"G"

Traffic Study

Sleeping Giant Winery P15-00284 Planning Commission Hearing September 7, 2016

	RSA+ CONSULTING CIVIL ENGIN	GINEERS + SURVEYORS + SERVIN		g california since 1980	1515 FOURTH STREET NAPA, CALIFORNIA	
RSA.	HUGH LINN, PE, QSD, QSP PRINCIPAL + PRESIDENT	RYAN GREGORY, PE PRINCIPAL + VICE PRESIDENT		CHRISTOPHER TIBBITS, PE, LS PRINCIPAL + VICE PRESIDENT	94559 FAX 707 252.4966 OFFICE 707 252.3301	
707 252.3301 RSAcivil.com	hLinn@RSAcivil.com	rGregory@RSAc	ivil.com	cTibbits@RSAcivil.com	RSAcivil.com	

#4115030.0 January 7, 2016

Jeffrey Redding 2423 Renfrew Street Napa, CA 94558

RE: Sleeping Giant Winery Potential Traffic Impacts and Warrant for Traffic Study

Dear Jeff,

In response to your request, RSA⁺ has reviewed the W-Trans traffic study prepared for the Bouchaine Winery Expansion in April, 2015. The following report utilizes and relies on the W-Trans report to demonstrate that the Sleeping Giant Winery will have negligible impact on the levels of service on the surrounding road and intersections evaluated in that report.

Project Description:

The proposed Sleeping Giant Winery consists of the construction of a new 30,000-gallon per year winery on an 11-acre parcel located on the north side of Las Amigas Road in Carneros. Nearby wineries include Bouchaine Vineyards that is currently processing a permit modification. Sleeping Giant Winery will consist of a new combined production / hospitality facility where tastings by appointment and special events will be held. The Winery proposes an average of eight (8) visitors on the weekends and five (5) on weekdays and will employ three (3) full-time and two (2) part-time employees. Six (6) special events will be held each year with a maximum attendance of 50 persons. All food served at these events will be catered.

Objective:

The objective of this analysis is to evaluate the additional cumulative impacts of the proposed Sleeping Giant Winery on the road and intersections identified in the 2015 Traffic Study for the Bouchaine Winery Permit Modification by W-Trans (attached).

Approach:

Prior to completing this analysis and producing the letter report, RSA⁺ contacted Dalene Whitlock of W-Trans and obtained permission to reproduce and use the 2015 Bouchaine Vineyards Traffic Impact Study.

For simplicity and consideration of the highest potential impact, we assumed 100% of the peak hour trips from the Sleeping Giant highest peak hour condition would be added to the roadway segment and travel direction under the future cumulative project condition that was identified in the W-Trans Bouchaine Vineyards study as having the greatest traffic volume – Cuttings Wharf Road, Northbound direction.

Findings:

Highest Volume Segment Under Future plus Project Condition: Northbound Cuttings Wharf with a volume **148** vehicles per hour. (See attached Exhibit A – Segment Level of Service, Cuttings Wharf RD – Bouchaine Winery Traffic Report)

Capacity of Northbound Cuttings Wharf Segment: 900 vehicles per peak hour (vph). (See attached Exhibit A – Segment Level of Service, Cuttings Wharf RD – Bouchaine Winery Traffic Report)

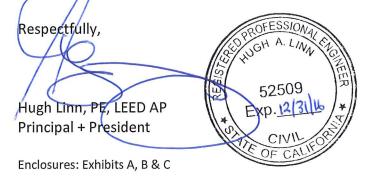
Sleeping Giant highest Peak Hour Trips: 7 vehicles per hour (See attached Exhibit B, 6.25 trips on the weekend peak hour rounded to 7 trips)

Impact to Highest Volume Segment Under Cumulative Condition – Bouchaine + Sleeping Giant:

Volume/Capacity = (148 vph + 7 vph) = (155 vph/900 vph) = 0.17 Volume/Capacity required to change current Level of Service (LOS) A to (LOS) B = 0.6 (See attached Exhibit C)

Left Turn Lane Warrant:

The County of Napa Public Works has informed the Client that a Left Turn Lane at the intersection of the project access driveway and Las Amigas Road will not be required. Memorandum from Rick Marshall, Deputy Director of Public Works, is included in Exhibit D.


Conclusions:

- The Sleeping Giant Winery will generate an additional 7 peak hour trips on Cuttings Wharf Road northbound (assumes 100% of trips are northbound).
- The Cumulative peak hour trips post Bouchaine Use Permit Modification is 148 (from W-Trans Report).
- The Total peak hour trips after Bouchaine Winery Use Permit Modification and Sleeping Giant Winery development would be 155.
- The Volume to Capacity Ratio would be 0.17 under the cumulative condition.
- The Volume Capacity Ratio which would cause LOS to reduce to Level B would be 0.6.
- The Peak hour trips required to cause LOS to drop from A to B would be 540.

- The Additional peak hour trips generated by Sleeping Giant will not cause a decrease in Level of Service.
- A Left-turn lane is not required.

Based on the most conservative assumptions under the cumulative traffic development condition that was identified in the Bouchaine Vineyards Traffic Study, the Sleeping Giant Winery will not generate enough peak hour traffic to have an impact on the surrounding roadway system. Consequently, we conclude that an additional traffic study for the Sleeping Giant proposal would only reiterate the findings currently established in the Bouchaine Vineyards study that was completed in April of 2015.

Please do not hesitate to contact me should you have any questions regarding the above.

HL/sb

EXHIBIT A

Traffic Impact Study for Bouchaine Vineyards

April 14, 2015

 γ

Mr. Michael Cook Firma Design Group 1425 North McDowell Boulevard, Suite 130 Petaluma, CA 94954

Traffic Impact Study for the Expansion of Bouchaine Vineyards

Dear Mr. Cook;

sion of Bouchaine Vineyards ansportation, Inc. (W-Trans) has prepared a traffic analysis

As requested, Whitlock & Weinberger Transportation, Inc. (W-Trans) has prepared a traffic analysis addressing potential traffic impacts and circulation needs for the proposed expansion of facilities at the Bouchaine Vineyards, Inc. (Bouchaine) winery located at 1075 Buchli Station Road in the Carneros region of unincorporated Napa County. The traffic study was completed in accordance with the criteria established by the County of Napa, and is consistent with standard traffic engineering techniques. Further, comments from County staff on a draft version of this document have been addressed in this final version.

Study Area

The project site is located on the west side of Buchli Station Road, just south of its intersection with Las Amigas Road.

Carneros Highway (State Route 12-121) within the vicinity of the project site runs east-west and has a posted speed limit of 55 miles per hour (mph). SR 12 provides access to Sonoma County to the west and continues east through Napa County. SR 121 provides access from SR 37 in southern Sonoma County to the City of Napa.

Buchli Station Road is a local road that runs in the north-south direction with a posted speed limit of 35 miles per hour (mph) adjacent to the project site; it dead-ends approximately 0.4 miles south of the winery entrance.

Las Amigas Road has a posted speed limit of 45 mph and generally runs east-west, from its western terminus at Duhig Road to its eastern terminus at Cuttings Wharf Road.

Duhig Road is a local road that generally runs in the north-south direction, with its northern terminus at SR 12-121 and its southern terminus at Ramal Road.

Cuttings Wharf Road generally runs north south from SR 12-121 to the north to its terminus at Cuttings Wharf on the Napa River to the south. The posted speed limit is 45 mph.

Existing Volumes

Mechanical tube counts were collected at two locations on Buchli Station Road, two locations on Las Amigas Road, and on Duhig Road and Cuttings Wharf Road near the project site from Thursday, October 23, 2014, to Sunday, October 26, 2014. This time period was during the harvest season, which is the busiest time of year in the Napa Valley, and therefore results in a more conservative analysis. Counts from 2012 for SR 12-121 were obtained from Caltrans. It should be noted that higher than typical volumes were observed on Buchli Station Road south of the winery due to construction at the time the traffic

Whitlock & Weinberger

490 Mendocino Avenue

Transportation, Inc.

Suite 201

ri 1

counts were taken. The existing traffic volumes on these segments are summarized in Table 1. The volume of traffic ranges from 160 trips per day on Buchli Station Road to 30,400 trips on SR 12-121.

Study Segment	۱ ۱	Weekday	Saturday		
	Daily PM Peak Hour		Daily	Midday Peak Hour	
Buchli Station Rd south of Bouchaine Winery	240	42	160	13	
Buchli Station Rd north of Bouchaine Winery	350	54	290	25	
Las Amigas Rd west of Buchli Station Rd	390	57	350	40	
Las Amigas Rd east of Buchli Station Rd	640	81	520	26	
Duhig Rd	1,650	101	520	46	
Cuttings Wharf Rd	2,400	212	2,300	204	
SR 12-121	28,500	2,276	30,400	2,432	

	Table	ł
Existing	Traffic	Volumes

Cumulative Conditions

Cumulative operating conditions were determined with trips generated by other approved projects within four miles of Bouchaine Vineyards added to existing volumes. As directed by County staff, the following projects were included to evaluate Cumulative Conditions.

Д

- Rocca Family Winery 129 Devlin Road, approximately 3.5 miles northeast of the project site; new
 winery with an annual production of 20,000 gallons; five full-time employees and five part-time
 employees; maximum of 32 visitors per day; maximum of 50 guests at food and wine pairing events
- Mahoney Vineyards 1134 Dealy Lane, approximately 2.6 miles north of the project site; use permit update to produce 30,000 gallons annually; two full-time employees, and 15 visitors per day
- Hyde Winery 1044 Los Carneros Avenue, approximately 2 miles north of the project site; approval of a use permit with 30,000 gallons of production annually, three full-time employees; 20 visitors per day
- Farm Collective Winery 388 Devlin Road, approximately 3.8 miles east of the project site; new winery with 80,000 gallons of production annually; 10 full-time employees; 30 visitors per day
- Suscol Creek Winery 1055 Soscol Ferry Road, approximately 3 miles northeast of the project site; 200,000 gallon per year winery; 13 full-time employees plus three additional full-time and five-part time employees during harvest; 25 visitors per day
- Hudson Vineyards 5398 Sonoma Highway, approximately 3 miles northwest of the project site; use permit update to 80,000 gallons of production annually;', seven full-time and four part-time employees on weekdays; five full-time and four part-time employees on the weekends; 120 visitors daily
- Truchard Vineyards 4062 Old Sonoma Road, approximately 3.8 miles north of the project site; use permit update to 100,000 gallons of production annually; five full-time employees and one part-time employee; 30 visitors per weekday and 60 visitors per day on the weekends

The traffic volumes on the study segments under cumulative conditions are summarized in Table 2. The volume of traffic ranges from 160 trips per day on Buchli Station Road to 30,560 trips on SR 12-121. None of the vehicle trips generated by the approved projects would be expected to use any of the study

.17

-:: 1

segments except SR 12-121. Some visitors to Bouchaine Vineyards would be expected to visit multiple wineries during their time in Napa Valley, including those wineries included in the list of approved projects.

Study Segment		Weekday	Saturday		
	Daily	PM Peak Hour	Daily	Midday Peak Hour	
Buchli Station Rd south of Bouchaine Winery	240	42	160	13	
Buchli Station Rd north of Bouchaine Winery	350	54	290	25	
Las Amigas Rd west of Buchli Station Rd	390	57	350	40	
Las Amigas Rd east of Buchli Station Rd	640	81	520	26	
Duhig Rd	1,650	101	520	46	
Cuttings Wharf Rd	2,400	212	2,300	204	
SR 12-121	28,675	2,341	30,560	2,508	

Table 2						
Cumulative	Traffic	Volumes				

Roadway Operation

Due to the locations on the cumulative projects, the volumes on all of the study roadways except SR 12-121 are expected to remain unchanged from Existing conditions. Roadway operation was assessed for SR 12-121 under projected Cumulative conditions, and it was determined that the road is expected to operate deficiently at Level of Service (LOS) E in both directions. The roadway segment Levels of Service are summarized in Table 5 and calculations are enclosed.

Table 3 Cumulative and Cumulative plus Project Peak Hour Roadway Segment Levels of Service

Study Segments	Cumulative	Conditions	Cumulative plus Project		
	Speed	LOS	Speed	LOS	
SR 12-121					
Eastbound	35	Е	35	E	
Westbound	34	E	34	E	

Notes: Speed is measured in miles per hour; LOS = Level of Service; Bold text = deficient operation

Future Conditions

Growth factors for the future 2030 volumes were developed based on the Napa County travel demand model. A growth factor of 1.05 was applied to volumes on Buchli Station Road, Las Amigas Road, and Duhig Road while a growth factor of 1.15 was applied to Cuttings Wharf Road and 1.10 was applied to volumes on SR 12-121. The projected future traffic volumes on these segments are summarized in Table 4.

11

Future Traffic Volumes						
Study Segment		Weekday	Saturday			
	Daily	PM Peak Hour	Daily	Midday Peak Hour		
Buchli Station Rd south of Bouchaine Winery	250	44	170	14		
Buchli Station Rd north of Bouchaine Winery	370	57	310	26		
Las Amigas Rd west of Buchli Station Rd	410	60	360	42		
Las Amigas Rd east of Buchli Station Rd	680	85	540	27		
Duhig Rd	1,740	106	550	48		
Cuttings Wharf Rd	2,790	244	2,670	235		
SR 12-121	31,400	2,504	33,500	2,675		

Table 4

Roadway Operation

Volumes on Las Amigas Road and Buchli Station Road are and will remain below 750 vehicles per day. This is a reasonable volume for a rural two-lane local roadway, and is substantially below the volume of 2,000 vehicles per day that is often used in the industry as the highest volume that can be accommodated on a residential road while retaining its local street character.

Roadway operation was assessed for SR 12-121, Duhig Road and Cuttings Wharf Road under Future conditions. SR 12-121 is expected to operate deficiently at LOS E in both directions while Duhig Road and Cuttings Wharf Road are expected to operate acceptably at LOS A. The roadway segment Levels of Service are summarized in Table 5 and calculations are enclosed.

Future and Future plus Study Segments		Future Conditions		
	Speed	LOS	Speed	LOS
SR 12-121		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Eastbound	34	E	34	E
Westbound	34	E	33	E
Duhig Rd				
Northbound	35	А	35	А
Southbound	35	А	35	А
Cuttings Wharf Rd	•	99999999999999999999999999999999999999		
Northbound	35	А	35	А
Southbound	35	А	35	А

Table 5

Notes: Speed is measured in miles per hour; LOS = Level of Service; Bold text = deficient operation

Information in the Napa County General Plan Update Draft Environmental Impact Report, February 2007 (GPUDEIR), indicates that under 2030 volumes SR 12-121 would operate at LOS F between Cuttings

.'

:1

Wharf Road and Stanly Lane (this is the nearest segment included in the analysis). Methodology from the Highway Capacity Manual was used to assess conditions based on calculated future volumes, resulting in LOS E. While the General Plan EIR indicates future operation at LOS F, the Measure of Effectiveness was used as a base in order to determine the effect of project volumes on the study segment.

Project Description

The proposed project consists of building a new hospitality center/office on site for hosting events, modifying the interior of the current Tasting Room/Office/Storage building (and renaming it to Wine Club/Office building), modifying the production building to increase the enclosed dry storage area, expanding the exterior crush pad and bin storage area, modifying and improving the visitor entrance road, expanding visitor parking options, and making other minor improvements to the operations of the facility. The winery plans to discontinue participation in some of the larger industry-wide events such as April in Carneros and Holiday in Carneros. Instead, special events will include additional private agricultural promotions and dinners, wine-related groups with a catered meal, and lunch or dinner meetings throughout the year, new special wine and food events, and a Chef's Dinner Series. Wine and food pairings also will be added to the wine tasting/tour "menu." Although the winery will stop participating in the larger special events, the increase in the smaller, more frequent events would lead to an increase in trips due to both visitors and employees throughout the year.

Trip Generation

The anticipated trip generation for a proposed project is typically estimated using standard rates published by the Institute of Transportation Engineers (ITE) in *Trip Generation Manual*, 9th Edition, 2012. However, the publication contains no such information for a winery. Therefore, the County of Napa's Winery Traffic Information/Trip Generation Sheet was used to determine the anticipated traffic that would be generated by the increase in wine production. A copy of this worksheet is enclosed for reference.

The County of Napa's Winery Traffic Information/Trip Generation Sheet does not include guidance on inbound versus outbound trips, and it was assumed that 75 percent of trips at the winery would be outbound during the weekday p.m. peak hour since many of the trips would be associated with employees and customers leaving at closure of the winery. For the weekend midday peak hour it was assumed that inbound and outbound trips for visitors would be evenly split.

According to the Winery Trip Generation Sheet, an increase of six employees would result in 16 additional trips on a daily basis, with 27 new trips associated with the increase of 35 tasting visitors, and two truck trips due to the conservative use of the maximum permitted production capacity. Trips related to production (including employees and truck traffic) for proposed conditions are the same as permitted conditions. Trips related to tasting room visitors were assessed based on existing and estimated future conditions rather than permitted conditions. A summary of the project's trip generation potential is provided in Table 6.

	Daily			Weekday PM Peak Hour			Weekend Midday Peak Hour		
	Weekday	Weekend	Trips	In	Out	Trips	In	Out	
Existing	·								
Employees	-43	-12	-14	-2	-12	-4	-2	-2	
Tasting Visitors	-19	-64	-7	-2	-5	-36	-18	-18	
Truck Traffic	-2	-0	-1	-0	-1	0	0	0	
Subtotal	-64	-76	-22	-4	-18	-40	-20	-20	
Proposed				······································			·		
Employees	59	19	19	3	16	6	3	3	
Tasting Visitors	46	111	17	4	13	63	31	32	
Truck Traffic	4	0	2	I	I	0	0	0	
Subtotal	109	130	38	8	30	69	34	35	
Net New Trips	45	54	16	4	12	29	14	15	

Table 6 Trip Generation Summary

Note: Trip generation as estimated above does not include special events

Special Events

Currently, the largest special events at the project site are April in Carneros and Holiday in Carneros, which have a permitted maximum of 150 visitors per day during weekends in April and November. Using the County's standard of 2.8 persons per vehicle for occupancy, the existing events with 150 attendees generate approximately 108 trip ends for guests (54 inbound at the start of the event and 54 outbound at its conclusion) plus 14 trips for staff arriving and departing. In addition to the 150-guest events, there are 28 other events permitted to be held at the site with the maximum number of guests ranging from 12 to 80 people, depending on the event. On average, event traffic adds approximately four vehicle-trips per day.

Under the current Use Permit Modification application and associated proposed Marketing program, the largest special events would be the Chef's Dinner Series, which are projected to have a maximum of 80 attendees per event and occur 24 times per year from 7:00 p.m. to 10:00 p.m., well after the evening peak period. These events are typically held on Saturday (weekend) nights. The events with 80 attendees would be expected to generate 58 trip ends for guests (29 inbound at the start of the event and 29 outbound at its conclusion) plus ten trips for staff arriving and departing.

In addition to the 80-guest events, there would be 123 other events held at the site; the number of guests would range from 20 to 50 people per event. On average, there will be a net increase of 33 daily trips related to special events on-site with the project.

Trip Distribution

The pattern used to allocate new project trips to the street network was determined by reviewing existing average daily traffic volumes on the study segments. The resulting trip distribution is shown in Table 7.

Origin/Destination	Percent of Trips	Daily Trips*	PM Peak Trips	Weekend Trips	Weekend Midday Trips*
SR 12-121 west of Duhig Rd	50	23	8	27	15
SR 12-121 east of Cuttings Wharf Rd	50	22	8	27	14
TOTAL	100	45	16	54	29

Table 7Trip Distribution Assumptions

Note: * Values do not equal trip generation exactly due to rounding

Plus Project Traffic Volumes

Conditions upon adding trips based on the trip generation assumptions were evaluated to provide an assessment of the potential impacts of the project. As can be seen by comparing the volumes in Table 8 and Table 9 with those in Table 2 and Table 4 respectively, the proposed project would result in a nominal increase in volumes (15 or fewer trips per hour, or one vehicle every four minutes) on any of the area's roadways.

Study Segment*		Weekday		Saturday		
	Daily	PM Peak Hour	Daily	Midday Peak Hour		
Buchli Station Rd north of Bouchaine Winery	395	70	344	54		
Las Amigas Rd west of Buchli Station Rd	412	65	377	54		
Las Amigas Rd east of Buchli Station Rd	663	89	547	· 41		
Duhig Rd	1,672	109	547	60		
Cuttings Wharf Rd	2,423	220	2,327	219		
SR 12-121	28,720	2,357	30,614	2,537		

Table 8 Cumulative plus Project Traffic Volumes

Note: * Buchli Station Road south of Bouchaine Winery has no project-added trips

Future plus Project Traffic Volumes						
Study Segment*		Weekday	Saturday			
	Daily	PM Peak Hour	Daily	Midday Peak Hour		
Buchli Station Rd north of Bouchaine Winery	415	73	364	55		
Las Amigas Rd west of Buchli Station Rd	432	68	387	56		
Las Amigas Rd east of Buchli Station Rd	703	93	567	42		
Duhig Rd	1,762	114	577	62		
Cuttings Wharf Rd	2,813	252	2,697	250		
SR 12-121	31,445	2,520	33,554	2,704		

Table 9 Future plus Project Traffic Volumes

Note: * Buchli Station Road south of Bouchaine Winery has no project-added trips

Roadway Operation

Upon adding project generated traffic, including trips associated with special events, to both Cumulative and Future volumes on Buchli Station Road and Las Amigas Road, the resulting volume would remain below 750 trips daily, and these roadways are therefore expected to continue operating within tolerable parameters.

Because the winery's existing Use Permit is believed to allow unrestricted tasting visitors, trips related to tasting room visitors were assumed to be already part of regional traffic increases reflected in the Future volumes, so these trips were not included in the Future plus Project operational analysis. Upon adding trips associated with the additional employees and maximum permitted production to both Cumulative and Future conditions, Duhig Road and Cuttings Wharf Road are expected to continue operating acceptably at LOS A. SR 12-121 would continue to operate deficiently at LOS E under all scenarios evaluated. Project-added trips cause no change in the Measure of Effectiveness; therefore the project would have a less-than-significant impact on the study roadways.

Access Analysis

Site Access

After construction of the Use Permit modification improvements, the site would continue to be accessed via existing driveways on Buchli Station Road 1,500 and 1,700 feet south of its intersection with Las Amigas Road.

Left-Turn Lane Warrants

The need for left-turn lanes on Buchli Station Road at the project driveways was evaluated based on criteria contained in the *Napa County Road and Street Standards*, 2011. Based on the segment volumes obtained north and south of the project driveway, Buchli Station Road has an average daily traffic (ADT) volume of 350 north of the project driveway and an ADT of 240 south of the project driveway. The proposed project would generate a weekday average of 45 trips and weekend average of 54 trips. Based on these traffic levels, a left-turn lane would not be warranted at the driveway serving the project site. A copy of the graph showing the results for the higher volume weekday conditions is enclosed.

It is further noted that Buchli Station Road dead-ends approximately 0.4 miles south of the project driveway, so guests traveling northbound on Buchli Station Road and turning left into the project site is unlikely, further reducing the potential need for a left-turn lane.

Conclusions and Recommendations

- The proposed project would increase the number of full-time and part-time employees and would eliminate the largest special events while adding smaller, more frequent special events.
- No expansion in wine production is being requested; use of the maximum permitted production was assumed for a conservative analysis.
- The proposed project would result in an increase of an average of 45 daily trips during the weekday, 16 trips during the p.m. peak hour, 54 trips during the weekend and 29 trips during the weekend

midday peak hour, including the change in tasting room visitors from existing conditions to the level proposed under plus project conditions.

- SR 12-121 is projected to operate deficiently at LOS E under Cumulative conditions.
- Under Future conditions, Duhig Road and Cuttings Wharf Road are expected to operate acceptably at LOS A. SR 12-121 is projected to operate deficiently at LOS E.
- The addition of project trips to either Cumulative or Future volumes results in no measurable change to operation on the study roadways.
- The proposed project would result in a nominal increase in trips on the study roadways.
- Left-turn lanes are not warranted at any of the project driveways.

Thank you for giving W-Trans the opportunity to provide these services. Please call if you have any questions.

Sincerely,

fauren If Davini

Lauren Davini, EIT Assistant Traffic Engineer

Smadar Boardman, EIT Assistant Traffic Engineer

Dalene J. Whitfock, PE, PTOE Principal

Enclosures:

Roadway Level of Service Calculations Napa County Winery Trip Generation Napa County Left-Turn Lane Warrant

DJW/sab/NAX085.L1

DIRECTIONAL TWO-LANE H		SHEET
General Information Analyst SAB Agency or Company W-Trans Date Performed 11/21/2014 Analysis Time Period PM Peak Hour	Site Information Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 12-121 Easlbound Duhig Rd Io Cullings Wharf Rd Counly of Napa Existing Condilions
Project Description: Bouchaine Vineyards		
Shoulder width It Lane width It Lane width It Lane width It Segment length, Lt mi Analysis direction vol., V_d 1141veh/h Dopposing direction vol., V_d 1136veh/h Shoulder width ft 10.0 Segment Length mi 1.0	Terrain 🗹 I	20% 95 , P _T 6 %
Average Travel Speed	Analysis Direction (d)	
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	Opposing Direction (o) 1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $f_{HVATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	1.000	1,000
Srade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00
Demand flow rale ² , v _j (pc/h) v _j =V _j / (PHF* f _{g,ATS} * f _{HV,ATS})	1141	1136
Free-Flow Speed from Field Measurement		ted Free-Flow Speed
Aean speed of sample ³ , S _{FM} Total demand flow rate, both directions, v Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS}) Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 0.5 mi/h	Adj. for lane and shoulder width, ⁴ f _{LS} (Exh Adj. for access points ⁴ , f _A (Exhibit 15-8) Free-flow speed, FFS (FSS=BFFS·f _{LS} -f _A Average travel speed, ATS _d =FFS-0.0077 Percent free flow speed, PFFS	0.8 mi/h) 54.3 mi/h
Percent Time-Spent-Following	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0
assenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0
leavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00
סיר אין	1141	1136
ase percent time-spent-following ⁴ , BPTSF _d (%)=100(1- $e^{av_d}^b$)		82.5
dj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)		10.9
ercent time-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(v _{d,PTSF} / v _{d,PTSF} + v _{o,PTSF})		88.0
evel of Service and Other Performance Measures		
evel of service, LOS (Exhibit 15-3) /olume to capacity ralio, v/c		E
apacity, C _{dATS} (Equation 15-12) pc/h	······································	1700
apacity, C _{d,PTSF} (Equation 15-13) pc/h		1700
ercent Free-Flow Speed PFFS ₄ (Equation 15-11 - Class III only)		66.5
licycle Level of Service		· · · · · · · · · · · · · · · · · · ·
lirectional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h		1141.0
iffective width, Wv (Eq. 15-29) ft		32.00
iffective speed factor, S ₁ (Eq. 15-30)		4.79
lcycle level of service score, BLOS (Eq. 15-31)		1.81 B
lotes . Nole that the adjustment factor for level terrain is 1.00,as level terrain is one of the base con		<i>U</i>

1

For the analysis direction only
 For the analysis direction only
 Exhibit 15-20 provides coefficients a and b for Equation 15-10.
 Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Copyright © 2013 University of Florida, All Rights Reserved

General Information	GHWAY SEGMENT WORKSHI	-E 1			
nalyst SAB	Highway / Direction of Travel	SR 12-121 Westbound			
Igency or Company W-Trans Date Performed 11/21/2014	From/To Jurisdiction	Cullings Wharf Rd to Duhlg Rd Counly of Napa			
Inalysis Time Period PM Peak Hour	Analysis Year	Existing Conditions			
npul Data					
1 Shoulder width					
Lone width It					
Lone width It		Class II highway Class III highway			
T Shoulder width	Terrain I Level Grade Length mi	Rolling Up/down			
Segment length, L _l mi	Peak-hour factor, PHF No-passing zone	1.00 20%			
nalysis direction vol., V _d 1136vet/h	Short North Arrow % Trucks and Buses , PT				
pposing direction vol., Vo 1140vet/h	% Recreational vehicles,				
houlder width ft 10.0	Access points mi	6/mi			
egment Length mi 12.0					
verage Travel Speed					
Researces equivalents for table E /E-Link 45 44 47 40	Analysis Direction (d)	Opposing Direction (o)			
assenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	1.0			
assenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0			
eavy-vehicle adjustment factor, $f_{HV,ATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	1.000	1.000			
rade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00			
emand flow rate ² , v _j (pc/h) v _j =V _j / (PHF* f _{g,ATS} * f _{HV,ATS})	1136	1140			
Free-Flow Speed from Field Measurement	Estimated Fr	ee-Flow Speed			
	Base free-flow speed ⁴ , BFFS	55.0 mi/h			
ean speed of sample ³ , S _{FM}	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 15	-7) 0.0 ml/h			
olal demand flow rate, both directions, <i>v</i> ree-flow speed, FFS≍S _{FM} +0.00776(v/ f _{HV.ATS})	Adj. for access points ⁴ , f _A (Exhibit 15-8)	1.5 mi/h			
dj. for no-passing zones, f _{npATS} (Exhibit 15-15) 0.5 mi/n	Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) 53.5 ml				
	Average iravel speed, ATS _d =FFS-0.00776(v _{d,AT} Percent free flow speed, PFFS				
ercent Time-Spent-Following		66.1 %			
	Analysis Direction (d)	Opposing Direction (o)			
assenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0			
assenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0			
eavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000			
rade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
reclional flow rate ² , v/pc/h) v=V/(PHF*f _{HV,PTSF} * f _{g,PTSF})	1136	1140			
ase percent lime-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d ^b)	А	2.4			
ij. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)	-	0.9			
ercent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(v _{d,PTSF} / v _{d,PTSF} + v _{o,PTSF})	. 8	7.8			
evel of Service and Other Performance Measures		E			
lume to capacity ratio, v/c		.67			
apacity, C _{d,ATS} (Equation 15-12) pc/h	11	700 a			
spacity, C _{d,PTSF} (Equation 15-13) pc/h	11	700			
crcent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)	6	6.1			
cycle Level of Service					
reclional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	11:	36.0			
feclive width, Wv (Eq. 15-29) ft	32	.00			
feclive speed factor, S ₁ (Eq. 15-30)	4.	79			
cycle level of service score, BLOS (Eq. 15-31)		81			
cycle level of service (Exhibit 15-4)		8			
otes Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base cond					

•

. - т² •

 $\left(\right)$

For the analysis direction only
 For the analysis direction only
 Exhibit 15-20 provides coefficients a and b for Equation 15-10.
 Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
 Copyright © 2013 University of Florida, All Rights Reserved

General Information	Site Information	
Analyst SAB Agency or Company W-Trans	Highway / Direction of Travel From/To	SR 12-121 Eastbound Duhig Rd to Cuttings Wharf Rd
Date Performed 4/9/15 Analysis Time Period PM Peak Hour	Jurisdiction Analysis Year	County of Napa Cumulative Conditions
Project Description: Bouchaine Vineyards		
Input Data	1	
Shoulder width It Lane width It Lane width It Lane width It Stioulder width It Segment longth, L ₁ mi Analysis direction vol., V _d 1165vet/h Opposing direction vol., V _o 1176vet/h	Class I highway Terrain Level Grade Length mi Peak-hour factor, PHF No-passing zone % Trucks and Buses, F % Recreational vehicles Access points mi	Up/down 1.00 100% Pr 6%
Shoulder width fi 10.0 Lene Width fi 12.0	Access points mi	onn
Segment Length mi 1.0 · · · · · · · · · · · · · · · · · · ·		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_T (Exhibit 15-11 or 15-12)	1.0	1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $f_{HVATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	1.000	1.000
Grade adjusiment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00
Demand flow rate ² , v _J (pc/h) v _j =V _I / (PHF* f _{gATS} * f _{HVATS})	1165	1176
Free-Flow Speed from Field Measurement		Free-Flow Speed
Mean speed of sample ³ , S _{FM} Total demand flow rate, both directions, v	Base free-flow speed ⁴ , BFFS Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 1	
Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS})	Adj. for access points ⁴ , f _A (Exhibit 15-8) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A)	0.8 mi/i
Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.0 ml/h	Average travel speed, ATS _d =FFS-0.00776(v _d , Percent free flow speed, PFFS	
Percent Time-Spent-Following	reconcine now speed, FFFS	64.6 %
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_{R}-1))$	1.000	1.000
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ² , v _i (pc/h) v _i =V _i (PHF [*] f _{HV,PTSF} [*] f _{g,PTSF})	1165	1176
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d ^b)		83.4
Adj. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)		14.0
Percent time-spent-following, $PTSF_d(\%)=BPTSF_d+f_{np,PTSF} * (v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$		90.4
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3)	-	E
Volume to capacity ratio, v/c		0.69
Capacily, C _{d,ATS} (Equalion 15-12) pc/h		1700
Capacity, C _{d,PTSF} (Equalion 15-13) pc/h		1700
Percent Free-Flow Speed PFFS _d (Equalion 15-11 - Class III only)		64.6
Bicycle Level of Service	I .	1165.0
Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h Effective width, Wv (Eq. 15-29) ft		32.00
Effective speed factor, S, (Eq. 15-30)		4.79
Bicycle level of service score, BLOS (Eq. 15-31)		1.82
Bicycle level of service (Exhibit 15-4) Notes		В
 Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base conclerrain. If v_i(v_i or v_n) >=1,700 pc/h, terminate analysisthe LOS is F. 	filions. For the purpose of grade adjustment, spec	ific downgrade segments are treated as le

Copyright © 2013 University of Florida, All Rights Reserved

• ĩ

Generaled: 4/10/2015 2:54 PM

DIRECTIONAL TWO-LANE HI	GHWAY SEGMENT WORKSHE	ET
General Information	Site Information	
Analyst ' SAB Agency or Company W-Trans	Highway / Direction of Travel From/To	SR 12-121 Westbound Cutlings Wharf Rd to Duhig Rd
Date Performed 4/9/2015	Jurisdiction	County of Napa
Analysis Time Period PM Peak Hour Project Description: Bouchaine Vineyards	Analysis Year	Cumulative Conditions
Input Data		
C Shoulder width It		
I Lane vidth It	🗹 Class I highway] Class II highway 🔲 Class III highway
Shoulder width It	Terrain 🗹 Level	
	Grade Length mi Peak-hour factor, PHF	Up/down 1.00
Segment length, L _l mi	No-passing zone	100%
Analysis direction vol., V _d 1176veh/h	Show North Arrow % Trucks and Buses , PT	6 %
Opposing direction vol., V _o 1165veh/h	% Recreational vehicles, F	
Shoulder widih ft 10.0 Lane Widih ft 12.0	Access points mi	6/mi
Segment Length mi 1.0		
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $f_{HV,ATS}$ =1/ (1+ $P_T(E_T-1)+P_R(E_R-1)$)	1.000	1.000
Grade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00
Demand flow rate ² , v ₁ (pc/h) v ₁ =V ₁ / (PHF* f _{g,ATS} * f _{HV,ATS})	1176	1165
Free-Flow Speed from Field Measurement	· ·	ee-Flow Speed
	Base free-flow speed ⁴ , BFFS	55.0 mi/h
Mean speed of sample ³ , S _{FM}	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 15-	7) 0.0 mi/h
Tolal demand flow rale, bolh direclions, ∨ Free-flow speed, FFS≕S _{FM} +0.00776(v/ f _{HV,ATS})	Adj. for access points ⁴ , f _A (Exhibit 15-8)	1.5 mi/h
	Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A)	53.5 mi/h
Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.0 ml/h	Average travel speed, ATS _d =FFS-0.00776(v _{d,AT} Percent free flow speed, PFFS	s ^{+v} o,ATS ^{)-f} np,ATS 34.3 mi/h 64.1 %
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ² , v/pc/h) v=V/(PHF*f _{HV,PTSF} * f _{g,PTSF})	1176	1165
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d ^b)	8	3.8
Adj. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)	1	4.0
Percent lime-spent-following, $PTSF_d(\%)=BPTSF_d+f_{np,PTSF}*(v_{d,PTSF}/v_{d,PTSF}+v_{o,PTSF})$	9	
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3)		-
Volume to capacity ratio, V/c		E
Capacity, C _{dATS} (Equation 15-12) pc/h		00
Capacily, C _{d,PTSF} (Equalion 15-13) pc/h	77	/00
Percent Free-Flow Speed PFFS _d (Equalion 15-11 - Class III only)	6	1.1
Bicycle Level of Service		
Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	111	76.0
Effective width, Wv (Eq. 15-29) ft	32	.00
Effective speed factor, S ₁ (Eq. 15-30)	4.	79
Bicycle level of service score, BLOS (Eq. 15-31)	1.	83
Bicycle level of service (Exhibit 15-4)		3
Notes		
 Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base cond terrain. 	ilions. For the purpose of grade adjustment, specific	downgrade segments are treated as level
2. If $v_i(v_d \text{ or } v_o) >= 1,700 \text{ pc/h}$, terminate analysisthe LOS is F.		
3. For the analysis direction only and for v>200 veh/h. 4. For the analysis direction only		

For the analysis direction only
 Exhibit 15-20 provides coefficients a and b for Equation 15-10.
 Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
 Copyright © 2013 University of Florida, All Rights Reserved

. , 1

. (_____

(

: •

DIRECTIONAL TWO-LANE H	IGHWAY SEGMENT WORKSH	EET
General Information	Site Information	
Analyst SAB Agency or Company W-Trans	Highway / Direction of Travel From/To	SR 12-121 Eastbound Duhig Rd to Cuttings Wharf Rd
Date Performed 4/9/2015	Jurisdiction	County of Napa
Analysis Time Period PM Peak Hour Project Description: Bouchaine Vineyards	Analysis Year	Cumulative + Proj. Conditions
nput Data		
1 Shoulder width It		
Lane width		
Lane width It		Class II highway 🗌 Class III highway
I Shoulder width It	Terrain ⊻ Level Grade Length mi	Rolling Up/down
• Segment longth, L ₁ mi	Peak-hour factor, PHF	1.00
	No-passing zone Short Hoth Attory % Trucks and Buses , P-	100% - 6%
nalysis direction vol., V _d 1173veh/h	Show lloth Arrow % Recreational vehicles,	
opposing direction vol., Vo 1184veh/h Shoulder width ft 10.0	Access points mi	'R 7/0 3/mi
ane Width fi 12.0		
egment Length mi 1.0 Verage Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
assenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	1.0
assenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0
leavy-vehicle adjustment factor, f _{HV,ATS} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000
trade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00
lemand flow rate ² , v ₁ (pc/h) v _i =V ₁ / (PHF* f _{g,ATS} * f _{HV,ATS})	1173	1184
Free-Flow Speed from Field Measurement	Estimated F	ree-Flow Speed
_	Base free-flow speed ⁴ , BFFS	55.0 mi/h
lean speed of sample ³ , S _{FM}	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 1	3-7) 0.0 mi/h
olal demand flow rate, both directions, v ree-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV.ATS})	Adj. for access points ⁴ , f _A (Exhibit 15-8)	0.8 mi/h
dj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.0 mi/h	Free-flow speed, FFS(FSS=BFFS-f _{LS} -f _A)	54.3 mi/h
of, for no-passing zonos, inpATS (Crimbit 10-10)	Average travel speed, ATS _d =FFS-0.00776(v _{d,} ¢ Percent free flow speed, PFFS	
ercent Time-Spent-Following	reicem nee now speeu, rrro	64.4 %
	Analysis Direction (d)	Opposing Direction (o)
assenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0
assenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0 .	1.0
eavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000
rade adjusiment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00
irectional flow rate ² , v/pc/h) vj=V/(PHF*(_{HV,PTSF} * (_{g,PTSF})	1173	1184
ase percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av_d^b})		84.1
dj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21)		13.7
ercent time-spent-following, $PTSF_d(\%)=BPTSF_d+f_{np,PTSF}*(v_{d,PTSF}/v_{d,PTSF}+v_{o,PTSF})$		90.9
evel of Service and Olher Performance Measures		
evel of service, LOS (Exhibit 15-3)		E
apacity, C _{d,ATS} (Equalion 15-12) pc/h		1700
apacily, C _{d,PTSF} (Equalion 15-13) pc/h		1700
ercent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)		54.4
icycle Level of Service		
irectional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	1	173.0
ffeclive width, Wv (Eq. 15-29) ft	3	2.00
ffective speed factor, S ₁ (Eq. 15-30)		1.79
Icycle level of service score, BLOS (Eq. 15-31)		1.83
cycle level of service (Exhibit 15-4)		В
Note that the adjustment factor for level terrain is 1.00, as level terrain is one of the base cont	MAR	

Exhibit 15-20 provides coefficients a and b for Equation 15-10.
 Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Copyright © 2013 University of Florida, All Rights Reserved

• • • •

-

Ĺ

General Information	GHWAY SEGMENT WORKSHE Site Information				
Analyst SAB	Highway / Direction of Travel From/To	SR 12-121 Weslbound			
Date Performed 4/9/2015	Jurisdiction	Cutlings Wharf Rd to Duhig Rd County of Napa			
Analysis Time Period PM Peak Hour Project Description: Bouchaine Vineyards	Analysis Year	Cumulative + Proj. Conditions			
Input Data	······································				
Contraction Contra					
Lane width		Class II highway Class III high			
Shoulder width It _	Terrain	D Rolling Up/down			
Segment longth, L ₁ mi	Peak-hour factor, PHF	1.00 100%			
	No-passing zone Share Nath Guare % Trucks and Buses , PT				
Analysis direction vol., V _d 1184veh/h	Show Houth Arrow % Recreational vehicles, I				
Opposing direction vol., V _o 1173veh/h Shoulder width ft 10.0	Access points mi	6/mi			
Lane Width ft 12.0					
Segment Length mi 1.0 Average Travel Speed					
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _Y (Exhibit 15-11 or 15-12)	1.0	1.0			
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0			
Heavy-vehicle adjustment factor, $f_{HVATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	1.000	1.000			
Grade adjustment factor ¹ , f _{gATS} (Exhibit 15-9)	1.00	1.00			
Demand flow rate ² , v ₁ (pc/h) v ₁ =V ₁ / (PHF* f _{gATS} * f _{HV,ATS})	1184	1173			
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed				
	Base free-flow speed ⁴ , BFFS	55.0			
Mean speed of sample ³ , S _{FM} Total demand flow rate, both directions, v	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 15 Adj. for access points ⁴ , f _A (Exhibit 15-8)				
Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS})		1.5 n 53,5			
Adj. for no-passing zones, f _{npATS} (Exhibit 15-15) 1.0 ml/h	Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Average travel speed, ATS _d =FFS-0.00776(v _{d,A} -				
	Percent free flow speed, PFFS	IS ⁺ v _o ,ATS ^{) - I} np,ATS 54.2 63.9			
Percent Time-Spent-Following					
	Analysis Direction (d)	Opposing Direction (o)			
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0			
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0			
Heavy-vehicle adjusIment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1,000			
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00			
Directional flow rate ² , v _i (pc/h) v _i =V/(PHF*f _{HV,PTSF} * f _{g,PTSF})	1184	1173			
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d ^b)	-	34.0			
Adj. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)	1	3.7			
Percent lime-spent-following, $PTSF_d(\%)=BPTSF_d+f_{np,PTSF} (v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$	٤	00.9			
Level of Service and Other Performance Measures					
Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c		E 0.70			
Capacity, C _{dATS} (Equation 15-12) pc/h		700			
Capacily, C _{d,PTSF} (Equation 15-13) pc/h		700			
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)		3.9			
Bicycle Level of Service	·				
Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h		84.0			
Effective width, Wv (Eq. 15-29) ft		2.00			
Effective speed factor, S _i (Eq. 15-30)		.79			
Bicycle level of service score, BLOS (Eq. 15-31)		.83			
Bicycle level of service (Exhlbit 15-4)		<u>B</u>			
Notes					

6. Use alternative Exhibit 15-14 if some trucks operate al crawl speeds on a specific downgrade. Copyright © 2013 University of Florida, All Rights Reserved

General Information Analysi SAB	Site Information Highway / Direction of Travel	SR 12-121 Easlbound	
Agency or Company W-Trans Date Performed 11/21/2014	From/To Jurisdiction	Duhig Rd to Cuttings Wharf Rd County of Napa	
Analysis Time Period PM Peak Hour	Analysis Year	Future Conditions	
Project Description: Bouchaine Vineyards Input Data			
L	······		
Shoulder width It			
Lone vidth It	Class I highway	Class II highway 🗌 Class III highwa	
Shoulder width It	Terrain Z Level		
• Segment longth, L _L mi	Grade Length mi Peak-hour factor, PHF	Up/down 1.00	
	No-passing zone Short Wath Strong % Trucks and Buses , PT	100% 6 %	
Analysis direction vol., V _d 1255veh/h	Short North Arror: % Trucks and Boses , PT % Recreational vehicles,		
Opposing direction vol., V _o 1250veh/h Shoulder width ft 10.0	Access points mi	'R +/// 3/mi	
Lane Width ft 12.0			
Segment Length mi 1.0 Average Travel Speed			
	Analysis Direction (d)	Opposing Direction (o)	
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	1.0	
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0	
Heavy-vehicle adjustment factor, f_{HVATS} =1/ (1+ $P_T(E_T-1)+P_R(E_R-1)$)	1.000	1.000	
Grade adjustment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00	
Demand flow rate ² , v _i (pc/n) v _i =V _i / (PHF* f _{g,ATS} * f _{HV,ATS})	1255	1250	
Free-Flow Speed from Fleid Measurement		ee-Flow Speed	
	Base free-flow speed ⁴ , BFFS	55.0 m	
Mean speed of sample ³ , S _{FM} Total demand flow rate, both directions, v	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 15		
Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS})	Adj. for access points ⁴ , f _A (Exhibit 15-8)	0.8 mi/	
Adj. for no-passing zones, f _{npATS} (Exhibit 15-15) 1.0 ml/h	Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A)	54.3 m	
	Average travel speed, ATS _d =FFS-0.00776(v _{d,A} Percent free flow speed, PFFS	тs ^{+ v} o,ATs) - f _{пр,ATS} 33.8 mi 62.4 %	
Percent Time-Spent-Following			
	Analysis Direction (d)	Opposing Direction (o)	
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0	
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0	
Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000	
Grade adjusiment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00	
Directional flow rate ² , v,(pc/h) v,=V/(PHF*f _{HV,PTSF} * f _{g,PTSF})	1255	1250	
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{avd^b})		36.0	
Adj. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)		11.6	
Percent lime-spent-following, $PTSF_d(%)=BPTSF_d+f_{np,PTSF} (v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF})$)1.8	
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3)		E	
Volume to capacity ratio, v/c		<u>e</u>	
Capacily, C _{dATS} (Equalion 15-12) pc/h	1	700	
Capacity, C _{d,PTSF} (Equalion 15-13) pc/h	1	700	
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only)		2.4	
Bicycle Level of Service			
Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	12	55.0	
Effeclive width, Wv (Eq. 15-29) ft	3	2.00	
Effective speed factor, S ₁ (Eq. 15-30)	4	.79	
Bicycle level of service score, BLOS (Eq. 15-31)	1	.86	
Bicycle level of service (Exhibit 15-4)		B	

-, 1

, 1

In Y₁V₃ or V₃, - (r, too point, terminate analysis-life LOS is F.
 For the analysis direction only and for v>200 veh/h.
 For the analysis direction only
 Exhibit 15-20 provides coefficients a and b for Equation 15-10.
 Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Copyright © 2013 University of Florida, All Rights Reserved

	SHWAY SEGMENT WORKSHE	ET	
General Information Analyst SAB	Site Information Highway / Direction of Travel	SR 12-121 Weslbound	
Agency or Company W-Trans	From/To	Cullings Wharf Rd to Duhig Rd	
Date Performed 11/21/2014 Analysis Time Period PM Peak Hour		Counly of Napa Fulure Condillons	
Project Description: Bouchaine Vineyards			
Input Data			
Shoulder width It			
← 1 Lane vidth 11	Class I highway	Class II highway 🔲 Class III highway	
Lane width It	Terrain 🗹 Level		
	Grade Length mi L	p/down	
Segment longth, Ly mi	Peak-hour faclor, PHF No-passing zone	1.00 100%	
Analysis direction vol., V _d 1250veh/h	Show North Arrow % Trucks and Buses , PT	6%	
Opposing direction vol., Vo 1255veh/h	% Recreational vehicles, P		
Shoulder width ft 10.0	Access points mi	6/mi	
Lene Width ft 12.0 Segment Length mi 1.0			
Average Travel Speed	Analysis Direction (d)	Oracella Dissetter ()	
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	Opposing Direction (o) 1.0	
	· 1.0	1.0	
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)			
Heavy-vehicle adjustment factor, $f_{HVATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	1.000	1.000	
Grade adjustment factor ¹ , f _{g.ATS} (Exhibit 15-9)	1.00	1.00	
Demand flow rate ² , v _i (pc/h) vj=V _i / (PHF* f _{g,ATS} * f _{HV,ATS}) Free-Flow Speed from Fleld Measurement	1250 Estimated Fre	1255	
LIGET IN OBSCH HOW LIGH WASSURIUSH	Base free-flow speed ⁴ , BFFS	55.0 ml/	
Mean speed of sample ³ , S _{FM}	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 15-7		
Total demand flow rate, both directions, v	Adj. for access points ⁴ , f _A (Exhibit 15-8)	1.5 m/h	
Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS})	Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A)	53,5 mi/	
Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.0 mi/h	Average travel speed, ATS _d =FFS-0.00776(v _{d,ATS}		
	Percent free flow speed, PFFS	61.9 %	
Percent Time-Spent-Following	Analysis Direction (d)	Opposing Direction (o)	
Passenger-car equivalents for trucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0	
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0	
Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ $P_T(E_T$ -1)+ $P_R(E_R$ -1))	1.000	1.000	
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00	
Directional flow rate ² , v/pc/h) v/=V/(PHF*f _{HV,PTSF} * f _{g,PTSF})	1250	1255	
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{sv} d ^b)	85	.9	
prese belocit mus observationally to the day tool of a h			
	11	.6	
Adj. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)	11		
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3)	91	.7	
Adj, for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity rallo, v/c	91 E	.7	
Adj, for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c Capacity, C _{d,ATS} (Equation 15-12) pc/h	91 E 0. 17	.7 :	
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c Capacity, C _{d,ATS} (Equalion 15-12) pc/h Capacity, C _{d,PTSF} (Equalion 15-13) pc/h	91 E 0.1 17 17	.7 :	
Adj, for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c Capacity, C _{d,ATS} (Equation 15-12) pc/h	91 E 0. 17	.7 :	
Adj, for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c Capacity, C _{d,ATS} (Equalion 15-12) pc/h Capacity, C _{d,PTSF} (Equalion 15-13) pc/h Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only) Bicycle Level of Service	91 E 0.1 17 17	.7 /4 00 00 .9	
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c Capacity, C _{d,ATS} (Equalion 15-12) pc/h Capacity, C _{d,PTSF} (Equalion 15-13) pc/h Percent Free-Flow Speed PFFS _d (Equalion 15-11 - Class III only)	91 E O. 17 17 17 61	.7 :	
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity rallo, v/c Capacity, C _{d,ATS} (Equation 15-12) pc/h Capacity, C _{d,PTSF} (Equation 15-13) pc/h Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only) Bicycle Level of Service Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	91 E 0.1 17 17 61 125	.7 	
Adj. for no-passing zone, f _{np,PTSF} (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} / V _{d,PTSF} + V _{o,PTSF}) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ralio, v/c Capacity, C _{d,ATS} (Equalion 15-12) pc/h Capacity, C _{d,PTSF} (Equalion 15-13) pc/h Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only) Bicycle Level of Service Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h Effective width, Wv (Eq. 15-29) ft	91 E 0.1 0.1 17 17 61 125 32.	.7 .7 .4 .00 .00 .00 .00 .00 .00 .00 .00 .00	
Adj. for no-passing zone, $f_{np,PTSF}$ (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d + $f_{np,PTSF}$ *($v_{d,PTSF}$ / $v_{d,PTSF}$ + $v_{o,PTSF}$) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ralio, v/c Capacity, C _{d,ATS} (Equation 15-12) pc/h Capacity, C _{d,PTSF} (Equation 15-13) pc/h Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only) Bicycle Level of Service Directional demand flow rate in outside lane, v_{OL} (Eq. 15-24) veh/h Effective width, Wv (Eq. 15-29) ft Effective speed factor, S_i (Eq. 15-30) Bicycle level of service score, BLOS (Eq. 15-31) Bicycle level of service (Exhibit 15-4)	91 E 0.1 17 17 17 61 125 32 4.1	.7 .7 .4 .00 .00 .9 .0.0 .00 .00 .00 .00 .00 .00	
Adj, for no-passing zone, $f_{np,PTSF}$ (Exhibit 15-21) Percent lime-spent-following, PTSF _d (%)=BPTSF _d + $f_{np,PTSF}$ *($v_{d,PTSF}$ / $v_{d,PTSF}$ + $v_{o,PTSF}$) Level of Service and Other Performance Measures Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c Capacity, $C_{d,ATS}$ (Equation 15-12) pc/h Capacity, $C_{d,PTSF}$ (Equation 15-13) pc/h Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only) Bicycle Level of Service Directional demand flow rate in outside lane, v_{OL} (Eq. 15-24) veh/h Effective width, Wv (Eq. 15-29) ft Effective speed factor, S_{ℓ} (Eq. 15-30) Bicycle level of service score, BLOS (Eq. 15-31)	91 E 0.1 17 17 61 125 32. 4.1 1.4 E	.7 	

[5. Exhibit 15-20 provides coefficients a and b for Equation 15-10.
 [6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.
 Copyright © 2013 University of Florida, All Rights Reserved

.

•

	IGHWAY SEGMENT WORKSHE	.E I
General Information SAB SAB	Site Information Highway / Direction of Travel	SR 12-121 Easibound
Agency or Company W-Trans Date Performed 11/21/2014	From/To Jurisdiction	Duhig Rd to Cuttings Wharf Rd
Analysis Time Period PM Peak Hour	Analysis Year	County of Napa Future plus Project Conditions
Project Description: Bouchaine Vineyards		
Input Data		
Shoulder wickly It		
Lane widtht	🗹 Class I highway	🛛 Class II highway 🔲 Class III highw
Shoulder width It	Terrain 🗹 Level	
······	Grade Length mi Peak-hour factor, PHF	Up/down 1.00
Segment longth, L ₁ mi	No-passing zone	100%
Analysis direction vol., V _d 1258veh/h	Short North Arrow % Trucks and Buses , PT	
Opposing direction vol., V _o 1253veh/h	% Recreational vehicles, I Access points <i>mi</i>	P _R 4% 3/mi
Shoulder width ft 10.0 Lane Width ft 12.0		
Segment Length mi 1.0 Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, $f_{HVATS}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	1.000	1.000
Grade adjusiment factor ¹ , f _{g,ATS} (Exhibit 15-9)	1.00	1.00
Demand flow rate ² , v_i (pc/h) $v_i = V_i / (PHF^* f_{g,ATS}^* f_{HV,ATS})$	1258	1253
Free-Flow Speed from Field Measurement		ee-Flow Speed
Mana analy of annula is a	Base free-flow speed ⁴ , BFFS	55.0 m
Mean speed of sample ³ , S _{FM} Tolal demand flow rate, both directions, v	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 15	
Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS})	Adj. for access points ⁴ , f _A (Exhibit 15-8)	0.8 mi
Adj. for no-passing zones, f _{npATS} (Exhibit 15-15) 1.0 ml/h	Free-flow speed, FFS(FSS=BFFS-f _{LS} -f _A) Average travel speed, ATS _d =FFS-0.00776(v _{d,AT}	54.3 m re+Veare)-feeare 33.8 m
	Percent free flow speed, PFFS	rs * vo,ATS * 'np,ATS 62.3 %
Percent Time-Spent-Following		
Passenger-car equivalents for trucks, E _{rt} (Exhibit 15-18 or 15-19)	Analysis Direction (d) 1.0	Opposing Direction (o) 1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directional flow rate ² , v/pc/h) v=V/(PHF*f _{HV,PTSF} * f _{g,PTSF})	1258	1253
Base percent lime-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d ^b)	8	6.1
Adj. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)	1	1.6
Percent lime-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *(V _{d,PTSF} /V _{d,PTSF} +V _{o,PTSF})		1.9
Level of Service and Other Performance Measures	⁹	
Level of service and other Performance measures		E
Volume to capacity ratio, v/c	0	.74
Capacity, C _{d,ATS} (Equation 15-12) pc/h	1	700
Capacily, C _{d,PTSF} (Equation 15-13) pc/h	1	700
Percent Free-Flow Speed PFFS _d (Equalion 15-11 - Class III only)	6	2.3
Bicycle Level of Service	· · · · · · · · · · · · · · · · · · ·	
Direclional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	12	58.0
Effective width, Wv (Eq. 15-29) ft	32	2.00
Effective speed factor, S _t (Eq. 15-30)	4	.79
Bicycle level of service score, BLOS (Eq. 15-31)	1.	.86
Bicycle level of service (Exhibit 15-4)		B
Notes 1. Note that the adjustment factor for level terrain is 1.00,as level terrain is one of the base con	dillogo Factly and a distance in the	- dourse and a second

For the analysis uncount only
 Exhibit 15-20 provides coefficients a and b for Equation 15-10.
 Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Copyright © 2013 University of Florida, All Rights Reserved

General Information	IGHWAY SEGMENT WORKSH	
Analysi SAB Agency or Company W-Trans Dale Performed 11/21/2014 Analysis Time Period PM Peak Hour Project Description: Bouchaine Vineyards	Site Information Highway / Direction of Travel From/To Jurisdiction Analysis Year	SR 12-121 Weslbound Cullings Wharf Rd Io Duhig Rd Counly of Napa Fulure plus Project Condilions
Input Data		
Shoulder width It Lane width It Lane width It Lane width It Segment length, L It Analysis direction vol., V _d 1253veh/h Shoulder width ft 10.0 Lene width ft 12.0 Segment Length mi 1.0	Class I highway Terrain Clevel Grade Length mi Peak-hour factor, PHF No-passing zone Silect North Arrett % Trucks and Buses, P. % Recreational vehicles, Access points mi	Up/down 1.00 100% r 6%
Average Travel Speed	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E _T (Exhibit 15-11 or 15-12)	1.0	1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-11 or 15-13)	1.0	1.0
Heavy-vehicle adjustment factor, f _{HVATS} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	1.000	1.000
Grade adjustment factor ¹ , f _{gATS} (Exhibit 15-9)	1.00	1.00
Demand flow rate ² , v_j (pc/h) $v_j = V_j / (PHF* f_{g,ATS}* f_{HV,ATS})$	1253	1258
Free-Flow Speed from Field Measurement	Estimated F	ree-Flow Speed
Mean speed of sample ³ , S _{FM} Tolal demand flow rate, both directions, v Free-flow speed, FFS=S _{FM} +0.00776(v/ f _{HV,ATS}) Adj. for no-passing zones, f _{np,ATS} (Exhibit 15-15) 1.0 ml/h	Adj. for lane and shoulder width, ⁴ f _{LS} (Exhibit 1 Adj. for access points ⁴ , f _A (Exhibit 15-8) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Average travel speed, ATS _d =FFS-0.00776(v _{d,4} Percent free flow speed, PFFS	1.5 m 53.5 .
Percent Time-Spent-Following	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for Irucks, E _T (Exhibit 15-18 or 15-19)	1.0	1.0
Passenger-car equivalents for RVs, E _R (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, f_{HV} =1/(1+ $P_{T}(E_{T}$ -1)+ $P_{R}(E_{R}$ -1))	1.000	1.000
Grade adjustment factor ¹ , f _{g,PTSF} (Exhibit 15-16 or Ex 15-17)	1.00	1.00
Directionat flow rate ² , v _x (pc/h) v ₁ =V ₂ (PHF*f _{HV,PTSF} * f _{g,PTSF})	1253	1258
Base percent time-spent-following ⁴ , BPTSF _d (%)=100(1-e ^{av} d ^b)		86.0
Adj. for no-passing zone, f _{np.PTSF} (Exhibit 15-21)		11.6
Percent time-spent-following, PTSF _d (%)=BPTSF _d +f _{np,PTSF} *($v_{d,PTSF} / v_{d,PTSF} + v_{o,PTSF}$)		91.8
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3) Volume to capacity ratio, v/c		E 0.74
Capacity, C _{d,ATS} (Equation 15-12) pc/h		1700
Capacily, C _{d,PTSF} (Equation 15-13) pc/h		1700
Percent Free-Flow Speed PFFS _d (Equation 15-11 - Class III only) Bicycle Level of Service		61.8
Directional demand flow rate in outside lane, v _{OL} (Eq. 15-24) veh/h	1	253.0
Effective widih, Wv (Eq. 15-29) ft	3	2.00
Effective speed factor, S ₁ (Eq. 15-30)		4.79
Bicycle level of service score, BLOS (Eq. 15-31) Bicycle level of service (Exhibit 15-4) Notes		B

6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.

Copyright © 2013 University of Florida, All Rights Reserved

Segment Level of Service

(

Whitlock & Weinberger Transportation, Inc.

*Only fill in cells that are high Street Seament	Project Number Max Speed (35 mph)	Growth Rate Factor (1.0) Direction	AM Feak Hour Vol. PM Peak Hour Vol. AM Approved Vol.	PM Approved Vol. AM Project Vol. PM Project Vol. Number of Lanes (1)
*Only Street	Projection 1	Grow Direc	PM P AM P AM A	PM A AM P PM P Numb

E Marine P.		Criteria	Class III	greater or	equal to	30	24	18	14	10	0
To: Itas, Amigas, Rd		ບັ	Cla	TOS		A	B	υ	D	ម	ኋ
To:Mas											
121			58888888888	SB		60				adalla adalara	
DuhigRd From SR [12-121]	NAX085	200 B 201 B	105	NB		22123		and the second		3	

ss III	greater or	equal to	30	24	18	14	10	0	
Class	SOI		A	B	υ	D	ы	н	

 RG
 Dunug

1	
10101	
. 02 .	
From	

Duhig Rd			From	m: SR 12-121	12-12	1		To: I	A Sec	To: Las Amigas Rd	s Rd				
	Max.	Speed			B					SB			Average	Average of Both Directions	rectione
Scenario	Speed	V/C=1	Vol.	Cap.	V/C	V/C Speed	LOS	Vol. Cap.	Cap.	VC	VC Speed LOS	LOS	Speed	ros	Vol.
Existing Conditions												T			
P.M. Peak Hour	35	10	53	900	0.02 35		A	60	900	0.07	900 0.07 35 A	A	35	A	82
Future Conditions															
P.M. Peak Hour	35	10	23.1	900	0.03 35		A	63	006	0.07	900 0.07 35 A	A	35	¥	86.1
Future plus Project Conditions	suo														
P.M. Peak Hour	35	10	26.1	906	0.03 35		A	64	900	0.07	900 0.07 35 A	A	35	A	90.1

Segment LOS

Whitlock & Weinberger Transportation, Inc. Segment Level of Service

(

0
2
-5
.2
5
01
are
a
P
a
1
5
cells
Ø
ũ
in
-2
fill
-
5
2
0
*

01.0		14	1993	633	1924	-100	场现	233	1988	新家	15.25	
Street	Segment	Project Number	Max Speed (35 mph)	Growth Rate Factor (1.0)	Direction	AM Peak Hour Vol.	PM Peak Hour Vol.	AM Approved Vol.	PM Approved Vol.	AM Project Vol.	PM Project Vol.	Number of Lanes (1)

	To: Las Amigas Rd		Criteria	Class III	LOS greater of	equal to	A 30	B 24	C 18	D 14	E 10	F 0
ighlighted. Cuitings Wharf Rd	From: SR 12-121 To: Las	VAX085	10.00 35		NB		127					

riteria	ss III	greater or	equal to	30	24	18	14	10	0
Ğ	Class	ros		A	В	υ	D	щ	ц

P
2
4
lar
M
SS
ttin
Cul

To: Las Amigas Rd	SB
12-121	B

Cuttings Wharf Rd	Rd		From	I: SR	From: SR 12-121	21		To: Las Amigas Rd	Las A	uniga	is Rd				
	Max.	Speed			RB					0 00					
Scenario	Speed	V/C=1	Vol	Vol. Can	J/V	V/C Sneed I OS Vici Con	100	1.01	2				Average	Average of Both Directions	rections
Fricting Conditions				-		apodo.		10.1	Cap.	- 1	VC speed LUS	FON	Speed	LOS	Vol.
SHOHINING SHIPPING															
P.M. Peak Hour	35	10	127	900	900 0.14 35	35	A	85	000	85 900 0.00 35	35	<	30		
Future Conditions								3		20.0	2	4	cc	A	212
P.M. Peak Hour	35	10	146.05	006	0.16	6.05 900 0.16 35 A	A	97.75 900 0.11 35	000	0 11	35	×	76		
Future plus Project Conditions	ons								22	11.0	2	4	3	A	245.8
P.M. Peak Hour	35	10	148.05	8.05 900	0.16	0.16 35 A	A	97.75 900 0.11 35	006	0.11	35	٩	35	<	0 376
											2		20		1410

Segment LOS

11/21/2014

 \sim

Winery Traffic Information / T	rip Generation	Sheet	_
Project Name: Bouchaine Vineyards P Traffic during a Typical Weekday	roject Scenario: Exi	sting Conditions	
Number of FT employees: <u>12</u> x 3.05 one-way trips per employee	e =		dally trips.
Number of PT employees:3 x 1.90 one-way trips per employe	e =	6	daily trips.
Average number of weekday visitors:25/ 2.6 visitors per vehicle x 2	2 one-way trips =	19	daily trips.
Gallons of production: / 1,000 x .009 truck trips daily ³ x 2 one	way trips =	2	daily trips.
	Total =	64	daily trips.
(Ne of FT employees) + (Ne of PT employees/2) + (sum of visitor and truck t	rips x .38) =	21	PM peak trips.
Traffic during a Typical Saturday			
Number of FT employees (on Saturdays): 2x 3.05 one-way tri	os per employee 😑	6	daily trips.
Number of PT employees (on Saturdays):3x 1.90 one-way tri	ps per employee =	6	daily trips.
Average number of Saturday visitors:90 /2. 8 visitors per vehicle x	2 one-way trips =		daily trips
	Total =	76	daily trips.
(№ of FT employees) + (№ of PT employees/2) + (visit	or <u>trips</u> x .57) =	40	PM peak trips.
ffic during a Crush Saturday			
Number of FT employees (during crush):6x 3.05 one-way trip	s per employee 😑	18	daily trips.
Number of PT employees (during crush):7x 1.90 one-way trip	s per employee 😑	13	daily trips.
\verage number of Saturday visitors:90/2. 8 visitors per vehicle x	2 one-way trips 😑	64	daily trips.
Sallons of production:129682 / 1,000 x .009 truck trips daily x 2 one-v	vay trips =	2	daily trips.
Ng. annual tons of grape on-haul:550 / 144 truck trips daily ⁴ x 2 d	one-way trips =		daily trips.
	Total =	105	daily trips.
_argest Marketing Event- Additional Traffic			
lumber of event staff (largest event):7x 2 one-way trips per s	taff person =		trips.
lumber of visitors (largest event): / 2.8 visitors per vehicle x 2 on	e-way trips 🛛 🛱	107	trips.
lumber of special event truck trips (largest event):4	one-way trips 🛛 🛱	8	trips.

Assumes 1.47 materials & supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see *Traffic Information heet Addendum* for reference).

Assumes 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).

Winery Traffic Information / Trip Genera	ation Shee	et	
Project Name: Bouchaine Vineyards Project Scenar Traffic during a Typical Weekday	rio: Proposed	Conditions	
Number of FT employees: 16 x 3.05 one-way trips per employee	12	49	dally trips
Number of PT employees:5 x 1.90 one-way trips per employee	=	10	daily trips
Average number of weekday visitors:60/ 2.6 visitors per vehicle x 2 one-way trips	=	46	daily trips
Gallons of production:/ 1,000 x .009 truck trips daily ³ x 2 one-way trips	=	4	dally trips
Total	=	109	daily trips.
(Nº of FT employees) + (Nº of PT employees/2) + (sum of visitor and truck <u>trips</u> x .38)	=	38	PM peak trips.
Traffic during a Typical Saturday			
Number of FT employees (on Saturdays):3 x 3.05 one-way trips per employee	e	9	daily trips.
Number of PT employees (on Saturdays):5 x 1.90 one-way trips per employee) =	10	daily trips.
Average number of Saturday visitors:/2. 8 visitors per vehicle x 2 one-way trips	=	111	daily trip
Total	=	130	daily trips.
(Nº of FT employees) + (Nº of PT employees/2) + (visitor <u>trips</u> x .57)	=	69	PM peak trips.
ffic during a Crush Saturday			
Number of FT employees (during crush):4 x 3.05 one-way trips per employee		12	daily trips.
Number of PT employees (during crush):7x 1.90 one-way trips per employee	±	13	daily trips.
Average number of Saturday visitors:155/2. 8 visitors per vehicle x 2 one-way trips	=	111	daily trips
Gallons of production:225000 / 1,000 x .009 truck trips daily x 2 one-way trips	=	4	daily trips.
Avg. annual tons of grape on-haul: 1100/ 144 truck trips daily ⁴ x 2 one-way trips	=	15	daily trips.
Total	.	155	daily trips.
Largest Marketing Event- Additional Traffic			
Number of event staff (largest event):5 x 2 one-way trips per staff person	=	10	trips.
Number of visitors (largest event): 80/ 2.8 visitors per vehicle x 2 one-way trips	=		trips.
Number of special event truck trips (largest event): <u>3</u> x 2 one-way trips	=	6	trips.

2

¹ Assumes 1.47 materials & supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see *Traffic Information Sheet Addendum* for reference). ¹ Assumes 4 tons per trip / 36 crush days per year (see *Traffic Information Sheet Addendum* for reference).

2,000 V 1 Note: Proposed ADT >20 shall be subject to install a left turn lane for Roadway ADT > 7,500. Left Turn Lane Required Napa County Left Turn Lane Warrant Graph 1,500 1,000 500 No Left Turn Lane Required 0 300 250 200 150 100 50 0

(

EXHIBIT B

Winery Traffic Information / Trip Generation Sheet Sleeping Giant Winery

5.67

3.05

7.60

5.71

18.25

6.25

3.05

5.70

daily trips.

daily trips.

_daily trips.

_daily trips.

daily trips.

PM peak trips.

daily trips.

____daily trips.

daily trips.

PM peak trips.

_ daily trips.

daily trips.

daily trips.

daily trips.

daily trips.

daily trips.

trips.

trips.

trips.

5.71 daily trips.

0.54

2.5

17.50

4.00

35.71

2.00

Winery Traffic Information / Trip Generation Sheet

Traffic during a Typical Weekday 9.15 Number of FT employees: ______ X 3.05 one-way trips per employee = 3.80 Number of PT employees: ______ x 1.90 one-way trips per employee = 3.85 Average number of weekday visitors: ______5_/2.6 visitors per vehicle x 2 one-way trips 0.54 Gallons of production: ______ 30,000 / 1,000 x .009 truck trips daily³ x 2 one-way trips 17.34 Total (N₂ of FT employees) + (N₂ of PT employees/2) + (sum of visitor and truck trips x .38) Traffic during a Typical Saturday Number of FT employees (on Saturdays): ______ x 3.05 one-way trips per employee = Number of PT employees (on Saturdays): ______ 4 ____x 1.90 one-way trips per employee = Average number of Saturday visitors: ______8 / 2. 8 visitors per vehicle x 2 one-way trips = Total = (Nº of FT employees) + (Nº of PT employees/2) + (visitor trips x .57) = Traffic during a Crush Saturday Number of FT employees (during crush): <u>1</u> x 3.05 one-way trips per employee = Number of PT employees (during crush): ______3 x 1.90 one-way trips per employee = Average number of Saturday visitors: ______8 / 2. 8 visitors per vehicle x 2 one-way trips = Gallons of production: ______ 30,000 / 1,000 x .009 truck trips daily x 2 one-way trips = Avg. annual tons of grape on-haul: ______ 182 / 144 truck trips daily 4 x 2 one-way trips = Ξ Total Largest Marketing Event- Additional Traffic 2 x 2 one-way trips per staff person Number of event staff (largest event): _____ Number of visitors (largest event): ______ 50 / 2.8 visitors per vehicle x 2 one-way trips Number of special event truck trips (largest event): ______ x 2 one-way trips

⁴ Assumes 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).

Page 15 of 29

³ Assumes 1.47 materials & supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).

EXHIBIT C

CMP Level of Service Criteria for Arterials Based on Volume-to-Capacity Ratios

Appendix B-Traffic Level of Service Calculation Methods

Table B-5 CMP Level of Service Criteria for Arterials^a Based on Volume-to-Capacity Ratios

Level of Service	Description	V/C⁵				
	······································					
A	Free-flow conditions with unimpeded maneuverability. Stopped delay at signalized intersection is minimal.	0.00 to 0.60				
В	Reasonably unimpeded operations with slightly restricted maneuverability. Stopped delays are not bothersome.	0.61 to 0.70				
С	Stable operations with somewhat more restrictions in making mid-block lane changes than LOS B. Motorists will experience appreciable tension while driving.	0.71 to 0.80				
D	Approaching unstable operations where small increases in volume produce substantial increases in delay and decreases in speed.	0.81 to 0.90				
E	Operations with significant intersection approach delays and low average speeds.	0.91 to 1.00				
F	Operations with extremely low speeds caused by intersection congestion, high delay, and adverse signal progression.	Greater Than 1.00				
	For alternais that are multilane divided of undivided with some parking, a signalized intersec-					
	nsity of four to eight per mile, and moderate roadside development e-to-capacity ratio.					
≥ greater						

< less than.

Source: Transportation Research Board, *Highway Capacity Manual, Special Report 209* (Washington, D.C., 1994).

B-8

EXHIBIT D

Left-Turn Lane Letter from County of Napa

A Tradition of Stewardship A Commitment to Service

Department of Public Works

1195 Third Street, Suite 101 Napa, CA 94559-3092 www.countyofnapa.org/publicworks

> Main: (707) 253-4351 Fax: (707) 253-4627

> > Steven Lederer Director

MEMORANDUM

То:	PBES Staff		Rick Marshall Deputy Director of Public Works
Date:	September 9, 2015	Re: S	leeping Giant Winery 15-00284

Thank you for the opportunity to review the subject permit application. I offer the following comments from the Department of Public Works:

Left-Turn Lane not required. The project as proposed does not require the installation of a left-turn lane on Las Amigas Road at the project access driveway.

Encroachment Permit required. The plans indicate a new driveway connection to Las Amigas Road, a County-maintained road. An encroachment permit will be required during the building permit phase. Please contact the Roads office at (707) 944-0196 to initiate the encroachment permit process.

More information on these is available at our website: <u>http://www.countyofnapa.org/publicworks/roads/</u>

Please contact me at <u>Rick.Marshall@countyofnapa.org</u> or call (707) 259-8381 if you have questions or need additional information.