						
Int Delay, s/veh	12.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		6			\uparrow
Traffic Vol, veh/h	459	9	14	165	4	38
Future Vol, veh/h	459	9	14	165	4	38
Conflicting Peds, \#/hr	7	7	0	7	7	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	0	2	0	0
Mvmt Flow	522	10	16	188	5	43

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	177	124	0	0	211	0
Stage 1	117	-	-	-	-	-
Stage 2	60	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.1	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.2	-
Pot Cap-1 Maneuver	813	927	-	-	1372	-
Stage 1	908	-	-	-	-	-
Stage 2	963	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	800	916	-	-	1364	-
Mov Cap-2 Maneuver	800	-	-	-	-	-
Stage 1	903	-	-	-	-	-
Stage 2	953	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	17.9		0		0.7	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	802	1364	-
HCM Lane V/C Ratio		-	-	0.663	0.003	-
HCM Control Delay (s)		-	-	17.9	7.6	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	5.1	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		T			-1
Traffic Vol, veh/h	1	6	215	1	4	577
Future Vol, veh/h	1	6	215	1	4	577
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	86
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	1	7	253	1	5	671

Intersection						

Intersection						
Int Delay, s/veh	7.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		6			\uparrow
Traffic Vol, veh/h	294	5	14	82	3	15
Future Vol, veh/h	294	5	14	82	3	15
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	1	0	0	1	0	0
Mvmt Flow	313	5	15	87	3	16

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	81	59	0	0	102	0
Stage 1	59	-	-	-	-	-
Stage 2	22	-	-	-	-	-
Critical Hdwy	6.41	6.2	,	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-		-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	924	1012	-	-	1503	-
Stage 1	966	-	-	-	-	-
Stage 2	1003	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	922	1012	-	-	1503	-
Mov Cap-2 Maneuver	922	-	-	-	-	-
Stage 1	966	-	-	-	-	-
Stage 2	1001	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.9		0		1.2	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	923	1503	-
HCM Lane V/C Ratio		-	-	0.345	0.002	-
HCM Control Delay (s)		-	-	10.9	7.4	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.5	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			$-\uparrow$
Traffic Vol, veh/h	2	4	124	1	5	339
Future Vol, veh/h	2	4	124	1	5	339
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	2	4	138	1	6	377

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	528	139	0	0	139	0
Stage 1	139	-	-	-	-	-
Stage 2	389	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	514	915	-	-	1457	-
Stage 1	893	-	-	-	-	-
Stage 2	689	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	511	915	-	-	1457	-
Mov Cap-2 Maneuver	511	-	-	-	-	-
Stage 1	893	-	-	-	-	-
Stage 2	686	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	724	1457	-
HCM Lane V/C Ratio		-	-	0.009	0.004	-
HCM Control Delay (s)		-	-	10	7.5	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						

Major/Minor \quad N	Minor2	Major1		Major2			
Conflicting Flow All	925	515	599	0	-	0	
Stage 1	508	-	-	-	-	-	
Stage 2	417	-	-	-	-	-	
Critical Hdwy	6.41	6.21	4.1	-	-	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509	3.309	2.2	-	-	-	
Pot Cap-1 Maneuver	300	562	988	-	-	-	
Stage 1	606	-	-	-	-	-	
Stage 2	667	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	248	555	982	-	-	-	
Mov Cap-2 Maneuver	248	-	-	-	-	-	
Stage 1	504	-	-	-	-	-	
Stage 2	663	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	58.7		5.4		0		
HCM LOS	F						
Minor Lane/Major Mvmt		NBL	NBT	BLn1	SBT	SBR	
Capacity (veh/h)		982	-	410	-	-	
HCM Lane V/C Ratio		0.153	-	0.92	-	-	
HCM Control Delay (s)		9.3	0	58.7	-	-	
HCM Lane LOS		A	A	F	-	-	
HCM 95th \%tile Q(veh)		0.5	-	10	-	-	

Intersection						
Int Delay, s/veh	13.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1			\uparrow
Traffic Vol, veh/h	481	10	15	177	5	40
Future Vol, veh/h	481	10	15	177	5	40
Conflicting Peds, \#/hr	7	7	0	7	7	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	0	2	0	0
Mvmt Flow	547	11	17	201	6	45

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	189	132	0	0	225	0
Stage 1	125	-	-	-	-	-
Stage 2	64	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.1	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.2	-
Pot Cap-1 Maneuver	800	917	-	-	1356	-
Stage 1	901	-	-	-	-	-
Stage 2	959	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	786	906	-	-	1348	-
Mov Cap-2 Maneuver	786	-	-	-	-	-
Stage 1	896	-	-	-	-	-
Stage 2	948	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.8		0		0.9	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	788	1348	-
HCM Lane V/C Ratio		-	-	0.708	0.004	-
HCM Control Delay (s)		-	-	19.8	7.7	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	6	0	-

Intersection						

[^1]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.2 | | | | | |
| Movement | WBL | WBR | NBT | NBR | SBL | SBT |
| Lane Configurations | M | | 6 | | | \uparrow |
| Traffic Vol, veh/h | 1 | 6 | 223 | 1 | 4 | 594 |
| Future Vol, veh/h | 1 | 6 | 223 | 1 | 4 | 594 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# | 0 | - | 0 | - | - | 0 |
| Grade, \% | 0 | - | 0 | - | - | 0 |
| Peak Hour Factor | 85 | 85 | 85 | 85 | 85 | 86 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 0 | 0 | 1 |
| Mvmt Flow | 1 | 7 | 262 | 1 | 5 | 691 |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow	「	\%	¢ \uparrow	F	\%	个4	F
Traffic Volume (veh/h)	30	45	44	102	72	118	30	855	66	231	1585	185
Future Volume (veh/h)	30	45	44	102	72	118	30	855	66	231	1585	185
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.98	1.00		0.97	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1870	1885	1900	1870	1870	1870
Adj Flow Rate, veh/h	32	48	47	110	77	73	32	919	71	248	1704	199
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	0	0	0	0	0	0	2	1	0	2	2	2
Cap, veh/h	50	68	40	162	88	314	54	1693	740	286	2142	930
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.03	0.47	0.47	0.16	0.60	0.60
Sat Flow, veh/h	0	340	200	490	440	1572	1781	3582	1565	1781	3554	1543
Grp Volume(v), veh/h	127	0	0	187	0	73	32	919	71	248	1704	199
Grp Sat Flow(s),veh/h/n	539	0	0	930	0	1572	1781	1791	1565	1781	1777	1543
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	3.5	1.6	16.4	2.3	12.2	32.9	5.3
Cycle Q Clear(g_c), s	18.0	0.0	0.0	18.0	0.0	3.5	1.6	16.4	2.3	12.2	32.9	5.3
Prop In Lane	0.25		0.37	0.59		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	158	0	0	250	0	314	54	1693	740	286	2142	930
V/C Ratio(X)	0.80	0.00	0.00	0.75	0.00	0.23	0.59	0.54	0.10	0.87	0.80	0.21
Avail Cap(c_a), veh/h	158	0	0	250	0	314	103	1693	740	376	2142	930
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.1	0.0	0.0	35.6	0.0	30.2	43.1	16.8	13.1	36.8	13.6	8.2
Incr Delay (d2), s/veh	25.2	0.0	0.0	11.9	0.0	0.4	9.7	1.3	0.3	15.3	3.2	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(95\%),veh/ln	6.1	0.0	0.0	8.3	0.0	2.4	1.4	10.0	1.3	10.1	16.0	2.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	57.3	0.0	0.0	47.4	0.0	30.6	52.7	18.1	13.4	52.1	16.8	8.7
LnGrp LOS	E	A	A	D	A	C	D	B	B	D	B	A
Approach Vol, veh/h		127			260			1022			2151	
Approach Delay, s/veh		57.3			42.7			18.8			20.1	
Approach LOS		E			D			B			C	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	19.5	47.5		23.0	7.8	59.2		23.0				
Change Period ($Y+\mathrm{Rc}$), s	5.0	5.0		5.0	5.0	5.0		5.0				
Max Green Setting (Gmax), s	19.0	38.0		18.0	5.2	51.8		18.0				
Max Q Clear Time (g_c+11), s	14.2	18.4		20.0	3.6	34.9		20.0				
Green Ext Time (p_c), s	0.3	3.8		0.0	0.0	8.2		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			22.7									
HCM 6th LOS			C									

Intersection						

Intersection						
Int Delay, s/veh	8.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		6			\uparrow
Traffic Vol, veh/h	310	6	15	87	4	16
Future Vol, veh/h	310	6	15	87	4	16
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	1	0	0	1	0	0
Mvmt Flow	330	6	16	93	4	17

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	88	63	0	0	109	0
Stage 1	63	-	-	-	-	-
Stage 2	25	-	-	-	-	-
Critical Hdwy	6.41	6.2	,	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	915	1007	-	-	1494	-
Stage 1	962	-	-	-	-	-
Stage 2	1000	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	912	1007	-	-	1494	-
Mov Cap-2 Maneuver	912	-	-	-	-	-
Stage 1	962	-	-	-	-	-
Stage 2	997	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.2		0		1.5	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	914	1494	-
HCM Lane V/C Ratio		-	-	0.368	0.003	-
HCM Control Delay (s)		-	-	11.2	7.4	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.7	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Yr		个			\uparrow
Traffic Vol, veh/h	2	4	135	1	5	363
Future Vol, veh/h	2	4	135	1	5	363
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	1
Mvmt Flow	2	4	150	1	6	403

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	F	${ }^{7}$	个 \uparrow	F'	${ }^{7}$	个4	F
Traffic Volume (veh/h)	33	32	30	121	55	97	15	660	31	213	1435	100
Future Volume (veh/h)	33	32	30	121	55	97	15	660	31	213	1435	100
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.98	1.00		0.97	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1900	1900	1900	1885	1900	1870	1885	1900
Adj Flow Rate, veh/h	36	35	33	133	60	74	16	725	34	234	1577	77
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, \%	0	0	0	0	0	0	0	1	0	2	1	0
Cap, veh/h	54	50	23	193	61	314	33	1721	752	272	2203	964
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.02	0.48	0.48	0.15	0.62	0.62
Sat Flow, veh/h	0	250	116	626	307	1572	1810	3582	1565	1781	3582	1568
Grp Volume(v), veh/h	104	0	0	193	0	74	16	725	34	234	1577	77
Grp Sat Flow(s),veh/h/n	366	0	0	934	0	1572	1810	1791	1565	1781	1791	1568
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	3.6	0.8	11.9	1.0	11.5	27.3	1.8
Cycle Q Clear(g_c), s	18.0	0.0	0.0	18.0	0.0	3.6	0.8	11.9	1.0	11.5	27.3	1.8
Prop In Lane	0.35		0.32	0.69		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	127	0	0	254	0	314	33	1721	752	272	2203	964
V/C Ratio(X)	0.82	0.00	0.00	0.76	0.00	0.24	0.48	0.42	0.05	0.86	0.72	0.08
Avail Cap(c_a), veh/h	127	0	0	254	0	314	105	1721	752	376	2203	964
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(1)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.6	0.0	0.0	36.2	0.0	30.2	43.8	15.2	12.4	37.2	11.9	7.0
Incr Delay (d2), s/veh	32.7	0.0	0.0	12.4	0.0	0.4	10.5	0.8	0.1	13.6	2.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(95\%),veh/ln	6.1	0.0	0.0	8.6	0.0	2.4	0.8	7.7	0.6	9.5	13.3	0.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	66.4	0.0	0.0	48.6	0.0	30.6	54.2	16.0	12.5	50.8	13.9	7.2
LnGrp LOS	E	A	A	D	A	C	D	B	B	D	B	A
Approach Vol, veh/h		104			267			775			1888	
Approach Delay, s/veh		66.4			43.6			16.6			18.2	
Approach LOS		E			D			B			B	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	18.8	48.2	23.0	6.6	60.4	23.0
Change Period $(\mathrm{Y}+\mathrm{Rc}$), s	5.0	5.0	5.0	5.0	5.0	5.0
Max Green Setting (Gmax), s	19.0	38.0	18.0	5.2	51.8	18.0
Max Q Clear Time (g_c+11), s	13.5	13.9	20.0	2.8	29.3	20.0
Green Ext Time (p_c), s	0.3	2.9	0.0	0.0	7.9	0.0

Intersection Summary

HCM 6th Ctrl Delay 21.7

HCM 6th LOS

Appendix C

PEAK HOUR VOLUME WARRANT \#3
 (Rural Area)
 Silverado Trail/Oak Knoll Ave

- Existing (2019) Friday without Project

O = Existing (2019) Friday with Project
= Existing (2019) Saturday without Project
O = Existing (2019) Saturday with Project

* NOTE

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLESAS THE LOWER THRESHOLD VOLUME FORA MINOR STREET APPROACHING WITH ONE LANE

Appendix Figure C-1

PEAK HOUR VOLUME WARRANT \#3

PEAK HOUR VOLUME WARRANT \#3
 (Rural Area)
 Oak Knoll Ave/Big Ranch Rd (South)

O $=2025$ Friday without Project
O $=2025$ Friday with Project
O 2025 Saturday without Project
O = 2025 Saturday with Project

* NOTE

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANESAND 75 VPH APPUESAS THE LOWER THRESHOLD VOLUME FORA MINOR STREET APPROACHINGWITH ONE LANE

Appendix D

\# of veh Cause			Type	Injury
(1)	2	Impaired	sideswipe	no
(2)	1	unsafe turn	ran off road	no
(3)	2	impaired	sideswipe	no
(4)	1	improper turn	hit object	no
(5)	2	unsafe speed	rear end	yes
(6)	2	unsafe speed	rear end	no
(7)	2	right of way	broadside	no
(8)	2	starting/backing	rear end	yes
(9)	2	unsafe speed	rear end	no
10	2	wrong side	broadside	yes
(11)	1	unsafe turn	hit object	yes
(12)	1	unsafe speed	hit object	yes
113	2	right of way	broadside	yes
(14)	2	unsafe speed	rear end	no
(15)	1	impaired	hit object	yes
116	2	unsafe speed	rear end	yes
(17)	2	improper turn	sideswipe	no
18	2	unsafe speed	rear end	yes
19	2	starting/backing	rear end	no
20	1	improper turn	hit object	no
21	2	unsafe speed	rear end	no
(22)	2	right of way	broadside	yes
(23)	2	right of way	broadside	no
(24)	2	right of way	broadside	yes
(25)	2	starting/backing	broadside	yes

Figure D-1
Accidents in the Vicinity of the Project Site - 2015

\# of veh		Cause	Type	Injury
(1)	2	right of way	broadside	yes
(2)	1	improper turn	hit object	yes
(3)	1	impaired	hit object	no
(4)	1	improper turn	hit object	no
(5)	2	unsafe speed	rear end	yes
(6)	2	right of way	broadside	no
(7)	1	improper turn	overturn	yes
(8)	1	improper turn	hit object	no
(9)	2	improper turn	broadside	no
10	2	wrong side	sideswipe	yes
(11)	2	right of way	broadside	yes
(12)	3	impaired	rear end	no
(13)	2	wrong side	sideswipe	no
(14)	2	unsafe speed	rear end	yes
(15)	2	right of way	broadside	no
(16)	2	impaired	rear end	yes
(17)	1	improper turn	hit object	no
18	1	impaired	hit object	yes
19	2	right of way	broadside	no
20	2	right of way	head on	yes
21	1	impaired	ran off road	no
(22)	1	unsafe speed	hit object	no
23	2	unsafe speed	broadside	yes
(24)	2	unsafe speed	rear end	no
(25)	2	unsafe speed	rear end	no
26	2	starting/backing	rear end	no
(27)	1	impaired	hit object	no
28	3	unsafe speed	rear end	no

\# of veh		1 Cause	Type	Injury
(1)	2	right of way	rear end	yes
(2)	3	unsafe speed	rear end	no
(3)	1	impaired	hit object	yes
(4)	1	improper turn	overturn	yes
(5)	1	improper turn	overturn	no
(6)	2	unsafe speed	rear end	no
(7)	1	improper turn	ran off road	no
(8)	1	improper turn	hit object	no
(9)	3	unsafe speed	rear end	no
110	2	wrong side	sideswipe	yes
(11)	2	unsafe speed	rear end	no
(12)	2	wrong side	sideswipe	no
(13)	2	unsafe speed	rear end	no
(14)	2	unsafe speed	rear end	yes
(15)	2	unsafe speed	rear end	no
(16)	1	improper turn	hit object	no
(17)	2	starting/backing	rear end	yes
18	1	impaired	hit object	yes
19	1	improper turn	hit object	no
20	1	starting/backing	hit object	no
21	1	improper turn	hit object	no
(22)	2	right of way	broadside	no
23	2	unsafe speed	rear end	no
(24)	2	right of way	broadside	yes

Figure D-3

\# of veh \quad Cause				Type
(1)	2	right of way	head on	yes
(2)	1	improper turn	hit object	no
(3)	2	impaired	broadside	no
4	2	impaired	rear end	no
(5)	2	right of way	broadside	no
6	2	right of way	broadside	no
$\mathbf{7}$	1	improper turn	hit object	yes
8	2	lane change	sideswipe	no
(9)	2	unsafe speed	rear end	no
10	2	right of way	cyclist	yes
11	2	right of way	broadside	yes
12	2	unsafe speed	rear end	no
13	2	impaired	broadside	no
14	2	starting/backing	rear end	no
15	2	right of way	broadside	yes
16	2	right of way	head on	yes
17	2	unsafe speed	rear end	yes
18	2	right of way	broadside	yes
19	2	right of way	broadside	yes
20	3	unsafe speed	rear end	yes
21	2	improper turn	broadside	yes
22	2	right of way	broadside	yes
23	2	unsafe speed	rear end	yes
24	2	improper turn	sideswipe	no

\# of veh Cause			Type	Injury
(1)	1	impaired	hit object	yes
(2)	1	improper turn	hit object	no
(3)	1	impaired	overturned	fatal
(4)	1	improper turn	hit object	no
(5)	2	impaired	sideswipe	no
(6)	1	improper turn	hit object	yes
(7)	2	starting/backing	rear end	no
(8)	1	impaired	hit object	yes
(9)	2	right of way	broadside	no
10	2	improper turn	broadside	no
111	2	unsafe speed	broadside	yes
(12)	2	right of way	broadside	no
13	2	right of way	broadside	yes
(14)	2	unsafe speed	rear end	yes
(15)	2	right of way	broadside	no
116	1	not driver	hit object	no
(17)	1	impaired	hit object	no
18	2	right of way	broadside	no
19	2	right of way	broadside	yes
20	2	unsafe speed	rear end	yes
21	1	impaired	hit object	yes
(22)	1	unsafe speed	hit object	no
(23)	2	unsafe speed	broadside	yes
(24)	2	unsafe speed	rear end	no
25	2	unsafe speed	rear end	no
26	2	starting/backing	rear end	no
27	1	impaired	hit object	no
28	3	unsafe speed	rear end	no

Figure D-5
Accidents in the Vicinity of the Project Site - 2019

\# of veh				Cause
Type	Injury			
(1)	2	unsafe speed	sideswipe	no
(2)	2	right of way	bradside	yes
3	1	improper turn	overturned	no
4	1	impaired	hit cyclist	yes
$\mathbf{5}$	1	impaired	hit object	no
$\mathbf{6}$	1	improper turn	hit object	no
$\mathbf{7}$	2	impaired	broadside	no
8	2	wrong side	sideswipe	no

Figure D-6

Appendix E
COUNTY of NAPA LEFT TURN WARRANT GRAPH at Private Road and Driveway Intersections

$1 \mid$
 be subject to install a left turn lane for Roadway ADT >7500
Left Turn Required

$$
1
$$

Appendix F

APPENDIX F

Trip Generation from Approved (Not Built) Projects
in Close Proximity to Materra Winery

	Harvest Friday PM Peak Hour Trips		Harvest Saturday PM Peak Hour Trips	
	IN	OUT	IN	OUT
Boyd Winery ${ }^{(1)}$	5	5	2	8
H\& L Winery ${ }^{(2)}$	N/A	N/A	N/A	N/A

Traffic Volume Sources:
${ }^{(1)}$ Boyd Winery - Focused Trip Generation Analysis for the approved Boyd Winery project by Omni-Means, October 18, 2017. ${ }^{(2)} \mathrm{H} \& \mathrm{~L}$ Winery (small winery) - No traffic study prepared - Only circulation related measure will be relocating the proposed winery driveway from Oak Knoll Avenue to an existing vineyard access road along Big Ranch Road. (Permitted in 2015.)

Compiled by: Crane Transportation Group

Appendix G

MATERRA WINERY DRIVEWAY

Friday Hourly Percent of Total Trips
Friday, October 23, 2020

Total In/Out - 63 Vehicles

MATERRA WINERY DRIVEWAY

Friday Hourly Percent of Total Trips
Friday, October 30, 2020

MATERRA WINERY DRIVEWAY

Saturday Hourly Percent of Total Trips
Saturday, October 24, 2020

Total In/Out - 61 Vehicles

MATERRA WINERY DRIVEWAY

Saturday Hourly Percent of Total Trips
Saturday, October 31, 2020

MATERRA WINERY

Existing Conditions Winery Traffic Information / Trip Generation

Determine Winery Daily Trips. Complete Sections A through I below to determine your winery project's estimated baseline daily, peak hour trips, and annual trips.

Section A. Maximum Daily Weekday Traffic (Friday, non-harvest season)

1. Total number of FT employees ${ }^{1}$: $\quad 3 \times 3.05$ one-way trips per employee
2. Total number of PT employees ${ }^{1}$: $\quad 3 \times 1.90$ one-way trips per employee
$=9$ daily trips
$=6$ daily trips
$=14$ daily trips
$=2$ daily trips
$=31$ daily trips

Section B. Maximum Daily Weekday Traffic (Friday, harvest season)

6.	Total number of FT employees ${ }^{1}$: $\quad 3 \times 3.05$ one-way trips per employee	9
7.	Total number of PT employees ${ }^{1}$: $\quad 7 \times 1.90$ one-way trips per employee	14
8.	Maximum weekday visitors ${ }^{2}$, $18 / 2.6$ visitors per vehicle $\times 2$ one-way trips	14
9.	Gallons of production: $110,000 / 1,000 \times 0.009$ daily truck trips $\times 2$ one-way trips	2
10.	Avg. annual tons of grape on-haul:_330/144 truck trips $\times 2$ one-way trips	5
11.	TOTAL	43

Section C. Maximum Daily Weekend Traffic (Saturday, non-harvest season)

12. Total number of FT Sat. employees ${ }^{2}$: 3×3.05 one-way trips per employee
13. Total number of PT Sat. employees ${ }^{1}$: 3×1.90 one-way trips per employee
14. Maximum Saturday visitors ${ }^{2}: 18 / 2.8$ visitors per vehicle $\times 2$ one-way trips
15. Gallons of production: $110,000 / 1,000 \times 0.009$ daily truck trips ${ }^{3} \times 2$ one-way trips
16.

TOTAL

Section D. Maximum Daily Weekend Traffic (Saturday, harvest season)
17. Total number of FT Sat. employees ${ }^{1}$: 3×3.05 one-way trips per employee
18. Total number of PT Sat. employees ${ }^{1}$: 7×1.90 one-way trips per employee
$=9$ daily trips
$=14$ daily trips
$=13$ daily trips
$=\frac{2}{\text { daily trips }}$
$=4$ daily trips
$=42$ daily trips

[^2]
MATERRA WINERY
 Existing Conditions Winery Traffic Information / Trip Generation (continued)

Section E. PM Peak Hour Trip Generation (Friday, non-harvest season)
(Sum of daily trips from Sec. A, lines 3 and 4) $\times 0.38+($ No. of FTE) $+($ line $2 / 2)$
$=12$ PM peak trips
$6+3+2.9$
Section F. PM Peak Hour Trip Generation (Fridav, harvest season)
(Sum of daily trips, Sec. B, lines 8, 9, 10) $\times 0.38+$ (No. of FTE) $+($ line $7 / 2$)
$=18$ PM peak trips

$$
7.8+3+6.7
$$

Section G. PM Peak Hour Trip Generation (Saturday, non-harvest season)
(Sum of daily trips from Sec. C, line 14 and 15) $\times 0.57+($ No. of FTE) $+($ line $13 / 2$)

$$
8.5+3+2.9
$$

Section H. PM Peak Hour Trip Generation (Saturday, harvest season)
(Sum of daily trips Sec. D, lines 19, 20, and 21) $\times 0.57+($ No. of FTE $)+($ line $18 / 2$)

[^3]Section I. Maximum Annual Trips
$($ Sec. A, line $5 \times 206)+($ Sec. B, line $11 \times 55)+($ Sec. C, line $16 \times 82)+($ Sec. D, line $22 \times 22)=12,135$ Annual trips

```
6,386 + 2,365 + 2,460 + 924
```


MATERRA WINERY
 Proposed Project Winery Traffic Information / Trip Generation

Determine Winery Daily Trips. Complete Sections J through R below to determine your winery project's estimated future daily, peak hour trips, and annual trips.

Section J. Maximum Daily Weekday Traffic (Friday, non-harvest season)

1. Total number of FT employees ${ }^{1}$: 12×3.05 one-way trips per employee
2. Total number of PT employees ${ }^{1}$: $\quad 2 \times 1.90$ one-way trips per employee

	$=37$ daily trips
	$=4$ daily trips
trips	$=26$ daily trips
y trips	$=3$ daily trips
TOTAL	$=70$ daily trips

Section K. Maximum Daily Weekday Traffic (Friday, harvest season)

Section L. Maximum Daily Weekend Traffic (Saturdav, non-harvest season)
12. Total number of FT Sat. employees ${ }^{1}$: 12×3.05 one-way trips per employee
13. Total number of PT Sat, employees ${ }^{1}$: 2×1.90 one-way trips per employee
14. Maximum Saturday visitors ${ }^{2}$: $34 / 2.8$ visitors per vehicle $\times 2$ one-way trips
$=37$ daily trips
$=3$ daily trips
$=34$ daily trips
$=3$ daily trips
$=68$ daily trips

Section M. Maximum Daily Weekend Traffic (Saturday, harvest season)
17. Total number of FT Sat. employees ${ }^{1}$: 12×3.05 one-way trips per employee 18. Total number of PT Sat. employees ${ }^{1}: \frac{5}{2} \times 1,90$ one-way trips per employee
19. Maximum Saturday visitors ${ }^{2}$: $34 / 2.8$ visitors per vehicle $\times 2$ one-way trips
$=37$ daily trips
$=10$ daily trips
$=24$ daily trips
$=3$ daily trips
$=7$ daily trips
$=\mathbf{8 1}$ daily trips

[^4]
MATERRA WINERY

Proposed Project Winery Traffic Information / Trip Generation (continued)

Determine Winery Peak Hour Trips. If the number of daily trips on either Section K, line 11, or Section M, line 21, is greater than 20, or Public Works Director determines that other circumstances such as access safety or other potential network impacts warrant further analysis, then the potential transportation impacts of your project must be evaluated in a traffic impact study (TIS) prepared in accordance with Napa County Public Works TIS Guidelines. Follow the direction outlined in Traffic Impact Study Analysis, below. If the number of daily trips on either Section K, line 11, or Section M, line 22, is equal to or less than 20, complete Sections N through R below to determine your project's estimated peak hour trips and annual trips. In lieu of completing Sections N through R, you may opt to prepare a project-specific traffic impact analysis if you anticipate the number of peak hour trips from your proposal is different from that estimated here.

Section N. PM Peak Hour Trip Generation (Friday, non-harvest season) $\begin{gathered}\text { (Sum of daily trips from Sec. J, lines } 3 \text { and } 4) \times 0.38+(\text { No. of FTE })+(\text { line } 2 / 2) \\ 11 \\ +12+1.9\end{gathered}=25$ PM peak trips

Section O. PM Peak Hour Trip Generation (Fridav, harvest season) (Sum of daily trips from Sec. K, lines $8,9,10) \times 0.38+($ No. of FTE $)+($ line $7 / 2)$
$=31 \mathrm{PM}$ peak trips $13.7+12+4.8$

Section P. PM Peak Hour Trip Generation (Saturday, non-harvest season) (Sum of daily trips from Sec. L, line 14 and 15) $\times 0.57+($ No. of FTE) $+($ line 13/2)
$=30$ PM peak trips $15.4+12+1.9$

Section Q. PM Peak Hour Trip Generation (Saturday, harvest season) (Sum of daily trips, Sec. M, lines 19, 20, and 21) x $0.57+($ No. of FTE $)+($ line $18 / 2$)
$=37$ PM peak trips

$$
19.4+12+4.8
$$

Section R. Maximum Annual Trips
$($ Sec. J, line $5 \times 206)+($ Sec. K, line $11 \times 55)+(5$ ec. L, line $16 \times 82)+($ Sec. M, line $22 \times 22)=\underline{26,343}$ Annual trips $14.420+4,565+5,576+1,782$

Traffic Impact Study Analysis. If the number of daily trips on either Section K, line 11, or Section M, line 22, is greater than 20, then the potential transportation impacts of your project must be evaluated in a traffic impact study (TIS) prepared in accordance with Napa County Public Works TIS Guidelines. Existing trip counts on the transportation network should be collected during the harvest season (August 16-October 31). If collected outside of the harvest season, during the months of November through February, counts shall be adjusted upward by 15 percent to estimate harvest season network volumes. If collected during the weeks between March 1 and August 15, counts shall be adjusted upward by seven percent.

MATERRA WINERY

For peak hour analysis in the TIS, the County will allow any one of the following methodologies:
a) Use the peak hour factors in Sections E through I, above, to estimate the peak hour trips and annual trips generated by the project. To determine the potential peak hour impacts of the project, apply the harvest season estimated peak hour project trips (Sections F and H for the existing condition, and Sections O and Q for the proposed project) to roadway volumes during the hour between 3:00 p.m. and 4:00 p.m. on Fridays and Saturdays; or
b) For New Wineries use peak hour trip counts as projected using the Institute for Transportation Engineers' (ITE) peak hour factors for winery land uses from the most current version of ITE Trip Generation. To determine the potential peak hour impacts of the project, apply the estimated peak hour project trips from ITE to roadway volumes during the hour between 4:00 p.m. and 5:00 p.m. on a Friday and 1:45 p.m. and 2:45 p.m. on a Saturday; or
c) Conduct a site-specific analysis informed by actual trip counts at the driveway of the project (for winery use permit modifications) or at the driveway of a project with comparable operating characteristics to that proposed (for new winery use permits). To determine the potential peak hour impacts of the project, apply the site-specific peak hour of generator to the peak hour of the network on a Friday and the peak hour of the roadway on a Saturday, based on the assembled trip count data.

For Average Daily Traffic (ADT) analysis in the TIS, the County will utilize one of the following methodologies:
a) Average of the Maximum Daily Weekday Traffic and the Maximum Daily Weekend Traffic during the harvest season, as given in the Winery Traffic Information / Trip Generation worksheet.
b) A site specific analysis which at a minimum 24-hour vehicle counts shall be collected during a continuous week period (7-days) for which traffic count data is collected for each day of the week. Existing trip counts should be collected during the harvest season (August 16 -October 31). If collected outside of the harvest season, during the months of November through February, counts shall be adjusted upward by 15 percent to estimate harvest season network volumes. If collected during the weeks between March 1 and August 15, counts shall be adjusted upward by seven percent. Projected daily trip counts shall be based on total number of full-time employee, part-time employees, daily visitors, gallons of production, grape on-haul and the factors identified in the Proposed Winery Traffic Information and Trip Generation worksheet, respectively.
c) For land uses other than wineries, the ADT shall be determined using the most current version of ITE Trip Generation.

Appendix H

MATERRA

CUNAT FAMILY VINEYARDS

TRANSPORTATION DEMAND MANAGEMENT PLAN

November 12, 2020
Winery Management presents the following Transportation Demand Management (TDM) plan. Individually, or as a whole, these actionable, meaningful and measurable initiatives are being proposed with the Materra, Cunat Family Winery Use Permit Modification (P20-00184), with the intent of reducing vehicular miles traveled (VMT) to and from our winery facility. Many of the elements in this plan are already part of our standard business policy.

The TDM programs will be administered by our HR department and the General Manager of Materra. Harrison Heitz and Brian G. Cunat.

1. The winery will offer to all employees a $\$ 5.00$ per day stipend for every day they commute with another employee, or rideshare with other workers in the valley.
2. This stipend would also apply to any employee using any form of public transportation
3. The winery will continue to participate in an emergency guaranteed-ride-home program, ensuring that all commuters can get home safely in the event of an emergency.
4. Winery guests will be extended the same emergency guaranteed-ride program to their hotel, lodging, or residence. This includes any guest deemed not suitable to drive.

The Materra Winery currently utilizes, and will continue to utilize, hired shuttle services. As daily visitation at our winery is by appointment only, we encourage groups coming to the winery to utilize shuttle services. A list of recommended companies is provided at time of visitation booking. In addition to these services, Materra will:

1. Offer to guest the option of being picked up at their lodging, within a 15 -mile radius. This includes the cities of Napa and St. Helena, as well as the towns of Yountville, Oakville and Rutherford.
2. Welcome and encourage bicycle tours.
3. Install an electric car charging station as part of Use Permit Modification P20-00184.

It has been a practice to allow some employees to work from home when possible. Some positions, such as cellar workers and hospitality, are still needed at the winery.

We have established, and will continue to implement, a 4-day work week to limit the number of cars on the road. Each worker puts in a 10 -hour day, but then only needs to be on the road 4 days a week. Employee work hours have also been designed to keep away from peak traffic hours. Flex time is also offered for some positions to avoid peak traffic congestion. Hospitality staff schedule tastings to begin no earlier than 10:00 am, and no later than $4: 30 \mathrm{pm}$, allowing guests to avoid most peak traffic congestion periods.

Respectfully Submitted by Materra, Cunat Family winery management

[^0]: 2030 Friday PM Peak Hour
 without Project

[^1]: 2030 Friday PM Peak Hour
 Synchro 10 Report
 with Project

[^2]: ${ }^{1}$ Full-Time and part-time employees that staff the largest of any event that is proposed to occur two or more times in a month, on average.
 ${ }^{2}$ The number of weekday visitors shall include guests of the largest of any event that is proposed to occur two or more times in a month, on average.
 ${ }^{3}$ Assumes 1.47 materials and supplias trips +0.8 case goods trips per 1,000 gallons of production / 250 days per year

[^3]: $11.1+3+6.7$

[^4]: ${ }^{1}$ Full-Time and part-time employees that staff the largest of any event that is proposed to occur two or more times in a month, on average.
 ${ }^{2}$ The number of weekday visitors shall include guests of the largest of any event that is proposed to occur two or more times in a month, on average.
 ${ }^{3}$ Assumes 1.47 materials and supplies trips +0.8 case goods trips per 1,000 gallons of production / 250 days per year

