FARELLA BRAUN+MARTEL LLP

Attorneys At Law

899 Adams Street / Suite G St Helena / CA 94574

T 707.967.4000 / F 707.967.4009 www.fbm.com KATHERINE PHILIPPAKIS kp@fbm.com D 707.967.4154

March 4, 2013

Via U.S. Mail and email to charlene.gallina@countyofnapa.org

Charlene Gallina Supervising Planner Napa County Conservation, Development & Planning Department 1195 Third Street, Room 210 Napa CA 94559-3092

Re: Coquerel Winery Traffic Analysis (APN 017-160-058, 3180 State Highway 128)

Dear Charlene:

Enclosed please find the updated traffic analysis prepared by Omni Means in response to the comments received on our use permit application, which is the last remaining item needed in response to your September 9, 2012 completeness determination. Additionally, in the course of working with Omni Means on the analysis, it came to our attention that the Application Statement we prepared for the use permit submittal states that there will be 4 full-time and 5 part-time employees present on the site. Please note that these numbers are somewhat misleading, as they represent employee numbers only during harvest and thus are maximum employee numbers. For day-to-day operations throughout the rest of the year, the employee numbers will be 4 full-time and 3 part-time. Please amend our application submittal accordingly.

We appreciate your work with us on this project, and we look forward to our continued

Charlene Gallina March 4, 2013 Page 2

work together as we finalize the package for a May 15th hearing date.

Kind regards,

Kathevine Philippakis/rs

Katherine Philippakis

Enclosure

cc: Clay and Brenda Cockerell Rob Tuma (letter only) Ilene Dick, Esq.

UPDATED TRAFFIC STUDY FOR THE PROPOSED

COQUEREL WINERY PROJECT Napa County, CA

March 1, 2013

Prepared by: Omni-Means, Ltd. Engineers & Planners 1901 Olympic Blvd., Suite 120 Walnut Creek, CA 94596

R1597TIA002 / 35-3062-01

March 1, 2013

Ms. Ilene Dick, Counsel Farella Braun Martell Russ Building 245 Montgomery Street San Francisco, CA 94104

Subject: Updated Traffic Analysis for a Proposed Coquerel Winery - Located at #3180 on State Route 128 in Napa County.

Dear Ms. Dick:

This report presents a focused traffic analysis for the proposed Coquerel Winery on State Route 128 in Napa County (see Figure 1 for project vicinity map). This report reflects the updated use permit application and comments received on the prior traffic analysis submitted in June, 2012.

The project was calculated to generate 36-40 daily trips and 9-15 peak hour trips during typical weeks of the year. Traffic conditions at the study intersections of SR 128/Winery Access and SR 128/Tubbs Lane would remain satisfactory (Level of Service 'A-B') with short vehicle delays (under 15 seconds) for near term conditions. The project trips would add minimally (about 1%) to daily traffic flows on SR 128 in the project vicinity. The combination of traffic volumes on SR 128 and traffic volumes in/out of the proposed winery would not warrant a left turn lane on SR 128 based on Caltrans standards or Napa County standards. Volumes would also be well below the thresholds at which a right-turn lane would be needed.

Traffic operations were analyzed for cumulative (Year 2030) conditions. Based on the transportation model's forecast volumes on SR 128, operations along the entire SR 128 corridor would be affected. However, historical volume data on SR 128 indicates a substantially smaller rate of growth. Additional measures implemented by the County, including vehicle trip reduction strategies and roadway improvement funding mechanisms, may further enhance actual long term conditions.

Sight distances at the project driveway would exceed the recommended distances. According to the submitted site plan, the access driveway would meet the County standards for width. We do note that the width at SR 128 should accommodate inbound and outbound truck turn paths.

I trust that this report responds to your needs. Please review this information and call me with any questions or comments.

Sincerely,

Seorge Nichelson

George W. Nickelson, P.E. OMNI-MEANS, Ltd. Engineers & Planners rt / R1597TIA002 / 35-3062-01

1. EXISTING TRAFFIC CONDITIONS

Site Location

The proposed Coquerel Winery would be located on the east side of State Route 128 north of the town of Calistoga in Napa County. Specifically, the property access driveway intersects State Route 128 (SR 128) approximately 1,000 feet north of Tubbs Lane. SR 128 is a primary north-south route through Napa County. Near the project site access SR 128 is a straight, flat, two-lane rural road with unpaved shoulders. Tubbs Lane is a two lane rural road oriented in an east-west direction across the valley connecting SR 128 with SR 29.

Existing Traffic Operations

Traffic conditions are measured by Level of Service (LOS), which applies a letter ranking to successive levels of intersection performance. LOS 'A' represents optimum conditions with free-flow travel and no congestion. LOS 'F' represents severe congestion with long delays at the approaches. For intersections with minor street stop control, the LOS reflects the delays experienced by the minor street approach. (LOS definitions and calculation worksheets are provided in the Appendix.)

Based on Caltrans records, SR 128 north of Tubbs Lane has a current average annual daily traffic volume of 2,900 vehicles and a peak month daily volume of 3,250 vehicles.⁽¹⁾ The peak month daily volumes are well within the carrying capacity of a rural two lane highway and indicative of Level-of-Service 'A' conditions (less than 12,000 daily vehicles).

In order to identify peak hour conditions, traffic counts were conducted at the SR 128/existing property access driveway intersection and the SR 128/Tubbs Lane intersection during a weekday PM commute period and a Saturday afternoon.⁽²⁾ Based on Caltran's daily volumes, the peak month volumes (summer season) are approximately 12% higher than average month volumes. The peak hour counts for this study were conducted in April, 2012. Therefore, the count volumes were increased 12% for the analysis as a conservative measure to reflect peak summer season conditions. (Existing volumes are shown in Figure 3).

The existing project site traffic activity is very low. There are no regularly occupied dwellings onsite and there were no vehicle trips counted in or out of the project property during the traffic counts. With no vehicle trips, the intersection operates at LOS 'A' with zero seconds of delay.

The SR 128/Tubbs Lane intersection consists of a single lane stopped approach on Tubbs Lane and a separate left-turn lane on the southbound SR 128 approach. The Tubbs Lane approach operates at LOS 'B' during weekday and Saturday peak hours (with 12.8 and 14.3 seconds of delay, respectively). The SR 128 southbound left turn operates at LOS 'A' (8.2 seconds weekday and 8.0 seconds Saturday). The intersection operates very efficiently with minimal delays and little to no vehicle queuing.

The existing SR 128/Tubbs Lane volumes were applied to California Manual on Uniform Traffic Control Devices (CAMUTCD) peak hour signal warrants.⁽³⁾ The peak hour warrants are one of several standards to help determine if installation of a traffic signal is appropriate. Qualifying for signalization using the peak hour warrants does not necessarily mean signals should be installed. The SR 128/Tubbs Lane intersection does not qualify for signalization under the peak hour warrants using existing volumes. (The warrant graphs are provided in the Appendix).

	Weekday PM Peak Hour	Saturday Afternoon Peak Hour
Intersection	Existing LOS Delay	Existing LOS Delay
1. SR 128 / Winery Driveway Driveway westbound approach SR 128 southbound approach	A 0.0" A 0.0"	A 0.0" A 0.0"
2. SR 128 / Tubbs Lane Tubbs Ln. westbound approach SR 128 southbound left turn	B 12.8" A 8.2"	A 14.3" A 8.0"

TABLE 1 EXISTING LEVEL OF SERVICE (LOS) AND SECONDS OF DELAY

2. PROPOSED PROJECT

Project Description

The proposed winery operations, developed in two phases, are summarized as follows:

- 75,000 gallons of annual production (approximately 31,500 cases);
- Employees:

Phase I = 2 employees during non-harvest,

= 4 employees during harvest.

Phase II = 7 employees during non-harvest,

= 9 employees during harvest.

- Up to 25 daily visitors by appointment only;
- Hospitality and Events:

15-20 people with a meal = 1 per week; 50 people with a meal = 12 per year; 100 people = 1 per year; 200 people = 2 per year;

• 18 parking spaces, plus bicycle parking racks.

The proposed project would involve a new winery with a maximum annual production of 75,000 gallons (31,513 cases).⁽⁴⁾ About 13% of the fruit (10,000 gallons of production) would be harvested on-site and the remaining 87% would be delivered from other County vineyards. Visitors (by appointment only) are expected with up to 25 persons on a typical weekday, Saturday, or Sunday. Employment is expected to be seven persons on site after buildout of Phase II. There would be a total of nine employees on site during the harvest season. The facility would include eight offices with a lab and tasting room. Two of the offices would be reserved for use by the winery owners who visit the site infrequently and would not generate employee trips as might otherwise be expected. Table 2 outlines the winery's calculated traffic generation after Phase II for a typical weekday, a typical Saturday, and a Saturday during the harvest season.

Project Trip Generation/Distribution

The traffic generated by the proposed project after Phase II buildout has been calculated in Table 2. On a typical weekday 40 daily trips and 15 peak hour trips (4 in, 11 out) would be expected. On a typical Saturday 36 daily trips and 9 peak hour trips (4 in, 5 out) would be expected and on weekdays 36 daily trips would be expected. During harvest season, 45 daily trips and 11 peak hour trips (5 in, 6 out) would be expected.

The trips were distributed at the project driveway onto SR 128 with 80% to/from the south and 20% to/from the north (based on the existing Tubbs Lane intersection distribution). The project trips are shown in Figure 2.

Napa County Significance Criteria

The County of Napa's significance criteria has been based on a review of the Napa County Transportation & Planning Agency and Napa County General Plan documentation on roadway and intersection operations. Specifically, the Circulation Element of the County's General Plan outlines the following significance criteria specific to intersection operation:

Intersections:

• The County shall seek to maintain a Level of Service D or better at all intersections, except where the level of service already exceeds this standard (i.e. Level of Service E or F) and where increased intersection capacity is not feasible without substantial additional right-of-way.

No single level of service standard is appropriate for un-signalized intersections, which shall be evaluated on a case-by-case basis to determine if signal warrants are met.

Further significance criteria are based on County and CEQA guidelines and apply mainly to intersection operation and access. A significant impact occurs if project traffic would result in the following:

- Cause an increase in traffic which is substantial in relation to existing traffic load and capacity of the street system (i.e. result in a substantial increase in either the number of vehicle trips, the volume capacity ratio on roads, or congestion at intersections);
- Exceed either individually or cumulatively, an LOS standard established by the county congestion management agency for designated roads or highways;
- Result in a change of traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks;
- Substantially increase hazards due to a design feature (e.g. sharp curves or dangerous intersections) or incompatible uses (e.g. farm equipment);
- Result in inadequate emergency vehicle access;
- Project site or internal circulation on the site is not adequate to accommodate pedestrians and bicycles.

TABLE 2 DAILY TRIP GENERATION WITH THE **PROPOSED COQUEREL WINERY** 75,000 GALLONS ANNUAL PRODUCTION

- --

<u>Typical weekday Daily Traffic</u> :	
25 visitors/2.6 per vehicle x 2 one-way trips	= 20 daily trips
4 full-time employees x 3.05 one-way trips per employee	= 12 daily trips
3 part-time employees x 1.90 one-way trips per employee	= 6 daily trips
2 truck trips (75,000 gls/1,000 x .009 x 2 o-w trips)	= 2 daily trips
	40 daily trips
Typical Weekday PM Peak Hour Traffic:	v
(20 daily visitor trips + 2 daily truck trips) x 0.38	= 8 peak hour trips
7 employees	= 7 peak hour trips
I J I	$\overline{15 \text{ trips } (4 \text{ in, } 11 \text{ out})}$
	r (,,) ,) ,)
Typical Saturday Daily Traffic:	
$\frac{1}{25}$ visitors/2.8 per vehicle x 2 one-way trips	= 18 daily trips
4 full-time employees x 3.05 one-way trips per employee	= 12 daily trips
3 part-time employees x 1.90 one-way trips per employee	= 6 daily trips
5 part time employees x 1.90 one way unps per employee	<u>36 daily trips</u>
Typical Saturday Peak Hour Traffic	so dany trips
26 daily Saturday tring x 25%	- 0 tring (4 in 5 out)
50 daily Saturday trips x 25%	= 9 trips (4 m, 5 out)
Della Setander Traces Dereita - Hermant Second (Conseles)	
Daily Saturday Trailic During Harvest Season (o weeks):	10 doile tains
25 visitors/2.8 per venicle x 2 one-way trips	= 18 daily trips
4 ruit-time employees x 3.05 one-way trips per employee	= 12 daily trips
5 part-time employees x 1.90 one-way trips per employee	= 10 daily trips
2 truck trips (75,000 gls./1,000 x .009 x 2 o-w trips)	= 2 daily trips
75,000 glns. x 1.52 trips per 1,000 glns. / 36 days	= 3 daily trips
	45 daily trips
<u>Peak Hour Saturday Traffic During Harvest Season:</u>	
45 daily trips x 25%	= 11 trips (5 in, 6 out)

Production, visitor, and employee data provided by Ms. Ilene Dick, (project representative) and Use Permit Application. Trip equations for daily and weekday peak hour derived from Napa County, Conservation, Planning, & Development Department, "Use Permit Application Package", Napa County Winery Traffic Generation Characteristics, 2012. Trip equation for weekend peak hour based on conservative assumption that 25% of daily trips occur in peak hour. Truck trips calculation conservatively assumes 100% offsite grapes.

3. EXISTING PLUS PROJECT TRAFFIC CONDITIONS

Existing Plus Project Operating Conditions

The project would be expected to add approximately 29-32 daily trips south of the site and 7-8 daily trips north of the site. The project would add one percent or less to the daily volumes on SR 128 near the site. The existing plus project volume of 3,282 daily trips would remain well within the capacity of a two lane rural road with conditions equivalent to LOS 'A'.

The peak hour intersection levels of service were evaluated. LOS with the project are shown in Table 2. At the SR 128/winery driveway intersection, the outbound driveway approach would function at LOS 'A' (9-10 seconds of delay weekdays and weekends) and the southbound SR 128 left turn into the winery would function at LOS 'A' (less than one second of delay).

At the SR 128/Tubbs Lane intersection, the westbound approach would operate at LOS 'B' (with 13.0 seconds of delay weekdays and 14.5 seconds of delay weekends) and the southbound SR 128 left turn movement would operate at LOS 'A' (with eight seconds of delay) during the weekday and weekend peak hours. At this intersection, conditions would be essentially unchanged from existing conditions, with delays increasing less than one second at the approaches. The existing plus project volumes are shown in Figure 3.

The SR 128/Tubbs Lane volumes were compared to peak hour volume warrants for installing traffic signals. The intersection volumes would remain below the threshold for signalization (warrant graphs are provided in the Appendix).

	Weekday PN	I Peak Hour	Saturday Peak	Afternoon Hour
Intersection	Existing <u>LOS</u> <u>Delay</u>	Existing +Project <u>LOS</u> Delay	Existing <u>LOS</u> <u>Delay</u>	Existing +Project <u>LOS</u> Delay
SR 128 / Winery Driveway Driveway westbound approach SR 128 southbound approach	A 0.0" A 0.0"	A 10.0" A 0.1"	A 0.0" A 0.0"	A 9.8" A 0.1"
SR 128 / Tubbs Lane Tubbs Ln. westbound approach SR 128 southbound left turn	B 12.8" A 8.2"	B 13.0" A 8.2"	B 14.3" A 8.0"	B 14.5" A 8.0"

TABLE 3 EXISTING AND EXISTING + PROJECT PEAK HOUR INTERSECTION OPERATIONS LEVEL OF SERVICE (LOS) AND SECONDS OF DELAY

The winery driveway would serve all employee, delivery, and visitor trips. The site's driveway intersects SR 128 at a point where no left turn lane exists. The winery access intersection was evaluated for a potential left turn lane on SR 128 based on Caltrans design guidelines.⁽⁵⁾ Peak hour traffic volumes are utilized by comparing the advancing and opposing SR 128 volumes with the percentage of left turning vehicles into

comparing the advancing and opposing SR 128 volumes with the percentage of left turning vehicles into the access driveway. The volumes associated with the project conditions are well below the Caltrans minimum thresholds. Therefore a left turn lane would not be warranted based on the Caltrans guidelines (left turn lane warrant graphs are provided in the Appendix).

Left turn lane warrants based on County of Napa standards were also evaluated.⁽⁶⁾ The Napa County standards utilize daily traffic volumes on the major road and access driveway. Using the conservatively high peak month daily volume on SR 128, the proposed project volumes would be below the Napa County thresholds for a left turn lane (warrant graphs are provided in the Appendix). When the average month daily volume on SR 128 is applied, the project volumes are further below the threshold levels. Therefore a left turn lane would not be warranted based on the County standards.

The projected right turn volumes at the site driveway are also well below minimum thresholds at which right turn lanes would be required (right turn lane warrant graphs are included in the Appendix.)⁽⁷⁾

4. NEAR TERM CONDITIONS

Approved Developments

Near term conditions reflect existing volumes plus any additional volumes expected to be generated by approved developments within the project study area. Approved developments include structures that are built but not fully occupied or are not yet built but are expected to be within the near term future.

The County of Napa and City of Calistoga planning departments each provided a list of approved developments.^(8, 9) The vehicle trips for these developments were taken from traffic studies when available or generated based on the type of development and distributed onto the street network. The County identified fifteen developments (all wineries). Seventeen developments within the City of Calistoga were reviewed (including traffic studies of two pending resort developments). (A list of the developments that have calculated trips on SR 128 is provided in the Appendix.)

Near Term Operating Conditions

The approved developments were calculated to generate 142 daily trips on SR 128. Added to the existing volume of 3,250 daily trips results in 3,392 daily trips on Tubbs Lane for near term conditions. It is noted that the approved development volumes are likely conservatively high since they assume all trips are new trips when it is reasonable to assume a portion of the trips are shared trips with other wineries in the area. SR 128 would continue to function at LOS 'A' conditions.

The ratio of peak hour trips to daily trips for the proposed project was applied to the approved development daily volume to obtain near term peak hour volumes. The volumes are shown in Figure 4. The approved developments would add approximately 54 weekday and 36 weekend peak hour trips to SR 128. For near term conditions, the SR 128/Winery Access intersection would operate at LOS 'A' (zero seconds delay with no turning volumes) during the weekday and weekend peak hours. The SR 128/Tubbs Lane intersection westbound approach would operate at LOS 'B' (14.6" delay) during the weekday peak hour and LOS 'C' (16.3" delay) during the weekend peak hour. The SR 128 southbound left turn movement would operate at LOS 'A' (8" delay) during the weekday and weekend peak hours. (LOS are shown in Table 4.)

Near Term Plus Project Operating Conditions

With the project's 36-40 new daily trips distributed onto SR 128 and added to the near term volume of 3,392 daily trips, the near term plus project volume on SR 128 south of the winery would be 3,421-3,424 daily trips. The project traffic would add 1% to the near term daily volumes on SR 128. SR 128 would continue to function at an acceptable level, operating at LOS 'A' (less than 12,000 daily trips).

The peak hour intersection operating conditions were evaluated for near term plus project conditions and are shown in Table 4. During the weekday peak hour, the Winery Access westbound approach would operate at LOS 'B' (10.3 seconds delay) and the SR 128 southbound approach would operate at LOS 'A' (delay remaining less than 1 second). During the weekend peak hour, the Winery Access approach would operate at LOS 'A' (10 seconds delay) and the SR 128 southbound approach would operate at LOS 'A' (less than 1 second delay). At the SR 128/Tubbs Lane intersection, LOS would remain unchanged with the project and delay increases would be less than one second). The westbound Tubbs Lane approach would continue to operate at LOS 'B' during the weekday peak hour and LOS 'C' during the weekend peak hour. The SR 128 southbound left turn would continue to operate at LOS 'A' during both peak hours. Based on the volumes, vehicle queuing at the project access intersection would be expected to be minimal. The near term plus project volumes are shown in Figure 4.

The SR 128/Tubbs Lane volumes were compared to peak hour volume warrants for installing traffic signals. The intersection volumes would remain below the threshold for signalization (warrant graphs are provided in the Appendix).

Turn Lane Warrants (Near Term and Near Term Plus Project Conditions)

The near term and near term plus project volumes were compared with the Caltrans and Napa County guidelines for installing a left turn lane in Tubbs Lane. (The warrant graphs for weekday and Saturday conditions are provided in the Appendix.) Under near term conditions with no trips on the access driveway, a left turn lane would not be warranted. With added project traffic of 36-40 trips on the winery access road, the intersection would remain below the Caltrans and Napa County warrants for installation of a left turn lane. The projected right turn volumes at the site driveway would remain well below minimum thresholds at which right turn lanes (deceleration and acceleration) would be required (right turn lane warrant graphs are included in the Appendix.)

TABLE 4 NEAR TERM AND NEAR TERM + PROJECT PEAK HOUR INTERSECTION OPERATIONS LEVEL OF SERVICE (LOS) AND SECONDS OF DELAY

	Weekday PM	I Peak Hour	Saturday Peak	Afternoon Hour
Intersection	Near Term <u>LOS</u> <u>Delay</u>	Near Term +Project <u>LOS</u> <u>Delay</u>	Near Term <u>LOS</u> <u>Delay</u>	Near Term +Project <u>LOS</u> Delay
SR 128 / Winery Driveway				
Driveway westbound approach	A 0.0"	B 10.3"	A 0.0"	A 10.0"
SR 128 southbound approach	A 0.0"	A 0.1"	A 0.0"	A 0.1"
SR 128 / Tubbs Lane				
Tubbs Ln. westbound approach	B 14.6"	B 14.9"	C 16.3"	C 16.5"
SR 128 southbound left turn	A 8.4"	A 8.4"	A 8.1"	A 8.1"

5. SITE ACCESS / DESIGN PARAMETERS

Sight Distances on SR 128

Vehicle sight distance at the SR 128/winery driveway intersection was evaluated. The required vehicle visibility or "corner sight distance" is a function of travel speeds on SR 128. Caltrans design standards indicate that for appropriate corner sight distance, "a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the cross road and the driver of an approaching vehicle in the right lane of the main highway". Caltrans design guidelines also indicate that at private access intersections the minimum corner sight distance "shall be equal to the stopping sight distance".

There is a posted speed limit of 45 mph on SR 128 at the project access. Radar speed surveys were also conducted as a part of this study which identified an 85th % speed (the speed at which 85% of all surveyed vehicles travel at or below) of 50 mph.⁽¹⁰⁾ Based on Caltrans' design standards, a stopping sight distance of about 430 feet is required along SR 128.⁽¹¹⁾ The winery access is located on a straight section of SR 128. Field observations indicate the sight distances from the driveway are approximately 2,000 feet to the north and 1,400 feet to the south, which substantially exceed the minimum standards.

Project Access and Circulation

A project site plan is shown in Figure 5. The project site plan indicates the driveway width would match the Napa County standard of 18 feet of pavement plus a 2-foot shoulder for two-way traffic flow.⁽¹²⁾ At its intersection with SR 128, the driveway design should also accommodate turn paths for inbound and outbound right-turns by trucks.

Napa County and the Napa County Transportation & Planning Agency (NCTPA) are developing bicycle routes as outlined in the Napa Countywide Bicycle Plan.⁽¹³⁾ The plan encourages new developments to incorporate bicycle friendly design. Some visitors may utilize bicycles to access the proposed project. The project proposes to provide bicycle racks for visitors to the winery.

Based on the provided site plan, the project would provide 18 striped parking spaces plus unstriped overflow areas to accommodate larger events. The winery's striped parking supply would meet the daily visitor demand. The unstriped areas would be expected to accommodate the special event demand.

Marketing Events

The winery would host events of various sizes. Events of 15-20 are planned once per week. Events with up to 50 people are planned once per month. Three larger events are planned per year (one with up to 100 people and two with up to 200 people).

The monthly events would likely be scheduled on non-peak days, and as such, would not generate daily trips beyond the maximum visitor traffic levels calculated in Table 1. It is also expected that events would be scheduled so that traffic flows would be outside the peak periods.

The winery's parking would be designed to meet peak visitor day demand and lesser event demand. For the largest events, valet parking would be employed to accommodate all visitor vehicles in striped spaces and other ancillary areas.

6. CUMULATIVE CONDITIONS

Cumulative Year 2030 Projections

Model Forecast

Forecasts for Cumulative (Year 2030) volumes on SR 128 were derived from the Napa County Transportation & Planning Agency's traffic model volume projections in the Napa County General Plan Update EIR.⁽¹⁴⁾ The increase in volume-to-capacity (v/c) ratio from Year 2003 to Year 2030 on SR 128 north of Tubbs Lane was applied to the provided Year 2003 peak hour two-way volume (337 trips) on SR 128, yielding a volume of 1,643 weekday PM peak hour trips on SR 128 in Year 2030.

In order to identify weekend cumulative conditions, the General Plan Update provides a ratio of weekday to weekend peak hour volumes on key streets within the valley. The closest street, Highway 29 near Tubbs Lane, had an average ratio of 1, indicating similar volumes during both peak hours. This corresponds with the volumes counted for this study which found weekend peak hour volumes nearly equal to the weekday volumes. Therefore the weekend conditions would be expected to be the same as the weekday conditions.

The projected cumulative volume represents an extremely large (five-fold) increase compared to the existing (Year 2012) peak hour volume of 254 trips. With the forecasted volumes, the existing daily volume on SR 128 would increase from 3,250 trips to 16,430 daily trips.

<u>Historical Data</u>

For comparison, a review of annual daily traffic volumes on SR 128 north of Tubbs Lane over the previous twenty years indicates the peak month ADT in year 1992 was 3,050 trips and is 3,250 in year 2011. The recent volume is 200 trips higher than the year 1992 counts. The volumes were highest in 2006, reaching 4,600 ADT. The daily volumes have declined since then and are lower today than they were in 1996. The increase in volumes between year 1992 and the highest year of 2006 (3,050 ADT vs. 4,600 ADT) equates to an annual increase of 3% per year. Applying the same annual increase to the recent ADT of 3,250 results in about 5,500 ADT in year 2030 (3% per year added for 18 years).

Cumulative volumes based on historical data are one-third of the model forecast volumes. Therefore it is unlikely volumes will increase to the model's forecasted levels (at least within the given timeframe). However, in keeping with the policies of the General Plan to proactively address potential traffic volumes under cumulative conditions, the County has adopted several measures identified in the General Plan to both improve the street network and reduce vehicle trips through public transit and Transportation Demand Management (TDM) strategies.

Cumulative Operating Conditions

Several improvements to the street network within the valley have been included in the model as part of the General Plan's Improved 2030 Network. The County has also adopted policies identified in the General Plan to reduce vehicle trips and promote alternative means of transportation: "The project should support programs to reduce single occupant vehicle use and encourage alternative travel modes."

• In keeping with the policy, the winery project will provide bicycle racks for visitors who may arrive by bike. The project should also promote the use of public transportation and carpooling of employees (by adjusting work schedules, etc.) to facilitate the use of other transportation modes.

In addition, the County has identified other mitigation policies, including development of a traffic impact fee (TIF) to be developed in cooperation with the NCTPA (Mitigation Measure 4.4.1C). This would require new projects to pay their "fair share" of countywide traffic improvements they contribute the need for. Examples of such improvements include construction of a two-way left turn lane on SR 128 or signalizing the SR 128/Tubbs Lane intersection. The concept is under development but presumably the fee would be applied on a "per trip" basis if/when implemented.

7. SUMMARY AND CONCLUSIONS

The proposed Coquerel Winery project was calculated to generate 36-40 new daily trips. The volumes would represent an increase of approximately one percent to existing and near term volumes on SR 128 near the project site. The highway would continue to operate at LOS 'A' conditions.

The study intersections would also operate at satisfactory levels-of-service with the proposed winery. The SR 128/Winery Access intersection operates at LOS 'A' under existing and near term peak hour conditions without the project and would operate at LOS 'A-B' with the added project trips (delays of approximately 10 seconds).

The SR 128/Tubbs Lane intersection operates at LOS 'A-B' under existing conditions (delays of 14 seconds or less) and would continue to do so with the added project trips (delays of 15 seconds or less). The intersection would operate at LOS 'B-C' under near term conditions without the project (delays of 16 seconds or less). LOS would remain unchanged with the added project trips (delays of 17 seconds or less).

The winery's volumes would not warrant a left turn lane on SR 128 based on Caltrans design standards or Napa County standards (using peak month or average month volumes). The volumes would also be below the thresholds at which right turn lanes would be needed.

Based on field observations, the available sight distance along SR 128 would be adequate. (The project's Civil Engineer should confirm the adequacy of sight distances along SR 128.)

The winery would be served by an 18-foot wide access road with 2-foot shoulders, which meets the Napa County standard. Therefore, the access road would reflect an adequate width to accommodate the projected traffic flows. At its intersection with SR 128, the design should accommodate turning paths for inbound and outbound trucks.

Cumulative (Year 2030) conditions were assessed using volume forecasts from the Napa County General Plan Update transportation model as well as historical volume data on SR 128. The model forecast volumes are substantially higher than historical volume growth over the past twenty years would indicate. Therefore it is unlikely volumes will increase to the model's forecasted levels.

However, the General Plan seeks to proactively address potential volume increases by implementing planned street improvements and reducing vehicle trips from proposed projects by encouraging alternative transportation modes. In keeping with the policy, the proposed project would provide bicycle racks for visitors who may ride bikes to the winery. The winery should also work with employees to reduce vehicle trips by providing public transit information and allow scheduling options to facilitate carpooling.

A traffic impact fee may be adopted by the County to fund the General Plan improvements or other projects. If a TIF program were enacted, the proposed project could contribute a "fair share" towards such future circulation improvements.

References:

- (1) Caltrans, 2010 Volumes on the California State Highway System, (on-line data base).
- (2) Omni-Means Engineers & Planners, traffic counts, speed surveys, and field measurements on April 20, 2012 (4-6 PM) & April 21, 2012 (1-3 PM).
- (3) Caltrans, <u>California Manual on Uniform Traffic Control Devices</u>, 2012 Edition.
- (4) Production, employee, and visitor data provided by Ms. Ilene Dick, project representative.
- (5) Caltrans, "Guidelines for Reconstruction of Intersections", August 1985.
- (6) Napa County, *Adopted Road and Street Standards*, revised August 31, 2004.
- (7) Transportation Research Board, National Cooperative Highway Research Program Report 279, "Intersection Channelization Design Guide", November, 1985.
- (8) Napa County, Planning Department, Ms. Charlene Gallina, February 7, 2013.
- (9) City of Calistoga, Planning Department, Mr. Erik Lundquist, January 28, 2013.
- (10) Omni-Means Engineers & Planners, ibid.
- (11) Caltrans, *Highway Design Manual Fifth Edition*, July 1, 2004.
- (12) Summit Engineering Inc., Coquerel Winery Overall Site Plan, February 23, 2012, 463 Aviation Blvd. #200, Santa Rosa, CA 95403.
- (13) Napa County, Countywide Bicycle Plan (2012), Planning Area-North Valley, May 2012.

APPENDIX

- Turn Lane Warrant Graphs
- Level of Service Definitions
- Level of Service Calculations
- Existing Volume Counts
- Peak Hour Signal Warrants

CALTRANS LEFT TURN LANE WARRANTS

Coquerel Winery Project

SR 128 / Winery Access Intersection

EXISTING + PROJECT WEEKDAY PM PEAK HOUR

 $V_A = 128$ L.T. % = 1/127 = 1% $V_o = 130$

LEFT TURN LANE NOT WARRANTED

Caltrans, "Guidelines for Reconstruction of Intersections", August 1985. Transportation Research Board, National Cooperative Highway Research Program Report 279, "Intersection Channelization Design Guide", November, 1985.

Coquerel Winery Project

SR 128 / Winery Access Intersection

EXISTING + PROJECT WEEKEND PEAK HOUR

V_A = 121 L.T. % = 1/120 = 1% V_o = 121

LEFT TURN LANE NOT WARRANTED

Caltrans, "Guidelines for Reconstruction of Intersections", August 1985. Transportation Research Board, National Cooperative Highway Research Program Report 279, "Intersection Channelization Design Guide", November, 1985.

CALTRANS LEFT TURN LANE WARRANTS

Coquerel Winery Project

SR 128 / Winery Access Intersection

NEAR TERM + PROJECT WEEKDAY PM PEAK HOUR

 $V_A = 155$ L.T. % = 1/154 = 1% $V_O = 157$

LEFT TURN LANE NOT WARRANTED

CALTRANS LEFT TURN LANE WARRANTS

Coquerel Winery Project

SR 128 / Winery Access Intersection

NEAR TERM + PROJECT WEEKEND PEAK HOUR

 $V_A = 138$ L.T. % = 1/137 = 1% $V_O = 140$

LEFT TURN LANE NOT WARRANTED

Caltrans, "Guidelines for Reconstruction of Intersections", August 1985. Transportation Research Board, National Cooperative Highway Research Program Report 279, "Intersection Channelization Design Guide", November, 1985.

Coquerel Winery Project: Weekday Existing + Project Conditions: Left Turn Lane Not Warranted

Coquerel Winery Project: Weekend Existing + Project Conditions: Left Turn Lane Not Warranted

Coquerel Winery Project: Weekday Near Term + Project Conditions: Left Turn Lane Not Warranted

Coquerel Winery Project: Weekend Near Term + Project Conditions: Left Turn Lane Not Warranted

Coquerel Winery Project

SR 128 / Winery Access Intersection

EXISTING + PROJECT WEEKDAY PM PEAK HOUR

Coquerel Winery Project

SR 128 / Winery Access Intersection

EXISTING + PROJECT WEEKEND PEAK HOUR

Coquerel Winery Project

SR 128 / Winery Access Intersection

NEAR TERM + PROJECT WEEKDAY PM PEAK HOUR

Coquerel Winery Project

SR 128 / Winery Access Intersection

NEAR TERM + PROJECT WEEKEND PEAK HOUR

LEVEL OF				Contro	DL DELAY (SECONDS/V	EHICLE)
SERVICE	TYPE OF FLOW	DELAY	MANEUVERABILITY	SIGNALIZED	UNSIGNALIZED	ALL-WAY STOP
А	Stable Flow	Very slight delay. Progression is very favorable, with most vehicles arriving during the green phase not stopping at all.	Turning movements are easily made, and nearly all drivers find freedom of operation.	≤ 10.0 secs. ≤ 0.60 v/c	≤ 10.0	<i>≤</i> 10.0
В	Stable Flow	Good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.	Vehicle platoons are formed. Many drivers begin to feel somewhat restricted \downarrow within groups of vehicles.	>10 and ≤ 20.0 secs. 0.61 - 0.70 v/c	>10 and <u><</u> 15.0	$>10 \text{ and } \le 15.0$
С	Stable Flow	Higher delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, although many still pass through the intersection without stopping.	Back-ups may develop behind turning vehicles. Most drivers feel somewhat restricted	 >20 and ≤ 35.0 secs. 0.71 - 0.80 v/c 	>15 and \leq 25.0	>15 and \leq 25.0
D	Approaching Unstable Flow	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume-to-capacity ratios. Many vehicles stop, and the proportion of vehicles of stopping declines. Individual cycle failures are noticeable.	Maneuverability is severely limited during short periods due to temporary back-ups.	>35 and < 55.0 secs. 0.81 - 0.90 v/c	>25 and <u><</u> 35.0	>25 and <u><</u> 35.0
Е	Unstable Flow	Generally considered to be the limit of acceptable delay. Indicative of poor progression, long cycle lengths, and high volume-to-capacity ratios. Individual cycle failures are frequent occurrences.	There are typically long queues of vehicles waiting upstream of the intersection.	>55 and ≤ 80.0 secs. 0.91 − 1.00 v/c	>35 and <u><</u> 50.0	>35 and ≤ 50.0
F	Forced Flow	Generally considered to be unacceptable to most drivers. Often occurs with over saturation. May also occur at high volume-to-capacity ratios. There are many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors.	Jammed conditions. Back-ups from other locations restrict or prevent movement. Volumes may vary widely, depending principally on the downstream back-up conditions.	> 80.0 secs. > 1.00 v/c	> 50.0	> 50.0

LEVEL-OF-SERVICE CRITERIA FOR INTERSECTIONS

References: 1. Highway Capacity Manual, Fourth Edition, Transportation Research Board, 2000, Contra Costa Transportation Authority (CCTA), Technical Procedures Update, Final, July 9, 2006. For the purposes of this study, CCTA intersection methodology has been used for signalized intersections yielding an LOS and v/c ratio.

	LOS "A"	LOS "B"	LOS "C"	LOS "D"	LUS E
All Facilities					
(Volume-to-Capacity Ratio (V/C))	<0.6	0.6-0.7	0.7-0.8	0.8-0.9	0.9-1.0
	Two-	way Average	Daily Traffic (ADT) Thresho	old
Roadway Segment Type	LOS "A"	LOS "B"	LOS "C"	LOS "D"	LOS "E"
6-Lane Freeway	60,000	80,000	100,000	120,000	140,000
4-Lane Freeway	35,000	50,000	65,000	80,000	95,000
4-lane Rural Highway	24,000	28,000	32,000	36,000	40,000
2-Lane Rural Highway	12,000	14,000	16,000	18,000	20,000
6-Lane Divided Arterial	32,000	38,000	43,000	49,000	54,000
4-Lane Divided Arterial	22,000	25,000	29,000	32,500	36,000
4-Lane Undivided Arterial	18,000	21,000	24,000	27,000	30,000
2-Lane Undivided Arterial	9,000	10,500	12,000	13,500	15,000
4-Lane Collector	12,000	15,000	18,000	21,000	24,000
2-Lane Collector	6,000	7,500	9,000	10,500	12,000

LEVEL OF SERVICE (LOS) CRITERIA FOR ROADWAYS BASED ON VOLUMES

Note: 1. Based on <u>"Highway Capacity Manual"</u>, Transportation Research Board, 2000 peak hour capacities. Daily capacities in the study area are assumed as nine times the peak hour capacity.

2. All volumes are approximate and assume typical roadway characteristics. Actual threshold volumes for each Level of Service listed above may vary depending on a variety of factors including (but not limited to) roadway curvature and grade, intersection or interchange spacing, driveway spacing, percentage of trucks and other heavy vehicles, travel lane widths, signal timing characteristics, on-street parking, volume of cross traffic and pedestrians, etc.

HCM Unsignalized Intersection Capacity Analysis 1: Coquerel Access & SR 128

ŧ,

Existing Weekday PM Peak Hour

	1	×.	Ť	p	1	ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		Þ			4		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Volume (veh/h)	0	0	127	0	0	127		293
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		847 (SA38
Hourly flow rate (vph)	0	0	138	0	U	138		
Pedestrians	L SCORDER CARG		000000000000000000000000000000000000000	200000001-225				
Lane Width (ft)								
Walking Speed (IVS)		11530 1550 1550		4-98030010				
Percent Diockaye						COUCHE COUCHE		
Median type	None							
Median storage veh)	NONC							8999000
Unstream signal (ff)								
pX. platoon unblocked			88894000 km k 6 99300				944-00000000000000000000000000000000000	000200-19
vC, conflicting volume	276	138	1. 1.		138			
vC1, stage 1 conf vol				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
vC2, stage 2 conf vol								
vCu, unblocked vol	276	138			138			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)			000000000000000000000000000000000000000		~ ~			0000403
tF (s)	3.5	3.3			2.2			
p0 queue free %	100	100		97. (197 .)	100	18 SC 10 10 10 10 10 10 10 10 10 10 10 10 10		
cM capacity (veh/h)	/14	910			1440			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	0	138	138					
Volume Left	0	0	0					1455424886
Volume Right	0	0	0					
cSH	1700	1700	1446				08-000000000000000000000000000000000000	0.000
Volume to Capacity	0.00	0.08	0.00					
Queue Length 95th (ft)	0	0	0					
Control Delay (s)	0.0	0.0	0.0					
Lane LOS	A	~ ~ ~	0.0			000000000000000000000000000000000000000		19886
Approach Delay (s)	0.0	0.0	0.0					-2.003
Approach LOS	А							
Intersection Summary								
Average Delay			0.0					(<u>()))))))))))</u>
Intersection Capacity U	tilization		10.0%	10	CU Leve	el of Se	rvice	
Analysis Period (min)			15	C++ X,4,9000000000000000000000	20.2000.0000.000.000	00 000 0000000000000000000000000000000		XX 545000000

HCM Unsignalized Intersection Capacity Analysis 2: Tubbs Ln. & SR 128

*

Existing Weekday PM Peak Hour

÷.

	•	×.	Ť	1	1	ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Ą		ĥ		٢	^		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Volume (veh/h)	100	25	102	245	40	87		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		estate d
Hourly flow rate (vph)	109	27	111	266	43	95		
Pedestnans								
Malking Speed (ft/s)								900.00
Percent Blockage								1993
Right turn flare (veh)					2.430000000000			.5-228888
Median type	None							
Median storage veh)						********	7661adomiccogogocossistersisti //theared.e/	1098 castor
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	426	244			377			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	426	244			377			108 V 287
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	9 E				• • •			
r (S)	3.0 81	3.3 07			2.2			
cM canacity (veh/h)	564	795			1181			
	004	100		00.0	1101			1999-000 1999-000
Direction, Lane #	WB 1	<u>NB 1</u>	SB 1	SB 2		-		
Volume Lotal	136	377	43	95				
Volume Lett Volume Bight	109	0	43	U O				
	500	1700	1181	1700				899000
Volume to Canacity	0.23	0.22	0.04	0.06				(17.83) (17.83)
Queue Length 95th (ft)	22	0	3	0.00				2020165
Control Delay (s)	12.8	0.0	8.2	0.0				
Lane LOS	B		A		er en			1222033258
Approach Delay (s)	12.8	0.0	2.6					
Approach LOS	В							
Intersection Summary								
Average Delay			3.2				· · · · · · · · · · · · · · · · · · ·	
Intersection Capacity U	tilization		40.8%	IC	CU Leve	el of Serv	ice A	
Analysis Period (min)			15		-		99999999 199910000000000000000000000000	210000117
				221000000000000000000000000000000000000			and the second	

HCM Unsignalized Intersection Capacity Analysis 1: Coquerel Access & SR 128

Existing Weekend Peak Hour

	*	×.	1	1	\$	¥.	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		Þ	- 		ର୍ଶ	
Sign Control	Stop		Free			Free	
Grade	0%	·····	0%			0%	
Volume (veh/h)	0	0	118	0	0	120	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	128	0	U	130	
Pedestrians					2.0000000		
Malking Speed (ff/s)							
Percent Blockage							
Right turn flare (veh)		X-290000000000					, <u>, , , , , , , , , , , , , , , , , , </u>
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked			•				
vC, conflicting volume	259	128			128		
vC1, stage 1 conf vol			******************			68.0 0 0	
vC2, stage 2 conf vol	050	400			400	A	
vCu, unblocked vol	259	128			128		
tC, single (s)	6.4	0.2			4.1		
tE_{c}	25	22			22		
n0 queue free %	100	100			100		
cM capacity (veh/h)	730	922			1458		
Direction Lane #	W/R 1	NR 1	SB 1				
Volume Total	0	128	130				
Volume Left	0	120	0				
Volume Right	Ő	0	Ō				
cSH	1700	1700	1458			95.924 (Constanting)	
Volume to Capacity	0.00	0.08	0.00				
Queue Length 95th (ft)	0	0	0				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS	А	00.500 <u>2</u> 00.200 m					
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS	A						
Intersection Summary							
Average Delay			0.0	· ·		rgoooss <u>a</u> ssa <u>a</u> mide de	
Intersection Capacity U	tilization		9.6%	IC	U Leve	el of Serv	A A
Analysis Period (min)			15				

coquerel-WkendX Omni-Means

HCM Unsignalized Intersection Capacity Analysis 2: Tubbs Ln. & SR 128

Existing Weekend Peak Hour

	1	Ł	Ť	M	-	ł	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		ąî		ሻ	^	
Sign Control	Stop		Free			Free	
Grade	0%	·	0%			0%	
Volume (veh/h)	207	34	84	205	27	93	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	225	37	91	223	29	101	
Pedestrians							
Lane Width (it) Wolking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)		2002/00/00/00/00/00/00/00/00/00/00/00/00		1000000000	gang 1-000000000000000	2010 0 000000000000000000000000000000000	14.00036003068665456986825.2003030202022222222222222222222222222
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	362	203			314		
vC1, stage 1 conf vol		Maseena: cuococoor				0454 1045670100000	
vC2, stage 2 conf vol	000	000			04.4		
VCu, unblocked vol	362	203			314		
tC, Single (S)	0.4	0.2			4.1		
tF (s)	3.5	33			22		
p0 queue free %	64	96	, ,	891-490300360003	98		
cM capacity (veh/h)	622	838			1246		
Direction Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	262	314	29	101			
Volume Left	225	0	29	0		99933, 1000000000000	nen ander eine eine eine eine eine eine eine ei
Volume Right	37	223	0	0			
cSH	645	1700	1246	1700			
Volume to Capacity	0.41	0.18	0.02	0.06			
Queue Length 95th (ft)	49	0	2	0		anter en la substitution	
Control Delay (s)	14.3	0.0	8.0	0.0			
Lane LOS	В	0.0	A		19. 39. 39. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30	oosaa ay daha U	
Approach Delay (s) Approach LOS	14.3 B	0.0	1.8				
Intersection Summary							
Average Delay			5.6				
Intersection Capacity U	tilization		42.6%	IC	CU Leve	el of Ser	vice A
Analysis Period (min)	·		15				

HCM Unsignalized Intersection Capacity Analysis Existing + Project Weekday PM Peak Hour 1: Coquerel Access & SR 128

	*	×.	1	1	\$	¥	· · · · · ·
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Ŵ		ħ			র্ন	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	9	2	127	3	1	127	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	10	2	138	3	1	138	
Pedestrians	Anna 1985 anna 19				8150,5809888(3939)		
Lane Width (II)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)	Home			1: 1997 (3: 1000) (3: 1			
Upstream signal (ft)							
pX, platoon unblocked	9098874889-020) 				1.020000-04600000		9998299829982745001003301205301204324532074444998000460000669744440000,00004499860000000444498800
vC, conflicting volume	280	140			141		
vC1, stage 1 conf vol						gariya	onnannannannan an an an an an an an an an
vC2, stage 2 conf vol							
vCu, unblocked vol	280	140			141		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	99	100			100		
civi capacity (ven/n)	709	908			1442		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	12	141	139				
Volume Left	10	0	1				
Volume Right	2	3	0				
CSH	739	1/00	1442				
Volume to Capacity	0.02	0.08	0.00				
Queue Length 95th (II)	10.0	0	01	9000 C			
Long LOS	10.0	0.0	0.1				
Approach Delay (c)	10 0	٥n	01				
Approach LOS	A.0	0.0	0.1				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Intersection Summary			0.4				
Average Delay	iliaotiee		U.4 17 50/	10	NI I	l of Con-i-	20
Analysis Pariod (min)	mzation		17.5% 15	IL.	JU LEVE		<b>∼</b>
nnaiysis renou (min)			IJ				

coquerel-WkdayXJ Omni-Means

HCM Unsignalized Intersection Capacity Analysis Existing + Project Weekday PM Peak Hour 2: Tubbs Ln. & SR 128

ŧ

	1	×.	Ť	p	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Ŵ		ţ,		ኻ	Ŷ
Sign Control	Stop		Free		Ī	Free
Grade	0%		0%			0%
Volume (veh/h)	100	26	104	245	43	93
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	109	28	113	266	47	101
Pedestrians			1999 a. 1997 a	000000000000000000000000000000000000000		
Lane Width (ft)						
Walking Speed (ft/s)	108005-1050 <u>0000000000000000000000000000000</u>				542688865911-12276656	
Percent Blockage						
Right turn flare (veh)	<b>.</b> .	11 144 112205622200		1241992555525		
Median type	None					
Median storage ven)					Toologia	
Upstream signal (it)						
pA, platoon unblocked	111	246	60 - 10 00000000		370	
vC1_stage 1_conf vol	44 (	240			573	
vC1, stage 2 confivel						
vCu, unblocked vol	441	246			379	
tC single (s)	6.4	62			<u> </u>	
tC 2 stage (s)	0.4	0.2				
tF (s)	3.5	33			22	
p0 queue free %	80	96			96	
cM capacity (veh/h)	551	793			1179	
Direction Lone #	M/R 1	NR 1	CR 1	SB 2		
Volumo Total	127	270	47	101		
Volume Left	100	3/9	47	101		
Volume Right	28	266	، <del>ب</del>	0 N		
cSH	588	1700	1179	1700		
Volume to Capacity	0.23	0.22	0.04	0.06		
Queue Length 95th (ft)	22	0.22	3	0.00		12 M. SOUGHING
Control Delay (s)	13.0	0.0	82	0.0		
Lane LOS	B		A			
Approach Delay (s)	13.0	0.0	2.6			
Approach LOS	В					00000000000000000000000000000000000000
Intersection Summary						
			33			
Intersection Canacity 1 If	ilization		0.0 41 0%	11		of Sei
Analysis Period (min)	mzation		41.070 15			
maysis renou (min)		·	IJ			

## HCM Unsignalized Intersection Capacity Analysis 1: Coquerel Access & SR 128

1

### Existing + Project Weekend Peak Hour

	-	Ł	Ť	1		ţ
Movement	WBI	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u>کر اور اور اور اور اور اور اور اور اور او</u>		 ĵ,			र्व
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	4	1	118	3	1	120
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	4	1	128	3	1	130
Pedestrians	10000000000000000000000000000000000000	//////////////////////////////////////		10400000000000000000		
Lane Width (ft)						
Walking Speed (ft/s)						Second Stations
Percent Blockage						
Right turn flare (veh)	A1					
Median type	None					
Median storage ven)				1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 1999: 19		
opstream signal (it)						
p, platoon unblocked	262	130			132	
vC1_stage 1 conf vol	202	100			102	
vC2_stage 2 conf vol						
vCu_unblocked vol	262	130			132	
tC. single (s)	6.4	6.2			4.1	
tC. 2 stage (s)	20 47 H - TODORES		000000000000000000000000000000000000000		200000000000000000000000000000000000000	289900000000000000000000000000000000000
tF (s)	3.5	3.3			2.2	
p0 queue free %	99	100			100	
cM capacity (veh/h)	726	920			1454	
Direction Lane #	WB 1	NB 1	SB 1			
Volume Total	5	132	132			
Volume Left	4	0	1	20110-00-00-00-00-00-00-00-00-00-00-00-00		
Volume Right	1	3	0			
cSH	758	1700	1454	in an		
Volume to Capacity	0.01	0.08	0.00			
Queue Length 95th (ft)	1	0	0			
Control Delay (s)	9.8	0.0	0.1			
Lane LOS	А		А			
Approach Delay (s)	9.8	0.0	0.1			
Approach LOS	A					
Intersection Summary						
Average Delay			0.2			
Intersection Capacity U	tilization		17.1%	IC	CU Leve	el of Se
Analysis Period (min)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		15	· · · · ·		
00000000000000000000000000000000000000	\$630220000022	512000000000	0.0000000000000000000000000000000000000	88833 <b>883388</b> 8888888	<b>232</b> 000 <b>000</b> 000000000000000000000000000	

coquerel-WkendXJ Omni-Means

- 4

	¥	Ł	1	p	-	Ļ				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	Ŵ		Þ		ሻ	<b>A</b>				
Sign Control	Stop		Free		- 	Free				
Grade	0%		0%			0%				
Volume (veh/h)	207	35	86	205	28	96				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	. 0.92				
Hourly flow rate (vph) Pedestrians	225	38	93	223	30	104				
Lane Width (II)										
vvaiking Speed (ft/s)										
Percent Blockage										
Right turn hare (ven)	Nono									
Median type	INONE		- -							1999 - 1994 - 1996 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Instream signal (ff)										
nX platoon unblocked		51000			596 (1200) (120)				S. (840300074000)	
vC conflicting volume	370	205			316					
vC1_stage 1 conf vol	0,0		000000000000000000000000000000000000000	2002220000000000					10022000000000000000000	23600 - 4577777777777777
vC2 stage 2 conf vol										
vCu, unblocked vol	370	205	56.00040055205880	1997, 745 2003 550 S	316	9100068000000000000000000000000000000000			xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	000000000000000000000000
tC. sinale (s)	6.4	6.2			4.1					
tC, 2 stage (s)		5097000000 <b>8</b> 0824088	11991 - 7 og 1999 forstaller	000084030356091446				- · ·		
tF (s)	3.5	3.3			2.2					
p0 queue free %	63	95			98					
cM capacity (veh/h)	615	836			1244					
Direction, Lane #	WB 1	NB 1	SB 1	SB 2						
Volume Total	263	316	30	104						
Volume Left	225	0	30	0		22000000000000000000000000000000000000				
Volume Right	38	223	0	0						
cSH	639	1700	1244	1700			**************************************			
Volume to Capacity	0.41	0.19	0.02	0.06						
Queue Length 95th (ft)	50	0	2	0				-		
Control Delay (s)	14.5	0.0	8.0	0.0						
Lane LOS	В		А							
Approach Delay (s)	14.5	0.0	1.8	- -	6.14					
Approach LOS	В									
ntersection Summary										
Average Delay			5.7							
Intersection Capacity Ul Analysis Period (min)	tilization		43.5% 15	0	CU Leve	el of Serv	ce	1	Ą	
	1917 C-38888888888			07224020000000			eisteretter and		82805.NF23-253	85 SO 10 CO 2000

## HCM Unsignalized Intersection Capacity Analysis 1: Coquerel Access & SR 128

### Near Term Weekday PM Peak Hour

	4	Ł	1	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations Sign Control Grade Volume (veh/h)	¥ Stop 0% 0	0	<b>1</b> - Free 0% 154	0	0	<b>€</b> Free 0% 154	
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s)	0.92	0.92	0.92 167	0.92	0.92 0	0.92 167	
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX_platoon unblocked	None						
vC, conflicting volume vC1, stage 1 conf vol	335	167			167		
vCu, unblocked vol tC, single (s)	335 6.4	167 6.2	· .		167 4.1		
tF (s) p0 queue free % cM capacity (veh/h)	3.5 100 660	3.3 100 877			2.2 100 1410		ningen og en generale i den som
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total Volume Left Volume Right	0 0 0	167 0 0	167 0 0				
cSH Volume to Capacity Queue Length 95th (ff)	1700 0.00 0	1700 0.10 0	1410 0.00 0				
Control Delay (s) Lane LOS	0.0 A	0.0	0.0				
Approach Delay (s) Approach LOS	0.0 A	0.0	0.0				
Average Delay Intersection Capacity Ut Analysis Period (min)	ilization		0.0 11.4% 15	IC	U Leve	l of Ser	vice

# HCM Unsignalized Intersection Capacity Analysis 2: Tubbs Ln. & SR 128

Near Term Weekday PM Peak Hour

	*	Ł	1	P	1	↓ ·	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Ŵ		î.		ሻ	۸	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	122	32	122	278	47	107	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	133	35	133	302	51	116	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)	Iocrasiono - o Sue Alcorer	5			50000000000000000000000000000000000000		
Percent Blockage							
Right turn flare (veh)			9895 - CENTRON - C				
Median type	None						
Wedian storage ven)					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		
Opstream signal (π)							
$p_{\Lambda}$ , platoon unbiocked	502	284			135		
vC1_stage 1 confivel	002	204			435		
vC2 stage 2 conf vol							
vCu, unblocked vol	502	284			435		
tC single (s)	64	62			4 1		
tC. 2 stage (s)		0.2	0.0000000000000000000000000000000000000	31,365,9800-990		99680-966A8N-056709	
tF (s)	3.5	3.3			2.2		
p0 queue free %	74	95			95		
cM capacity (veh/h)	505	755			1125		
Direction Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	167	435	51	116			
Volume Left	133	0	51	0			
Volume Right	35	302	0	0			
cSH	542	1700	1125	1700	R SHREE E GARREER		
Volume to Capacity	0.31	0.26	0.05	0.07			
Queue Length 95th (ft)	33	0	4	0		25.243.5 x 504 x 1 x 20	oodd i neemaan an theen waar a theen waar allo allo allo allo allo allo allo a
Control Delay (s)	14.6	0.0	8.4	0.0			
Lane LOS	В	······································	А	QUERNIN, N. GARTANI,			
Approach Delay (s)	14.6	0.0	2.5				
Approach LOS	В						
Intersection Summary							
Average Delay			3.7				
Intersection Capacity UI	tilization		45.5%	10	CU Leve	l of Serv	vice A
Analysis Period (min)	and the second second		15				1000. Minimum in the second
STORE STORES	0.0223203000000000			0.0009-0 <u>8</u> 0-0809			

coquerel-WkdayNT Omni-Means

## HCM Unsignalized Intersection Capacity Analysis 1: Coquerel Access & SR 128

	1		Ť	p	\$	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	Y		ĥ			र्ब			
Sign Control	Stop		Free			Free			
Grade	0%		0%			0%		se anoscoupecias	
Volume (veh/h)	0	0	137	0	0	137			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		004000-100300-106	
Hourly flow rate (vph)	0	0	149	0	0	149			
Pedestrians			SAL CONTRACTOR						
Lane Width (ft)									5.000000000
Porcont Blockage									
Right turn flare (yeh)								8. State 800	807.01988.03
Median type	None								
Median storage veh)					20079-000 X-0011-0				00000000 P.7 D
Upstream signal (ft)									
pX, platoon unblocked			-	1999 - Thursdon Soon op op op op		.x., x. 000000077000000088888	an al change an	~~~~~	
vC, conflicting volume	298	149			149				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	298	149			149				
tC, single (s)	6.4	6.2			4.1				
tC, 2 stage (s)			A		~ ~				24000000
tF (s)	3.5	3.3			2.2				
p0 queue free %	100	100			100			5056 12 5 20 00	
cM capacity (veh/h)	693	898			1433				
Direction, Lane #	WB 1	NB 1	SB 1						
Volume Total	0	149	149					11 ²	
Volume Left	0	0	0		. 38 per 2000.000 mm		Second and a second second		2010/02/27
Volume Right	0	0	0						
cSH	1700	1700	1433						
Volume to Capacity	0.00	0.09	0.00						
Queue Length 95th (ft)	0	0	0					Alexandra	
Control Delay (S)	0.0	0.0	0.0						
Lane LUS Approach Dolou (c)	А 0 0	0.0	0.0			e de la compositione de la composit	000000000000000000000000000000000000		
Approach LOS	0.0 A	0.0	0.0						2000000
Approach LOS	~ ~								
Intersection Summary									
Average Delay			0.0				••••••••••••••••••••••••••••••••••••••		2200 <b>2</b> 00 1440000
Intersection Capacity U	tilization		10.5%	10	CU Leve	el of Serv	vice		A
Analysis Period (min)		-	15						

coquerel-WkendNT Omni-Means

## HCM Unsignalized Intersection Capacity Analysis 2: Tubbs Ln. & SR 128

Near Term Weekend Peak Hour

	-	Ł	Ť	p	\$	Ļ				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	Ŵ		ĥ		ሻ	<u>^</u>				
Sign Control	Stop		Free			Free				
Grade	0%		0%			0%				
Volume (veh/h)	224	39	98	232	32	105				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
Hourly flow rate (vph)	243	42	107	252	35	114				
Pedestrians										
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage										
Right turn flare (veh)										
Median type	None									
Median storage veh)										
Upstream signal (ft)										
pX, platoon unblocked										
vC, conflicting volume	416	233			359					
vC1, stage 1 conf vol										
vC2, stage 2 conf vol										
vCu, unblocked vol	416	233			359					
tC, single (s)	6.4	6.2			4.1					
tC, 2 stage (s)		······	· · · ·				•			
tF (s)	3.5	3.3			2.2					
p0 queue free %	58	95			97					
cM capacity (veh/h)	576	807			1200					
Direction Lane #	WB 1	NB 1	SB 1	SB 2						
Volume Total	286	359	35	114						
Volume Left	243	000	35	0				· ·		
Volume Right	42	252	n 0	Ő						
cSH	601	1700	1200	1700						
Volume to Canacity	0.48	0.21	0.03	0.07			1			
Queue Length 95th (ft)	64	0.21	2.00	0.07	999999999999999 -		(1997) - Station (1998) -			88.000000.00000
Control Delay (s)	16.3	00	8 1	0 0						
Lane LOS	0.0. ```	1999 - <b>1997</b> 1	A		5-19000000000000000000000000000000000000					
Approach Delay (s)	16.3	0.0	19							
Approach LOS	0.0, 0	<b></b>	1999 - 19 <b>7</b> - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1			******			89-9-9000009)C	9000 1000000 P.S. P
Interpretion Ourse	Ĭ									
Intersection Summary			6.0							
Average Delay	L:1:L:	14 <b>3</b> 0,5133008000	0.Z	17	<u></u>	l of Corri	~~		٨	
Intersection Capacity U	unzation		47.5%	10		er or Servi	UC CC		~	
Analysis Period (min)			15	00000203000000000		\$2000.000				
					00000000000000000000000000000000000000	202000000000000000000000000000000000000	200000000000000000000000000000000000000			

HCM Unsignalized Intersection Capacity Analysis 1: Coquerel Access & SR 128

1

Near Term + Project Weekday PM Pk. Hr.

	•	×.	Ť	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		<b>ĵ</b> »			র্ন	
Sign Control	Stop		Free			Free	
Grade	0%		0%	1.000 mb/c2 0000	0000000-0000000	0%	- - 
Volume (veh/h)	9	2	154	3	1	154	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Houriy flow rate (vpn)	10	2	167	ు	. I	107	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)				1002 S42 S43 S53 S			
Median type	None						
Median storage veh)	-	000000000000000000000000000000000000000	/		-	10000000000000000000000000000000000000	
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	339	169			171		
vC1, stage 1 conf vol		2094200314000000000					
vC2, stage 2 conf vol	000	400			474		
VCu, unblocked vol	339	169	3894 - 15	References	171		
tC, Single (S)	0.4	0.2			4.1		
tC, 2 stage (s)	35	23			22		
n0 queue free %	99	100			100	302.5.536.000.0380	
cM capacity (veh/h)	657	875			1407		
Direction Lane #	WR 1	NR 1	SB 1				
Volume Total	12	171	168				
Volume Left	10	0			8888520 -000002	-	
Volume Right	2	3	0				
cSH	688	1700	1407				NINGCOLT TA PULL CONTRACTOR NERVICENTA A TRACTOR NUMBER NOTATION NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUM
Volume to Capacity	0.02	0.10	0.00				
Queue Length 95th (ft)	1	0	0				
Control Delay (s)	10.3	0.0	0.1				
Lane LOS	B		A				
Approach Delay (s)	10.3	0.0	0.1				
Approach LOS	В						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity UI	ilization		18.9%	IC	U Leve	l of Se	rvice A
Analysis Period (min)			15		ve		

coquerel-WkdayNTJ Omni-Means

HCM Unsignalized Intersection Capacity Analysis Near Term + Project Weekday PM Pk. Hr. 2: Tubbs Ln. & SR 128

- ¥

	*	×.	Ť	M	1	¥.	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	NA.		Þ		ሻ	1	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	122	33	124	278	50	113	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	133	36	135	302	54	123	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)		5 (822) (CONTRACT - 2	5-25-20000000000				
Percent Blockage							
Right turn flare (veh)	<b>X</b> 1						
Median type	None						
iviedian storage ven)	2000-2008-20 <b>2</b> 90						
Upstream signal (π)				6			
pA, platoon unblocked	E17	206			107		
	517	200			437		
					1943 - 1942 - 194		
vCz, stage z com vol	517	286			137		
C single (s)	64	62			407 A 1		
tC, 2 stage (s)	υ.Τ	0.2	NA-1573187888		7.1		
F (s)	35	33			22		
0 queue free %	73	95		2000-00-0	95		
cM capacity (veh/h)	493	753			1123		
Direction Lane #	WB 1	NB 1	SB 1	SB 2			
/olume Total	168	437	54	123			
Volume Left	133	0	54	0			n en
Volume Right	36	302	0	Ő			
SH	532	1700	1123	1700	46.260.05700000000		A la serie la serie de la s
Volume to Capacity	0.32	0.26	0.05	0.07			
Queue Length 95th (ft)	34	0	4	0		99 C 2005-2000	
Control Delay (s)	14.9	0.0	8.4	0.0			
_ane LOS	В		A				19999999999999999999999999999999999999
Approach Delay (s)	14.9	0.0	2.6				
Approach LOS	В						are was compared building and a compared ballow the second se
ntersection Summary							
Average Delay			3.8				
Intersection Capacity UI	tilization		45.7%	IC	CU Leve	el of Ser	vice A
Analysis Period (min)		ang and and the first of the fi	15			2008-000 ADOCCODC 2000	nn na n
						000000000000000000000000000000000000000	ກັບເປັນສາຍ ແລະ ເປັນການ ແລະ ເປັນການ ເຊິ່ງ ແລະ ເປັນການ ເຊິ່ງ ແລະ

## HCM Unsignalized Intersection Capacity Analysis 1: Coquerel Access & SR 128

## Near Term + Project Weekend Pk. Hr.

	•	×.	1	t	\$	ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Ņ		Ť.			র্ব		
Sian Control	Stop		Free			Free		8,000
Grade	0%	y~	0%		2 N M M M M M N N N N N N N N N N N N N	0%		
Volume (veh/h)	4	1	137	3	1	137		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	4	1	149	3	1	149		
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)	2.002020000000000000					0000 19500 - 1960-2000		
Median type	None							
Viedian storage ven)	Sjogen av starter start					30 m Anno 19 m Anno 19 m A		
Upstream signal (π)	-						ij	
pX, platoon unblocked	200	151			152		12	84637 82889
vC, connicting volume	302	104			192			
VC1, stage 1 confive						Statistica	ġ?	
vCz, stage z com vol	302	151			152		83	
C single (s)	64	62			4 1		23	
tC 2 stage (s)		<b></b>					8406	
(5) (F (s)	3.5	3.3			2.2			
p0 queue free %	99	100			100			
cM capacity (veh/h)	689	896			1429			
Nizazlian 1 and 4			OD 4	223 2042 90 90000000000				-
			<u>30 I</u>					
volume l otal	5	152	150					
Volume Lett	4	U	1	0.108200000			200	
	700	3 1700	1420			or 1917 (1917)		
Jon Volume to Conseitu	123	0.00	1429				132	
	0.01 1	0.09	0.00	8	-)		623	
Control Delay (s)	10.0	0	0 0 1		1997 (M. 1987)		S.	
Lana LOS	10.0 R	0.0	Δ					
Annroach Delav (s)	10.0	0 0	01		2.			
Approach LOS	10.0 R	0.0	0.1	90096 (F 2013)		enni Milli (		
APROADILEOU	2							
ntersection Summary							ĺ	
Average Delay	<u></u>		0.2	*********			pson	one and a star
Intersection Capacity Ut	ilization		18.0%	IC	CU Leve	of Serv	CE	;
Analysis Period (min)	20104021-322080899		15					
2.2	5.000 - E. (1993) 1995 - E. (1993)	8363		2000 COC		1201120000053		

	*	Ł	↑	p	1	¥ .				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	Y		ţ,		ሻ	ŕ				
Sign Control	Stop		Free			Free				
Grade	0%		0%			0%				
Volume (veh/h)	224	40	100	232	33	108				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		· ·		e estado pero - accordo 12, ka 200
Hourly flow rate (vph)	243	43	109	252	36	117				
Pedestrians										
Lane Width (ft)										
Walking Speed (ft/s)		- 	\$\$000000000000000000000000000000000000			7999. (1990) (1990) 1999 - J. (1990) (1990)				
Percent Blockage										
Modion type	Nono								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Median storage veh)	NULLE		1.000							
I Instream signal (ft)					MARANA (					
nX nlatoon unblocked							94000000000000000000000000000000000000			
vC conflicting volume	424	235			361			Î		
vC1. stage 1 conf vol	and the second	Ren Stra Tortoo			00020GeG200000	,				
vC2, stage 2 conf vol										
vCu, unblocked vol	424	235	***************	accostinated and	361					
tC, single (s)	6.4	6.2			4.1					
tC, 2 stage (s)										
tF (s)	3.5	3.3			2.2					
p0 queue free %	57	95			97					
cM capacity (veh/h)	569	804			1198					
Direction, Lane #	WB 1	NB 1	SB 1	SB 2						
Volume Total	287	361	36	117						
Volume Left	243	0	36	0						
Volume Right	43	252	0	0						
cSH	596	1700	1198	1700			en an ser an ser a s	-		
Volume to Capacity	0.48	0.21	0.03	0.07						
Queue Length 95th (ft)	65	0	2	0						
Control Delay (s)	16.5	0.0	8.1	0.0						
Lane LOS		0.0	A							
Approach Delay (s)	6.01	0.0	1.9							
Approach LOS	U									
Intersection Summary										
Average Delay	· 2 <u></u>		6.3	0004,0109,000011112			ennin vielenneer		Quality of the second se Second second second second second second second second second second second se	
Intersection Capacity U	tilization		47.7%	IC	CU Leve	el of Servi	ce	A		
Analysis Period (min)	39999		15					000000000000000000000000000000000000000		

#### **Approved Developments Trip Generation**

Napa County: Approved Developments In The Vicinity of Coquerel Project Daily Daily Daily Production Truck Visitors Visitor Employee TOTAL Daily Trips on Napa County: Trips TRIPS SR 128 (gals./yr) Trips (per week) Trips Employees McBride Winery 25,000 Johnston Vineyards 20,000 Bennett Lane Winery 50,000 Robert Pecota Winery / Atalon 60,000 Two Sisters Winery 15,000 **Prager Family Estates** 75,000 Villa Andriana 50,000 **Envy Wines** 20,000 300 est. Chateau Montelena 128,000 Arroyo Winery 20,000 **Carver Sutro Winery** 20,000 Garnet Creek Winery 15,000 20,000 Amici Cellars Tamber Bey 60,000 

City of Calistoga:

From review of pending/approved developments it was estimated 20 daily trips added to SR 128 near project.

Source: Napa County, Planning Department, Ms. Charlene Gallina, February 7, 2013. City of Calistoga, Planning Department, Mr. Erik Lundquist, January 28, 2013.



OMNI-MEANS



Both 1 Lane	Approaches	2 or more Lane and C	Ine Lane Approaches	Both 2 or more Lane Approaches			
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High		
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach		
370	280						
400	270	460	297	430	410		
500	215	500	290	500	380		
600	185	600	230	600	310		
700	140	700	198	700	265		
800	115	800	170	800	210		
900	99	900	125	900	180		
1000	85	1000	105	1000	140		
1100	75	1100	90	1100	110		
1200	75	1200	75	1150	100		
1300	75	1300	75	1300	100		



☆ NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:
Scenario:
Minor St. Volume:
Major St. Volume:
Warrant Met?:

S.R. 128 / Tubbs Ln. Existing Weekday PM Peak Hour Conditions 125 274 No

Dette 1 and an and a second over the second se					
Both 1 Lane	Approaches	2 or more Lane and One Lane Approaches		Bour 2 or more Lane Approaches	
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	.500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100



☆ NOTE:

No

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	
Scenario:	
Minor St. Volume:	
Major St. Volume:	
Warrant Met?:	

S.R. 128 / Tubbs Ln. Existing Weekend Peak Hour Conditions 241 409

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
				-	
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170 ·	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100



☆ NOTE:

No

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:
Scenario:
Minor St. Volume:
Major St. Volume:
Warrant Met?:

S.R. 128 / Tubbs Ln. Existing + Project Weekday PM Peak Hour Conditions 126 485

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
· · · · · · · · · · · · · · · · · · ·					
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100



☆ NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Scenario: Minor St. Volume:	S.R. 128 / Tubbs Ln. Existing + Project Weekend Peak Hour Conditions 242
Major St. Volume:	415
Warrant Met?:	No

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
	· · · · ·				
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	. 110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100



A NOTE:

No

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:
Scenario:
Minor St. Volume:
Major St. Volume:
Warrant Met?:

S.R. 128 / Tubbs Ln. Near Term Weekday PM Peak Hour Conditions 154 554

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
· · · · · · · · · · · · · · · · · · ·					
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100



☆ NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Scenario: Minor St. Volume: Major St. Volume:	S.R. 128 / Tubbs Ln. Near Term Weekend Peak Hour Conditions 263 467
Major St. Volume:	467
vvarrant Met?	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100



☆ NOTE:

No

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:
Scenario:
Minor St. Volume:
Major St. Volume:
Warrant Met?:

S.R. 128 / Tubbs Ln.

Near Term + Project Weekday PM Peak Hour Conditions 155 565

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100



☆ NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	S.R.
Scenario:	Nea
Minor St. Volume:	264
Major St. Volume:	473
Warrant Met?:	No

S.R. 128 / Tubbs Ln. lear Term + Project Weekend Peak Hour Conditions